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Summary

Fair allocation has been studied intensively in both economics and computer science.
Many existing mechanisms that consider fairness of resource allocation focus on a
single resource. With the advance of cloud computing that centralizes multiple types
of resources under one shared platform, multi-resource allocation has come into the
spotlight. In fact, fair/efficient multi-resource allocation has become a fundamental
problem in any shared computer system. The widely-used solution is to partition
resources into bundles that contain fixed amounts of different resources, so that mul-
tiple resources are abstracted as a single resource. However, this abstraction cannot
satisfy different demands from heterogeneous users, especially on ensuring fairness
among users competing for resources with different capacity limits. A promising
approach to this problem is dominant resource fairness (DRF), which tries to equal-
ize each user’s dominant share (share of a user’s most highly demanded resource,
i.e., the largest fraction of any resource that the user has required for a task), but this
method may still suffer from significant loss of efficiency (i.e., some resources are
underused). This paper develops a new allocation mechanism based on DRF aiming
to balance fairness and efficiency. We consider fairness not only in terms of a user’s
dominant resource, but also in another resource dimension which is secondarily
desired by this user. We call this allocation mechanism 2-dominant resource fairness
(2-DF). Then, we design a non-trivial on-line algorithm to find a 2-DF allocation and
extend this concept to k-dominant resource fairness (k-DF).
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1 INTRODUCTION

Resource allocation is one of the central topics in the field of computer science. There are many policies that govern resource
allocation to achieve fairness among users. Max-min fairness, one of the most popular allocation policies, tries to maximize the
allocation for the most poorly treated users, i.e., maximize the minimum. Weighted max-min fairness adds a new concept called
weight based on max-min fairness, and assigns each user with a share of the resources according to a preset weight. However,
an obvious limitation in most of the existing works is that they are only devoted to single-resource allocation when quantifying
the notion of fairness, e.g. by allocating available link bandwidth to network flows.
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<40,8,8>/task <8,5,1>/task

FIGURE 1 A multi-resource allocation setting using resource abstraction.

Fair (or efficient) multi-resource allocation is a fundamental problem in any shared computer system. A typical example
is data centers that process numerous jobs with heterogeneous resource requirements on bandwidth, memory, and CPU etc.
Both Hadoop and Dryad employed a simple solution based on resource abstraction. As is shown in Figure 1, all resources are
partitioned into bundles with fixed amounts of different resources, so that multiple resources are abstracted as a single resource.
However, this simple resource abstraction ignores the different demands of heterogeneous users, and cannot always match nicely
with user demands.
Ghodsi et al.1 first put forward a compelling approach to this problem, which is known as dominant resource fairness (DFR).

In brief, DRF allocates resources according to users’ proportional demands, applying max-min fairness to each user’s dominant
share. Dominant share is the maximum share that a user has been allocated of any resource. Such a resource is then called
a dominant resource. Although DRF has attracted much attention, this allocation approach has been questioned continuously
for the reasons given below: (1) fairness dispute - DRF only considers one dimension when allocating all resources. Once the
allocation of a user’s dominant resource is determined, resources in other dimensions are proportionally assigned according to
the user’s request. (2) efficiency loss - Jin et al.2 and Bertsimas et al.3 respectively showed that proportional fairness, which
maximizes the sum of the log of completed tasks of different users, always more efficiently uses resources than DRF does.

1.1 Motivation
Weuse the example shown in Figure 1 to illustrate existing problems in theDRF allocationmechanism. Given a systemwith three
resources ⟨Bandwidtℎ, Memory, CPU⟩ and two users ⟨user1, user2⟩, the capacity of each resource is 200 units respectively.
User 1 executes each task with the request vector ⟨40, 8, 8⟩, while user 2 requires ⟨8, 5, 1⟩ for each task. According to DRF,
user 1 gets an allocation of ⟨100, 20, 20⟩, and user 2 gets ⟨100, 62.5, 12.5⟩. The resulting allocation is shown in Figure 2.
In the fairness domain, it is obvious that the amount of resources allocated to each user is only dependent on his dominant

resource request. According to the blue line shown in Figure 4, if user 2’s request on memory (which isn’t his dominant resource)
varies, there is no change on the number of total tasks he can complete. In the efficiency domain, if we define efficiency in terms
of the aggregate tasks of all users, this example also reflects DRF’s deficiency. See the results in Figure 3. In this setting, DRF
produces an allocation with 2.5 tasks for user 1 and 12.5 tasks for user 2. This allocation brings about a significant loss in system
efficiency. If we assign 2 tasks to user 1 and 15 tasks to user 2, this allocation yields 17 tasks in total, which is more efficient than
DRF. Consider an extremely unequal allocation, where all resources are allocated to user 2, it will produce 25 tasks completed in
total. In addition, we can also measure efficiency based on the amount of leftover resource capacity. In this example, DRF yields
15 tasks, leaving 285 units of resources unused in total. If we assign 22.5 tasks to user 2, it also leads to 285 units of resources
left unused. It is obvious, resource utility is higher in the second allocation. In fact, each of the existing mechanisms designed for
multi-resource allocations represents one point of the fairness-efficiency tradeoff. Besides, this example motivates us to think
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FIGURE 2 An example of dominant resource fairness allocation.

user 1

++
40         8         8

1  task

user 2

++
160      100       20

20 tasks

user 1

100       20      20

2.5 task

user 2

100     62.5     12.5

12.5 tasks

++

++

FIGURE 3 Efficiency loss in dominant resource fairness allocation: 15 tasks are completed under DRF (on the left side) while the maximal number pf completed tasks is
21 (on the right side).

about if we could design a new mechanism to reach the following goals: (1) balance the number and the value of resources given
to user 1 and user 2, in order to achieve the fairness in the traditional sense; (2) increase total efficiency of resource utility, in
order to complete more tasks. While fairness is a basic requirement of different users for resource competition, efficiency is the
most desirable property for a system provider, with the efficiency expressed in terms of the aggregate tasks of all users. Hence,
a key challenging issue is how to balance these two factors with the desired performance satisfactory. Unfortunately, though
generally applicable to multi-resource environments, DRF still performs poorly when efficiency is a concern.

1.2 Our Result
To some extent, the previous example shows the fundamental tradeoff between fairness and efficiency: fairness and efficiency
cannot be achieved simultaneously. In this paper, we seek to answer a fundamental question of resource management: how
to allocate multi-type resources among users with heterogeneous demands, in an attempt to balance two opposing factors -
efficiency and fairness.
Based on this question, we propose a new allocation mechanism called 2-dominant resource fairness (2-DF). A concept called

2-dominant share (denoted by s) is used. si is defined for each user i as the product of first two dominant demand/capacity ratios.
Compared with dominant resource share, 2-dominant share is a better reflection of a user’s true demand of all resources. Simi-
larly to DRF, our allocation mechanism tries to equalize each user’s 2-dominant share as much as possible. Further, we extend
this 2-dominant resource fairness to k-dominant resource fairness (k-DF). We show our allocation mechanism can improve
resource utility in most cases while still keeping some important fairness properties, and we also prove that our allocation mech-
anism satisfies both strategy-proofness and Pareto-optimality; meanwhile, we could achieve envy-freeness in some scenarios
that appear quite frequently.
Our contributions in this paper are summarized as follows:
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FIGURE 4 User changes his request on a non-dominant resource dimension.

• Motivated by the deficiency of DFR policy, we reconsider the definition of fairness and efficiency, and formulate several
basic metrics to measure fairness and efficiency of a specific allocation mechanism in the multi-resource scenario.

• A new allocation mechanism called 2-dominant resource fairness is proposed to fairly and efficiently allocate multiple
resources to users with heterogeneous demands.

• An online scheduling algorithm is designed to realize 2-DF allocation mechanism.

• We prove that in 2-DF allocation mechanism, strategy-proofness and Pareto-optimality can be guaranteed, and envy-
freeness can be achieved in some scenarios that appear quite frequently.

• We simulate our algorithm in real-world scenarios, and compare the performances of our algorithm with the previous
approaches according to our predetermined metrics.

The remainder of the paper is organized as follows. Section 2 briefly reviews the related works, and Section 3 formulates
the metrics that are to measure fairness and efficiency in multi-resource allocation settings. Section 4 presents our model and
related allocation mechanism. In Section 5, we prove some important fairness properties achieved in our mechanism.We discuss
experiment results in Section 6, and conclude our paper in Section 7.

2 RELATEDWORK

Multi-resource allocation problems arise in increasingly many applications. Data centers with multiple resources have often
employed a single resource abstraction by partitioning different resources into bundles. However, multi-resource allocation
viewed as single-resource allocation inevitably leads to significant inefficiencies because of the heterogeneous user demands.
Different approaches have been proposed to deal with multi-resource allocation problems. Many different dimensions have been
taken into account, such as desirable allocation characteristics, utility functions used to measure happiness of users, and the step
at which a resource allocation approach should be applied4.
As discussed earlier, Ghodsi et al.1 proposed the DRF policy, which provides fair allocation of multiple resources in terms

of dominant shares. It retains a number of desirable sharing properties and has been widely studied in both theory and practice.
In reality, DRF has been modified and adopted by Apache Mesos. As a variation, Mesos doesn’t directly allocate resources to
tasks. It allocates resources to frameworks based on DRF, and then the frameworks run scheduling algorithms to schedule tasks
using the allocated resources. As mentioned in5, once Mesos launches tasks, it does not terminate them even if the frameworks’
dominant share exceeds the fair share limit of the cluster. This feature can lead other frameworks to starve.
Then, Ghodsi et al.6 extended DRF to packet networks and proposed DRFQ, the first fair multi-resource queuing algorithm.

Gutman and Nisan7 considered generalizations of DRF in a more general utility model, such as the Leontief preferences. Joe-
Wong et al.8 paid attention to the tradeoffs between fairness and efficiency, and generalized the DRF policy by designing a
unifying multi-resource allocation framework. Parkes et al.9 extended DRF in several ways, and in particular studied the case
of indivisible tasks.
Wang et al.10 and Friedman et al.11 extended DRF’s all-in-one resource model to distributed systems with heterogeneous

machines, while Zeldes and Feitelson12 proposed an on-line algorithm based on bottlenecks and global priorities. Kash et al.13
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FIGURE 5 Examples of multi-resource fairness properties.

extended DRF to a dynamic setting, where users dynamically arrive over time but never depart. Also, Li et al.14 generalized
the dynamic dominant resource fairness mechanism to the bounded case, where each user has a finite number of tasks. In their
paper, a linear-time optimal algorithm is presented. Dolev et al.15, on the other hand, suggested a different fairness notion for
multi-resource allocation based on fairly dividing a global system bottleneck resource. Zahedi and Lee16 applied the concept of
Competitive Equilibrium from Equal Outcomes (CEEI) in the case of the CobbDouglas utilities to achieve properties similar to
DRF.
Recently, a new mechanism called Greediness Metric Fairness has been developed17,18,19, which can be applied to allocate

physical resources by periodically adapting the priorities of virtual machines. This mechanism is highly flexible and applicable
to scheduling1, since it has no assumptions on utility functions. Besides, there appears a new trend to take advantage of machine
learning to allocate multiple resources to satisfy user requests20.

3 METRICS ON FAIRNESS AND EFFICIENCY

When assessing the quality of an allocation, we can distinguish two types of indicators of social welfare: fairness and efficiency.
While fairness is a basic requirement of different users for resource competition, efficiency is the most desirable property for
a system provider. Hence, a key challenging issue is how to balance these two factors with the desired performance and user
satisfaction. Before discussing our new allocation mechanism, we start with some widely-accepted definitions of fairness and
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efficiency in the multi-resource allocation environments, and formulate some metrics that should be considered to measure a
multi-resource allocation mechanism.
In terms of fairness, equal sharing seems to be treated as the conventional idea. However, it cannot always be a good interpre-

tation of fairness even for a single-resource allocation. Given a total of 12-unit bandwidth and 3 network users, A needs 1.5 unit
bandwidth for web-browsing, B needs 4.5 unit bandwidth for watching a film, and C needs 6 unit bandwidth to hold a video
conference. Egalitarianism will lead to an allocation of 4 units for each user. 4 units forA are really a waste while forB andC are
not enough. This equal allocation scheme produces a very low network resource utility. A better allocation can be ⟨1.5, 4.5, 6⟩
for A, B, C , which ensures that all users can be better off or at least no worse off than in the case of equal sharing. A major
challenge of multi-resource fairness is incorporating the heterogeneity of different users’ requirements for different resources
into the assessment of its fairness. As mentioned in4, there are two main reasons why more complexity and less agreement are
encountered in defining multi-resource fairness: one is that fairness is an intuitive concept, and the other is that the organiza-
tion of resources also has influence on defining fairness. Instead of being stuck in different definitions of fairness, we list some
acknowledged and important properties of a fair multi-resource allocation proposed by Ghodsi et al.1.

Definition 1 (Pareto efficiency). Increasing the allocation of a user will lead to decreasing the allocation of at least another user.
This means no user can run more tasks without harming someone else’s benefits.

Definition 2 (Sharing incentive). Each user should be at least no worse off by sharing resources compared with exclusively
equally partitioning each resource. Given a set of resources and n users, each user should be able to run more tasks if they share
resources.

Definition 3 (Envy-freeness). A user should not prefer the allocation of another user. Changing her current allocation with that
of anyone else would not improve her total task number.

Definition 4 (Strategy-proofness). Users should not be able to benefit from lying about their resource demands, which means a
user cannot run more tasks by lying.

It is obvious that DRF allocation mechanism can satisfy all the properties above. See Figure 5b, if we improve user 2’s utility
by adding his tasks, then user 1’s tasks will definitely decrease. This is so-called Pareto efficiency. Similarly, both user 1 and user
2 will be as good as the condition where all resources are equally allocated to them. This is an example for Sharing incentive.
In terms of Envy-freeness, we can find, if user 1 and user 2 exchange their current allocations, both of them will finish fewer
tasks, as is shown in Figure 5d. And from Figure 5e, if user 2 cheats on his resource demand, he still only finishes 12.5 tasks as
before. Thus, DRF is also subject to Strategy-proofness.
Besides, we want to mention two more important concepts, which are important for an allocation mechanism to achieve

so-called fairness in the traditional sense.

• multiple dimensions of resources: when calculating the resource allocation, the mechanism should not consider only one
dimension of all resources.

• non-dominant resources: fairness should consider the consumption of non-dominant resources as well. If two different
tasks have the same demand of a given dominant resource, then the one having smaller consumption of non-dominant
resources should receive some compensation. Further, if a task has a totally lower demand of all given resources compared
with other tasks, then it should receive more compensation.

It is also not easy to measure efficiency in the multi-resource allocation setting. In a single-resource scenario, the most efficient
allocation will clearly use the entire resources and thus achieve the maximal number of tasks. On this basis, we list two metrics
to measure multi-resource allocation efficiency, where an example for the further explanation can be seen in Figure 6.

• the number of total tasks completed (NTT): higher resource efficiency is achieved by more tasks done by all users.

• the amount of unused resources (AUR): after all required resources are allocated, more unused resources allow a datacenter
to serve forthcoming users.
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FIGURE 6 Example of efficiency measurements.

4 2-DOMINANT RESOURCE FAIRNESS

In this section, we propose a new allocation mechanism called 2-dominant resource fairness (2-DF) for heterogeneous users
with different requests for distinct resources.

4.1 Background and Model
In our model, we follow Ghodsi et al.1 and assume that resources of the same type are assembled in homogeneous pools.
Consider r infinitely divisible resources, the capacity of each resource j is Cj . There are n users indexed by i. Each user runs
many parallel tasks. Each task is characterized by a request vector Di =

[

ai1, ai2,⋯ , air
]

. This request vector specifies how
many units of each type of resource are needed when running such a task. Usually, the tasks from a user are typically the same
binary program running on different data blocks of similar sizes, then they require the same amount of resources10. We therefore
assume the same request vector across a user’s tasks and that each user i requires an amount of each resource in fixed proportion.
User i’s final allocation is defined by a vector Ai =

[

'iai1, 'iai2,⋯ , 'iair
]

, where 'iaij represents the fraction of resource j
allocated to user i.

4.2 Multi-resource Fairshare Function
As discussed in the previous section, dominant share is the core part of DRF. Thus, we consider ’fairshare’ which is a gen-
eralization of dominant share for each user. When allocating resources, we can easily apply max-min fairness to each user’s
fairshare. The drawback of dominant share is that it only considers one resource for a user and cannot allow the user to express
how important this resource is in comparison with other resources.
In the following part, we propose two major rules that should be considered when defining a fairshare function in any multi-

resource allocation mechanism. Then we let these rules guide us to design our allocation mechanism.

• multiple dimensions of resources: when calculating the resource allocation, a fairshare function should not consider only
one dimension of all resources. It should reflect the demand of non-dominant resources as well. If two different tasks have
the same demand of a given dominant resource, then the one having smaller demand of non-dominant resources should
receive some compensation. Further, if a task has a totally lower demand of all given resources compared with other tasks,
then it should receive more compensation.

• weights among different resources: for a given resource, a fairshare function should allow users to determine the weight
to stress how important this resource is.
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4.3 2-Dominant Resource Fairness
In this part, we continue the previous model built on our mechanism and introduce a fairshare function called 2-dominant share
in our allocation mechanism.
According to user i’s request vector Di =

[

ai1, ai2,⋯ , air
]

, let di1 = max
{

aij
Cj

}

where j ∈ [1, r] be user i’s first dominant

request ratio and di2=max
{

aij
Cj

}

−
{

di1
}

where j ∈ [1, r] be i’s second dominant request ratio. The resources corresponding
to i’s dominant requests are called her dominant resources. Here, we define that each user i has a 2-dominant share expressed
as 'i ⋅ di1 ⋅ di2.

Definition 5 (2-dominant share). The 2-dominant share of a user i is defined as.

si = 'i ⋅ di1 ⋅ di2 (1)

In the 2-DF, we are trying to apply max-min fair allocation with respect to the users’ 2-dominant share. That is, we always
maximize the lowest 2-dominant share first followed by the second lowest, etc. Now, we present an example to illustrate how
our 2-DF allocation mechanism works.
An Example.We still use the example from Figure 1 to illustrate how 2-DF allocates resources according to users’ different

requests. In the above scenario, each task from user 1 consumes 1
5
of bandwidth, 1

25
of memory and 1

25
of CPU, so user 1’s first

and second dominant requests lie on bandwidth andmemory (or CPU), respectively. Similarly, user 2’s first and second dominant
requests lie on bandwidth and memory, respectively. 2-dominant fairness will equalize users’ 2-dominant shares. The allocation
can be computed mathematically as follows: Let '1 and '2 be the number of tasks allocated to user 1 and 2, respectively. Then
user 1’s allocation vector is ⟨40'1, 8'1, 8'1⟩, and user 2’s allocation vector is ⟨8'2, 5'2, '2⟩. The total allocated amount of
bandwidth is

(

40'a + 8'b
)

, the total allocated amount of memory is
(

8'1 + 5'2
)

, and the total allocated amount of CPU is
(

8'1 + '2
)

. Besides, the 2-dominant share of user 1 and user 2 is '1 ⋅
1
5
⋅ 1
25

= 1
125

⋅ '1, and '2 ⋅
1
25
⋅ 1
40

= 1
1000

⋅ '2. The
2-dominant fairness allocation is then given by the solution to the following optimization problem:

maximize '1, '2 (2a)

subject to 1
125

⋅ '1 =
1

1000
⋅ '2 (2b)

40'1 + 8'2 ≤ 200
8'1 + 5'2 ≤ 200
8'1 + '2 ≤ 200

Solving this problem yields '1 = 1.9, and '2 = 15.4 (See Figure 7). Thus, user 1 gets ⟨77, 15.4, 15.4⟩, and user 2 gets
⟨123, 77, 15.4⟩. Recall the result mentioned in Section 1.1, under DRF allocation mechanism, user 1 will receive an allocation
of ⟨100, 20, 20⟩, and user 2 will receive ⟨100, 62, 5, 12.5⟩. Thus, 2-DF leads to an increase on the number of total tasks from
15 to 17.3. Besides, if user 2’s request on memory (which is his second dominant resource) varies, his completes more tasks, as
the red increasing line shown in Figure 4.
The intuition behind this allocation mechanism is, if we only consider fairness as equalizing each user’s dominant share and

satisfying any demand it has of other resource dimensions, it seems unfair for those users whose tasks have a low request on each
resource dimension. Besides, it also leads to low efficiency because more tasks come from more resource allocations to users
with smaller request vectors. Thus, we take a look at one more resource dimension to know better about a user’s real request,
and want to give users with lower requests on more resource dimensions more compensation to increase their total allocation
shares, thus leading to more tasks done.

4.4 2-DF Scheduling Algorithm
We present the 2-DF scheduling pseudocode in Algorithm 1. The algorithm calculates the first dominant request and the second
dominant request, thereby obtaining the 2-dominant share, si for each user i. The total resources allocated to each user are also be
tracked and recorded. At each step, the proposed scheduling algorithm picks a user whose 2-dominant share is the lowest among
all users with tasks ready to run, and checks whether that user’s task demand can be satisfied. If there are enough resources, then
assign the desired resources to the picked user.Otherwise, the user waits until all her desired resources available. According to
our assumption, the tasks from a user should have the same request vector, and we use variable Di to denote the demand vector
of user i. Once a launched task finishes, the user releases the resources assigned to her, and our 2-DF mechanism again selects
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FIGURE 7 Resource allocations under 2-DF.
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FIGURE 8 Examples of 2-DF fairness properties.

the user with the smallest 2-dominant share and decides if it is possible to run her task. If there are n users simultaneously in
the system, the time complexity for each scheduling decision is O(logn) when we apply the a binary heap data structure to store
2d shares for users.

4.5 Extending from 2-D to k-D with weights
If we evaluate our 2-dominant share using the rules mentioned in Section 4.2, we could see it really takes an additional non-
dominant resource into consideration. However, 2-dominant share can be extended to a better fairshare function, which considers
k dimensions of resources and allows a user to stress how important each dimension is.
Let

[

di1, di2,⋯ , dik
]

be the top k largest elements among
{

dij
}

where j ∈ [1, r], and each of the k elements is associated
with a weight predefined by user i to express its importance. Then, we define that each user i has a k-dominant weighted share
expressed as 'i

∏k
l=1 wil ⋅ dil. Similar to 2-DF, k-DF applies max-min fair allocation with respect to the users’ k-dominant

weighted share. That is, it always tries to equalize all users’ k-dominant weighted shares. Thus, 2-dominant share is a special
case of k-dominant weighted share, where k = 2 and wi1 = wi2 = 1 for each user i. For simplicity, we assume all weights are
defined as 1 in the rest of this paper.
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Algorithm 1 2-DF Scheduling Algorithm
1: R =

[

C1, ⋅ ⋅ ⋅, Cr
]

; ⊳ total resource capacities
2: U =

[

u1, ⋅ ⋅ ⋅, ur
]

; ⊳ total resources used by now, initially 0
3: si (i = 1...n); ⊳ user i’s 2-dominant share, initially 0
4: di1=max

{

aij
Cj

}

(j = 1...r) ; ⊳ user i’s first dominant request

5: di2 = max
{

aij
Cj

}

−
{

di1
}

(j = 1...r) ; ⊳ user i’s second dominant request
6: Ai =

[

ai1, ⋅ ⋅ ⋅, air
]

; ⊳ resources allocated to user i, initially 0
Output 2-DF
7: pick user i with lowest 2-dominant share si;
8: Di ← user i’s demand vector;
9: if U +Di ≤ R then
10: U = U +Di; ⊳ update consumed vector
11: Ai = Ai +Di; ⊳ update is allocation vector
12: si+ = di1 ⋅ di2;
13: else
14: return; ⊳ the cluster is full
Output Reclaim
15: pick user i with one task done;
16: U = U −Di; ⊳ update consumed vector
17: U = U −Di; ⊳ update consumed vector
18: Ai = Ai −Di; ⊳ update is allocation vector
19: si− = di1 ⋅ di2;
20: si+ = di1 ⋅ di2;

5 PROPERTIES OF K-DF

Next, we will discuss some of those desirable properties satisfied by k-DF and provide intuitive explanations for our analyses.
For simplicity, we normalize the capacities of r infinitely divisible resources to be 1, respectively. We begin with showing that
k-DF yields Pareto-efficiency.

Theorem 1. Every k-DF allocation is Pareto-efficient.

Proof. Assume user i can increase her total allocation without decreasing the allocation of anyone else. In fact, every user in a
k-DF allocation has at least one saturated resource. If user i is monopolizing her saturated resource, it is impossible to increase
i’s allocated fraction on her saturated resource. If the saturated resource is shared by user i and other users, then increasing the
allocation of imust lead to decreasing the allocation of at least another user j who shares the same saturated resource, violating
the hypothesis.

Then, we show that k-DF promises Strategy-proofness.

Theorem 2. The k-dominant fairness is Strategy-proof, i.e., any user cannot increase her allocation of every resource (only
increasing fraction on some resources cannot bring about an improved task number) in the k-dominant fairness by boosting
some component of her true request vector.

Proof. If user i is monopolizing her saturated resource, it is impossible to increase i’s allocated fraction on her saturated resource;
thereby her total allocation cannot be increased no matter what request vector she uses. Then, we discuss the situation where
user i’s saturated resource is also shared by other users. Assume user i can increase her total allocation by using a different
request vector Di

′ ≠ Di, which means 'i
′ > 'i. Thus, user i’s k-dominant share 'i

′ ⋅
∏k

l=1 dil is increased. Since we are trying
to equalize the k-dominant share of each user, any other user’s k-dominant share is also increased, resulting in a larger allocation
on every resource. However, in order to increase user i’s total allocation, we must decrease the allocation of at least another user
j sharing the same saturated resource, violating the previous analysis.
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Now, we assume there exists no completely dominant user in the 2-dominant fairness, i.e., for any two users i and j, their first
two dominant requests satisfy either di1 ≤ dj1 and di2 ≥ dj2, or di1 ≥ dj1 and di2 ≤ dj2.

Theorem 3. Under the condition of no completely dominant user in the 2-dominant fairness, every 2-dominant fairness
allocation is envy-free.

Proof. Assume by contradiction that there exists envy between user i and user j. Either user i or user j can be an envier.
The envied must have a strictly higher fraction of every resource that the envier wants; otherwise, the envier cannot run more
tasks under its allocation. Let m and n be i’s two dominant resources and p and q be j’s two dominant resources such that (1)
'iaim ≥ 'iain; (2) 'jajp ≥ 'jajq . Now, we prove the theorem based on the following two conditions.
On the first condition, user i is the envier. According to the 2-dominant resource allocation mechanism, we can get the

inequality equations 4 below.

if

{

aim ⋅ ain ⋅ 'i = ajp ⋅ ajq ⋅ 'j

aim ≤ ajp, ain ≥ ajq
(3)

then

{

'iaim ≤ 'jajp
'iain ≥ 'jajq

(4)

For 'iain ≥ 'jajq , there are three possible conditions:

• if n and q represent the same resource, then 'iain ≥ 'jajn;

• if ajq ≥ ajn, then 'iain ≥ 'jajn;

• if ajq ≤ ajn, meaning that resource n is user j’s first dominant resource;

then 'iaim ≥ 'iain ≥ 'jajp ≥ 'jajm, namely 'iaim ≥ 'jajm. Since 'iaip ≤ 'iaim, then 'iaip ≤ 'jajp. Thus, both user i and
user j have a higher (at least equal) fraction on one resource than the other does, violating the hypothesis.
On the second condition, user j is the envier. We can get the inequalities 6 below by following the 2-dominant resource

allocation mechanism.

if

{

aim ⋅ ain ⋅ 'i = ajp ⋅ ajq ⋅ 'j

ajp ≤ aim, ajq ≥ ain
(5)

then

{

'jajp ≤ 'iaim
'jajq ≥ 'iain

(6)

Quite similar to Condition 1, for 'jajq ≥ 'iain, there are three possible conditions:

• if q and n represent the same resource, then 'jajq ≥ 'iaiq;

• if ain ≥ aiq , then 'jajq ≥ 'iaiq;

• if ain ≤ aiq , meaning that resource q is user i’s first dominant resource;

then 'jajp ≥ 'jajq ≥ 'iaim ≥ 'iaip, namely 'jajp ≥ 'iaip. Since 'jajm ≤ 'jajp, then 'jajm ≤ 'iaim. Quite similar to the first
condition, on the second condition where 'jajq ≥ 'iain, we still get the same conclusion, that is, both user i and user j have a
higher (at least equal) fraction on one resource than the other does, violating the hypothesis.
Under both conditions, we can achieve the same conclusion that both user i and user j have a higher (at least equal) fraction

on one resource than the other does, violating the hypothesis.

Next, we will extend this envyfree scenario from 2-d to k-d. Let
[

di1, di12,⋯ , di1k
]

be the top k largest elements among
{

dij
}

where j ∈ [1, r]. We assume there exists no completely dominant user in the k-dominant fairness, i.e., for any two users i and
j, their top k dominant requests satisfy:

∃m,∃n,

⎧

⎪

⎨

⎪

⎩

∏k

l≠m
dil ≤

∏k

l≠m
djl

∏k

l≠n
dil ≥

∏k

l≠n
djl

(7)

Theorem 4. Under the condition of having no completely dominant users in the k-dominant fairness, every k-dominant fairness
allocation is envy-free.
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Capacity NFC DRF 2DF
3 1.62 1.34 1.39
5 1.81 1.48 1.56

TABLE 1 Average NTT.

Proof. Assume by contradiction that there exists envy between user i and another user j. Either user i or user j can be an envier.
The envied must have a strictly higher fraction of every resource that the envier wants. According to the k-dominant fairness,
user i and user j should have equal k-dominant fairness, that is:

'i ⋅
∏k

l=1
dil = 'j ⋅

∏k

l=1
djl (8a)

subject to
∏k

l≠m
dil ≤

∏k

l≠m
djl (8b)

∏k

l≠n
dil ≥

∏k

l≠n
djl (8c)

Then, equations in 8 can be reduced in the following form:
{

'idim ≥ 'jdjm
'idin ≤ 'jdjn

(9)

Assume dim and din represent i’s requests on resource u and v, djm and djn represent j’s requests on resource x and y. For
'idim ≥ 'jdjm, if u and x are the same resource, then 'iaiu ≥ 'jaju; if aju ≤ ajx, then 'iaiu ≥ 'jajx ≥ 'jaju, namely
'iaiu ≥ 'jaju. In addition, if aju ≥ ajx, there must exist one resource, w, which could satisfy aiw ≥ aiu && aju ≥ ajw, such
that 'iaiw ≥ 'iaiu ≥ 'jajx ≥ 'jajw, namely 'iaiw ≥ 'jajw. Thus, we can always find one resource of which user i has no less
fraction than user j does.
For 'idin ≤ 'jdjn, we can also achieve a similar conclusion that there always exists one resource of which user j has no less

fraction than user i does. Thus, user i has no less fraction than user j does of one resource; meanwhile, user j has no less fraction
than user i does of another resource, violating the hypothesis.

6 PERFORMANCE EVALUATION

We consider twomulti-resource allocation scenarios in different data centers to evaluate our allocationmechanism. All allocation
mechanisms were implemented with MATLAB-R2017b, running on a local machine with an Intel Core 2 Duo E8400 3.0 GHz
CPU and 8 GB RAM.
To measure resource efficiency, we use two metrics, which are previously mentioned in Section 3. We formally define the

two metrics: NTT which represents the number of total tasks completed by all users and AUR which represents the amount of
unused resource after an allocation. Besides, we also compare our allocation mechanism with some existing allocation works.

6.1 The first scenario
In the first scenario, there is a data center with three distinct and divisible resources, r1, r2, and r3. There are 3 users, each of whom
requires a fixed amount of each resource to accomplish a task. Tasks are assumed to be infinitely divisible. That is, we allow the
completed task number to be a decimal. Resource capacity vector is expressed as < C,C, C >. We conducted two experiments
with different values of C where C ∈ {3, 5} to observe how resource capacity would impact fairness and efficiency. In both
experiments, each user i’s request vector is < di1, di2, di3 > where dij is an integer in the range of 1 to C for any j = 1, 2, 3.

6.1.1 Three comparison allocation mechanisms
We compare the efficiency in terms of NTT under three different allocation mechanisms: (1) No Fairness Constraints (NFC)
which tries to achieve a maximal number of total tasks without considering fairness, (2) Dominant Resource Fairness (DRF)
and (3) 2-Dominant Resource Fairness (2-DF).
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FIGURE 9 Cases where higher NTT is achieved in 2-DF than DRF.

Given the value of C , there are 3C combinations of i’s request vector. Putting them together, we consider 33C combinations of
all the users’ request vectors. For each possible combination, we apply NFC, DRF, and 2-DF, respectively, and then record the
corresponding NTTs. After that, we calculate the average NTT of 33C combinations for each allocation mechanism. The average
NTT completed by 3 users with different request vectors under the three allocation mechanisms are shown in Table 1. As can
be seen, the number of total tasks obtained by 3 users under NFC is the highest of all allocation mechanisms. This result, to
some extent, reflects the fact that fairness is often a conflicting objective against efficiency in the presence of multiple resources.
Besides, 2-DF outperforms DRF, and as the resource capacity increases, 2-DF’s advantage becomes more evident. Thus, we can
conclude that, our allocation mechanism would have good scalability in a data center with large resource capacities.
In the first experiment, among 39 combinations of request vectors, 2-DF executes more tasks than DRF does in around 51.7

% of total cases. In Figure 9a, we show all unique cases where 2-DF performs better in terms of NTT. In the second experiment,
the capacity was changed to 5 units for each resource. Among 59 combinations of request vectors, 2-DF executes more tasks
than DRF does in around 58.1% of total cases. In Figure 9b, due to the large amount of cases, we only display those unique cases
in which NTT obtained by 2-DF is at least 30% more than that obtained by DRF.

6.1.2 Fairness
In fact, under our 2-DF mechanism, our allocation cannot guarantee sharing incentive (SI) proposed in DRF, which proposes
that each user should at least get 1

n
share on its dominant resource. However, if we compare the efficiency achieved by all 2-

DF allocations, which satisfy SI, with that of corresponding DRF allocations, results are still good. In the first experiment, the
2-DF allocations satisfying SI increase by around 0.04 task on average, compared with their DRF counterparts. In the second
experiment, the 2-DF allocations satisfying SI increase by around 0.08 task on average, compared with their DRF counterparts.
In Section 3, we mention a scenario where complete envy-freeness can be achieved. We explore the occurrence frequency of

this scenario, and the result is not too bad. In the first experiment, the envyfree cases account for 64.0%, and among all cases
where 2-DF obtains higher efficiency and envy-free cases occupy around 37.2%. In the second experiment, the envyfree cases
account for 58.8%, and among all cases where 2-DF obtains higher efficiency, envyfree cases account for around 38.7%.

6.2 The second scenario
In the second scenario, we assume a data center with 1000-unit bandwidth, 1000-unit memory and 1000-unit CPU. All resources
are shared by two users. Again, each user requires a fixed amount of each resource to accomplish a task, and tasks are assumed
to be infinitely divisible.
In this scenario, we consider two users with different request types: heavy and light. A request Di =< di1, di2, di3 > is said

to be heavy, where ∀ j = [1, 2, 3], dij ∈
{

25x1, 5x1, x1
}

. x1 is a random variable, which is picked randomly while following
the normal distribution ∼ N(8, 0) in our experiments. Similarly, a request Di =< di1, di2, di3 > is said to be light, where
∀ j = [1, 2, 3], dij ∈

{

25x2, 5x2, x2
}

and x2 ∼ N(1, 0).
There are three combinations of user request types, as is shown in Table 2. There are three request levels for both request

types: big (25x), medium (5x), and small (x). Given a specific request type, we design 8 types of request vector with different
request levels in different resource dimensions. We list all types here: < 25x, 25x, 25x >, < 25x, 25x, 5x >, < 25x, 25x, x >,
< 25x, 5x, 5x >,< 25x, 5x, x >,< 5x, 5x, 5x >,< 5x, 5x, x >, and< 5x, x, x >. Given a specific combination of request types,
there are 8× 8 = 64 possible pairs of two request vectors. For each pair of request vectors, we want to compare the efficiency of
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Combination User 1 User 2
I heavy heavy
II heavy light
III light light

TABLE 2 Three combinations of user request types

(a)
I: user 1

{

25x1, 25x1, 25x1
}

II: user 1
{

25x1, 25x1, 25x1
}

III: user 1
{

25x2, 25x2, 25x2
}

(b)
I: user 1

{

25x1, 5x1, x1
}

II: user 1
{

25x1, 5x1, x1
}

III: user 1
{

25x2, 5x2, x2
}

FIGURE 10 Two typical cases.

AURave DRF 2DF
I 418 654
II 418 802
III 418 654

(a)
I: user 1

{

25x1, 25x1, 25x1
}

II: user 1
{

25x1, 25x1, 25x1
}

III: user 1
{

25x2, 25x2, 25x2
}

AURave DRF 2DF
I 1218 1271
II 1218 998
III 1218 1271

(b)
I: user 1

{

25x1, 5x1, x1
}

II: user 1
{

25x1, 5x1, x1
}

III: user 1
{

25x2, 5x2, x2
}

TABLE 3 Average AUR .

DRF and 2-DF. To be precise, we conducted 10 experiments over a given pair of request vectors, by randomly choosing values
of x1 and x2 based on their distributions. Due to the large number of experiments we did, we have confidence in the consistency
and reliability of the results. All results present below are the average over their own experiments.
Based on the 3 × 8× 8× 10 = 1920 experiments we did, we conclude two typical cases, which any other case can be induced

from. We show these two cases in Figure 10. It is obvious that, when comparing NTT, 2-DF outperforms DRF , especially
when user 1 has big-level requests on each resource dimension and user 2 has small-level requests on each resource dimension,
whatever their request types are. The average increase is 45% when comparing NTT of 2-DF and DRF among all experiments.
To measure efficiency of DRF and 2-DF in terms of AUR, we calculate the average amount of unused resources under DRF

and 2-DF, respectively in two cases. The result is shown in Table 3. It is obvious that 2-DF consumes less resources while
yielding more tasks, which allows a data center to serve more users in the future.
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FIGURE 11 Performance changes when user 1’s request of memory per task varies.

Machine type Number of machines CPUs Memory Ratio
0 6732 0.50 0.50 0.5107
1 3863 0.50 0.25 0.2930
2 1001 0.50 0.75 0.0759
3 795 1.00 1.00 0.0603
4 126 0.25 0.25 0.0551
5 52 0.50 0.12 0.0039
6 5 0.50 0.03 0.0004
7 5 0.50 0.97 0.0004
8 3 1.00 0.50 0.0002
9 1 0.50 0.06 0.0001

TABLE 4Machine configurations summary of Google Trace.

6.2.1 Sharing incentive
In fact, under our 2-DF mechanism, our allocation cannot guarantee sharing incentive (SI) proposed in DRF, which said that
each user should at least get 1

n
share on its dominant resource. However, if we compare the efficiency achieved by all 2-DF

allocations, which satisfy SI, with that of corresponding DRF allocations, results are still good. In the first experiment, the 2-
DF allocations satisfying SI increase by around 0.04 task on average, compared with their DRF counterparts. In the second
experiment, the 2-DF allocations satisfying SI increase by around 0.08 task on average, compared with their DRF counterparts.

6.2.2 Complete envy-freeness
In Section 3, we mentioned a scenario where complete envy-freeness can be achieved. We explore the occurrence frequency of
this scenario, and the result is not too bad. In the first experiment, the envyfree cases account for 64.0%, and among all cases
where 2-DF obtains higher efficiency and envyfree cases occupy around 37.2%. In the second experiment, the envyfree cases
account for 58.8%, and among all cases where 2-DF obtains higher efficiency, envyfree cases occupy around 38.7%.

6.2.3 Traditional fairness
In Section 3, besides discussing the fairness property in the existing works, we also mention two concepts related to the notion
of fairness in real life. A fair allocation should take multiple resources into consideration as well, and should give some com-
pensation to users with low requirements in non-dominant resource dimensions. To measure traditional fairness, in the third
experiment, we compare the amount of total resources (ATR) allocated to user 1 using DRF and 2-DF, respectively, According
to Figure 11, 2-DF allocates obviously more resources user 1, with his decreasing request of non-dominant resource. i.e., mem-
ory. However, DRF doesn’t show any evidence to compensate to user 1. It is obvious that 2-DF also considers non-dominant
resources instead of a single dominant resource when allocating.
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(a) CPU share of three jobs. (b) RAM share of three jobs

FIGURE 12 Resource shares for three jobs.

6.3 Trace-Driven online resource allocation
Extensive simulations driven by Google trace21 are conducted to further evaluate the performance of the proposed allocation
mechanism from a macroscopic perspective. From the trace, we can extract information about machines and user requests.
Machines are heterogeneous with different capacities of CPU and memory. However, instead of showing the exact numbers of
CPU cores and bytes of memory for each machine, the trace provides machine configurations, where both CPU and memory size
measurements are normalized to that of the maximummachines. Table 4 shows the configurations of different types of machines
and the corresponding number of each machine type. We also provide the ratio of each machine type among all machines. This
information will guide us on how to simulate machines from which the resources are allocated in our experiments. Each user
request is a job containing several identical tasks. The request is composed of the task number, the required amount of resources
for each task, and task running time, which we will use as the input to the allocation algorithm.
We want to show how the proposed mechanism allocates resources online. We run three jobs on a small cluster of 50 servers.

We assume there are 4 types of servers in total, i.e., the top 4 configurations in Table 4 and the maximum server has 16 CPU
cores and 128 GB of RAM, i.e., the highest configuration among E2 machines on Google Cloud. The number of each server
type is also determined based on the distribution shown in Table 4. This setting leads to a resource pool containing 27 type-1
servers with 8 CPU cores and 64 GB of RAM, 16 type-2 servers with 8 CPU cores and 32 GB of RAM, 4 type-3 servers with
8 CPU cores and 96 GB of RAM, and 3 type-4 servers with 16 CPU cores and 128 GB of RAM. These three jobs launch tasks
with different resource demands at different times within a time period of 2 minutes.
Figures 12a and 12b show the CPU and RAM allocations given to each job as a function of time. Job 1 comes at time 0. It

contains 450 tasks, and each of its tasks has a request vector of ⟨2.5 CPU, 3 GB RAM⟩ and an execution time of 30 seconds.
Since only Job 1 is active at the beginning, all resources are allocated to Job 1, yielding 159 tasks running in parallel. This
allocation lasts 40s, until Job 2 joins with memory-heavy tasks. There are 150 tasks in Job 2, each of which lasts 20 seconds
with a request of ⟨1 CPU, 15 GB RAM⟩. At that time, only type-4 servers can provide enough resources to execute tasks from
Job 2. Each type-4 server starts to run a task from Job 2 at the time of 40s.
At 50s, Job 3 becomes active. There are 80 tasks in Job 3. Each task requests ⟨1 CPU, 10 GB RAM⟩ and its occupation time

is 80 seconds. At that time, although memory resources are sufficient, any server can provide at most 0.5 CPU, indicating that
no resources can be allocated to Job 3. At 60s, all tasks being executed are finished and the corresponding resources are recycled
to be allocated to these three jobs. At that time, 318 tasks from Job 1 and 3 tasks from Job 2 have been completed, respectively.
After applying our proposed allocation mechanism, all type-1 servers are scheduled to execute 56 tasks from Job 1, 28 tasks

from Job 2, and 42 tasks from Job 3; all type-2 servers are scheduled to execute 28 tasks from Job 1, 14 tasks from Job 2, and
21 tasks from Job 3; all type-3 servers are scheduled to execute 8 tasks from Job 1, 4 tasks from Job 2, and 6 tasks from Job
3; and all type-4 servers are scheduled to execute 56 tasks from Job 1, 28 tasks from Job 2, and 42 tasks from Job 3. At time
80s, all resources used for Job 2 are released and another 52 tasks from Job 2 are finished. All those free resources are allocated
again to execute remaining task. At that time, there remain 28 tasks from Job 1, 95 tasks from Job 2, and 1 tasks from Job 3. Our
proposed allocation mechanism assigns the only task from Job 3 to a type-1 server, and all remaining resources are allocated to
Job 1 and Job 2, which leads to 15 tasks from Job 1 and 13 tasks from Job 2 scheduled.
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At time 90s, the resources allocated to Job 1 since time point 60s are available to further serve Job 1 and Job 2. Since then,
another 13 tasks from Job 1 and 15 tasks from Job 2 are executed, respectively. So far, only 34 tasks from Job 2 are left. At time
100s both the resources allocated to Job 1 since time point 60s and the resources allocated to Job 2 since time point 80s are
available simultaneously, and can be allocated to Job 2 to execute the remaining 34 tasks.

7 CONCLUSION

In this paper, we consider the open problem of multi-resource sharing for heterogeneous users. We show that DRF suffers from
serious fairness concerns without utility guarantees. We try to mitigate this problem with the new sharing policy known as 2-
dominant resource fairness, and we extend this concept to k-dominant resource fairness. In our mechanism, 2-dominant share is
defined for each user as the product of first two dominant demand/capacity ratios, and we try to equalize the 2-dominant share
of all users as much as possible. 2-dominant resource fairness provides strategy-proofness, in that no user can run more tasks
by lying about its demands. Meanwhile, this policy is Pareto-optimal, and envy-freeness can be achieved in certain scenarios.
Besides, in the traditional sense of fairness, 2-DF considers more resource dimension when allocating, and results in a more
balanced allocation between dominant and non-dominant resources. Compared with dominant resource fairness (DRF), our
proposed model achieves better efficiency, in terms of the number of total tasks completed by all users. It is vital for efficiency-
needed applications, allowing a small penalty on widely-accepted fairness properties.
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