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Abstract— Wireless sensor networks (WSNs) is an area of
research that has been getting a lot of attention lately. This is
due to the rapid advancements in the design of wireless devices
which have increasingly more processing, storage, memory,
and networking capabilities. In addition, the cost of sensors is
constantly decreasing making it possible to use large quantities
of these sensors in a wide variety of important applications
in environmental, military, commercial, health care, and other
fields. In order to monitor certain types of infrastructures,
many of these applications involve lining up the sensors in a
linear form, making a special class of these networks which
are defined in this work as Linear Sensor Networks (LSNs).
In a previous paper, we introduced the concept of LSNs along
with a classification of the different types of LSNs, a sampleof
their applications and the motivation for designing specialized
protocols that take advantage of the linearity of the network
to enhance their communication efficiency, reliability, fault
tolerance, energy savings, and network lifetime. This paper
presents a graph-search-based topology discovery algorithm
for LSNs. New definitions for important structure and design
parameters are introduced. The proposed protocol allows the
nodes to identify some nodes to be included in a backbone,
which can be used by the other nodes to send data to the
sink at the end of the LSN or LSN segment. This backbone
discovery increases the efficiency, and robustness of the network.
It also allows for significant improvement in the scalability of
the communication process in the LSN which can contain a
very large number of nodes (e.g. hundreds or thousands). In
addition, linearity of the structure and discovered backbone can
enhance the routing reliability by "jumping" over failed no des
by increasing the range. Furthermore, the protocol does not
require the nodes to have location detection capabilities such as
GPS, which would lead to a more complex design and higher
cost of the sensor nodes.

Keywords: Ad hoc and sensor networks, routing, backbone
discovery, wireless networks.

I. I NTRODUCTION

Wireless Sensor Networks (WSNs) have received a lot
of attention due to constant advancements in the field of
electronics and wireless communication which have led to the
design of low cost, small, and capable sensing devices with
increasingly higher processing, storage, sensing and commu-
nication capabilities. In addition, WSNs have a great potential
for use in a large amount of existing and future applications
in numerous areas such as environmental, civil, health care,
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military, monitoring, and infrastructure surveillance. In the
latter category, a considerable number of the infrastructures
that are monitored have a linear structure which extends over
relatively long distances. This causes the wireless sensors to
be aligned in a linear topology. New frameworks and protocols
are needed to take better advantage of the linearity of the net-
work structure in order to increase routing efficiency, enhance
reliability and security, and improve location management. In
a previous paper [1], we introduced a classification of LSNs
from a hierarchical and topological points of views.

In this paper, we introduce a topology discovery algorithm
for thick LSNs, where the sensor nodes are deployed between
two parallel lines that can stretch for a long distance (e.g.
tens or hundreds of kilometers). As a result of the proposed
topology discovery algorithms, a small percentage of the de-
ployed sensor nodes are selected to form a backbone network
along the linear topology, which can be used to efficiently
route sensing data (collected from the surrounding nodes and
transmitted to the nearest backbone node) along the linear
network to the sink or sinks located at the end of the network
or network segment.

The characteristics of one-dimensional ad hoc networks
have been studied by various researchers. Diggavi et. al. stud-
ied the characteristics of wireless capacity with the existence
of mobility in one-dimension [2]. Ghasemi et al. provided
an approximation formula for the connectivity probabilityof
one-dimensional ad hoc wireless networks [3]. Miorandi et
al. analyzed the connectivity issue in one-dimensional ad hoc
networks using a queuing theory approach [4]. On the other
hand, many researchers have investigated topology control
(TC) techniques in wireless ad hoc networks. In [5], Santi etal.
present a survey of these algorithms, which have the primary
goal of reducing energy consumption, and radio interference.
In [6], Ramanathan et al. study the optimization problem of
creating a desired topology by adjusting the transmit power
of the nodes. In another paper [7], the authors study power
assignments to maintain fault tolerance in wireless devices
and present algorithms which can be used to minimize power
while maintaining k − edge connectivity with guaranteed
approximation factors. In [8], a topology discovery algorithm
for WSNs is presented. The algorithm determines a set of
nodes which can act as cluster heads in the network. In
[9], Wang presents an overview of the different types of
topology algorithms for multidimensional WSNs that have
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been proposed in research.
The algorithms that are mentioned above are primarily

designed for multi-dimensional WSNs. They do not take
advantage of the predictable topology of a thick LSN in
order to optimize their performance. On the other hand,
the algorithms presented in this paper are designed to take
advantage of the linearity of the network in order to reduce
topology discovery control overhead, and increase operation
efficiency, and scalability.

In a thick LSN, the sensor nodes have the responsibility
of both sensing the information as well as routing it through
their neighbor nodes along the “thick line" of sensor nodes to
finally reach the sink node at the end of the network. In this
case, the sensor nodes have sensing, aggregation, compression,
as well as routing responsibilities. The thick LSN topology
can be present in many applications such as the case when
the WSN is responsible for monitoring a geographic area. For
example, the network can have the responsibility of monitoring
international borders between countries [10] and detect illicit
activities. Such activities can involve border crossings by
smugglers of different illegal goods or substances, military
crossings by individuals, or vehicles, etc. The inexpensive
sensors can be deployed by throwing them from an airplane
moving at a constant but low speed or an unmanned aerial
vehicle (UAV). The dropped sensors end up in a semi-random
geographic form and could follow a linear structure. The
sink nodes can also be deployed at various locations and are
separated by some specified average distance. This deployment
of the sink nodes can be done in many different ways. They
could also be thrown from a low-flying airplane, placing them
at locations which are separated by approximately the same
average distance, or they can be installed [9] in a precise
fashion by the network personnel if the terrain is easily
accessible. Applications for linear sensor networks include but
are not limited to the following: (1) Above-ground oil, gas,
and water pipeline monitoring. (2) Underwater oil, gas, and
water pipeline monitoring. (3) Railroad/subway monitoring.
(4) Terrestrial border monitoring. (5) Sea-coast monitoring.
(6) River monitoring.

We can identify various reasons why a new framework
and architecture are needed for different categories of thick
LSNs. Such reasons include: (1) Speed-up route the route
discovery and maintenance. (2) Reduce control overhead and
bandwidth utilization for route discovery. (3) Increased routing
fault tolerance and reliability. (4) Reduce control overhead
for route maintenance. (5) Increased efficiency of location
management.

The rest of the paper is organized as follows. Section II
presents the topology discovery algorithm for thick LSNs.
Section III provides simulation results and analysis of some
aspects of the discovery process, and section IV concludes the
paper.

II. TOPOLOGYDISCOVERY ALGORITHM

A. Linear Backbone Discovery (LBD) Algorithm

The LBD algorithms is shown in Algorithms 1, 2, 3, and 4.
It is also illustrated in Figure 1. It works in the following

Algorithm 1 Backbone Discovery - Initialization of Node
Discovery Variables and Broadcasting of theLD message
From the First Node at the Primary Edge

myColor = WHITE
/* set my temporary parent and my confirmed parent equal toφ.
*/
myTempParent = myConfParent = φ
if (this is the first node at the primary edge)then

/* First node in the list. So, set myLC to 0. */
myLc = 0

/* Initiate the discovery process by sending the first LD
message. */
messageLc = 1

/* Initialize the discoveredPATH list to myID. */
PATH = myID
/* BroadcastLD message to all neighbors. Only the first node
starts by sending anLD message */
SendLD(messageID, myID, messageLc, PATH) to all
neighbors

else
/* Ordinary node. So, initialize myLC to∞ and wait for an
LD message to update myLC. */
myLc = ∞

end if

Algorithm 2 Backbone Discovery - Algorithm at an Interme-
diate Nodey When Receiving anLD Message From a Node
x

/* Note: the distance (in number of hops) while theLD message
is propagating is the distance from the node that initiated the
discovery process at the primary edge of the LSN. */
When nodey receives theLD(messageID, x, messageLc)
from nodex it does the following:
if (messageLc < myLc) then

/* Distance in message is better. So, the distance can be relaxed
further. Note that ify is WHITE then myLc = ∞ ⇒
messageLc < myLc */
myTempPrarent = x
/* Set myLc counter (i.e. distance ofy) to lc. */
myLc = messageLc
messageLc = messsageLc+1
/* Add myID to the discoveredPATH list. */
PATH = PATH | myID
/* Broadcast theLD message to all neighbors */
BroadcastLD(messageID, myID, messageLc , PATH)

else
/* Distance of received message is not better than current
distance set by a previous message. */
Drop LD message

end if

Algorithm 3 Backbone Discovery - Algorithm at the Sink
when Receiving a Linear DiscoveryLD Message From a
Nodex

When the sink receives theLD(messageID, x, messageLc,
PATH) message from nodex it does the following:
myBacwadNeigh=x
/* Save the length of the backbone in number of hops and send
it in the SF message. */
BBLc = messageLc
/* Send a sink foundSF message to the backward direction
neighborx. Note theSF message is unicast back to the backward
direction neighbor. */
SendSF (messageID, source = myID, destination = x,
BBlc, PATH)
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Fig. 1: Illustration of theLD message propagation from the initiator node to the sink in the Linear Backbone Discovery (LBD)
algorithm.

manner. As indicated in Algorithm 1, the designated first
node on the primary edge of the LSN starts the discovery
process by initializing its discovery variables and broadcasting
the Linear Discovery (LD) messageLD(messageID, myID,
messageLc, PATH) to all of its neighbors. The message
contains the following parameters:

1) messageID: This is the ID or the discovery message
to prevent looping.

2) myID: This is the ID of the sending node.
3) messageLc: This is the linear discovery counter. It

holds the count of nodes in the discovered path from
the initial primary edge node that initiated the discovery
process.

4) PATH : This is an ordered list of nodes that are
contained in the discovered path.

Algorithm 2 describes the actions executed by an interme-
diate nodey when it receives anLD(messageID, myID,
messageLc, PATH) message from nodex. First nodey
checks to see if the linear counter in the messagemessageLc

is better (i.e. smaller) than its own linear countermyLc. If
that is the case, then it changes its temporary parent tox, and
updates itsmyLc counter with that, which is in the message.
It then increments the linear counter in the message by one,
adds its ownID to thePATH and broadcasts the updated
LD(messageID, myID, messageLc, PATH) message to
all of its neighbors. However, if the linear counter in the
message,messageLc is not smaller than it own linear counter,
myLc, then it drops the message since this implies that it
already has a parent node with a better linear count with a
smaller number of hops from the source, which contributes
with a lower number of hops in the backbone.

Algorithm 3 describes the actions taken by the sink when it
receives theLD(messageID, myID, messageLc, PATH)
from a nodex. Namely, it saves theID of x as its backward
neighbor as well as the length of the discovered backbone
in number of hops that is contained in themessageLc.
It then unicasts a sink found message,SF (messageID,
source = myID, destination = x, BBlc, PATH) back
to the discovery initiating node through the nodes in the
discovered backbone.

Algorithm 4 describes the steps taken by an intermediate
node y when it receives anSF (messageID, source =

myID, destination = x, BBlc, PATH) message from a
nodex. First, y sets itsiAmPartOfBackbone variable to
TRUE. Then nodey fully or partially caches the discovered
backbone depending on the strategy that is used. A full caching
of the backbone allows the node to have the full list of the
nodes in the backbone and consequently nodey has more
flexibility in routing packets. However, this comes at the cost
of increased memory usage. On the other hand, nodey can
partially cache the local part of the backbone such ask

nodes in each direction, which allows it some flexibility in
routing packets and reaction to neighboring node failures while
reducing its memory usage. Nodey then sets its forward and
backward direction neighbors, as well as the distance from
the source, and distance from the sink in number of hops.
Afterwards, nodey forwards theSF message to its backward
neighbor. This propagation of theSF message continues along
the nodes in the discovered backbone till it reaches the source
node, thereby completing the backbone discovery process.

At the end of the backbone discovery process, we will have
two types of nodes:

• Backbone Nodes (BNs): These nodes are a part of the
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backbone.
• Non-backbone Nodes (NBs): These nodes did not end up

being a part of the backbone. They are used to perform
normal sensing operations.

Algorithm 4 Backbone Discovery - Algorithm at an Inter-
mediate Nodey When Receiving a Sink FoundSF Message
From a Nodex

When nodey receives theSF (messageID, x, messageLc,
PATH) message from nodex it does the following:
/* Confirm being a part of the discovered backbone, and cache
the discovered backbone inPATH in the routing table. */
iAmPartOfBackbone = TRUE
Save the full or local part of the discovered backbone inPATH
in the routing table according to the adopted backbone caching
strategy.
/* In this paper’s current strategy, we save fullPATH */
myBackwardDirNeigh = myTempParent
myForwardDirNeigh = x
myDistFromSource = messageLc
myDistFromSink = messageLc - myLC
/* Forward message to backward direction neighbor. Note the
SF message is unicast back to the backward direction neighbor.
*/
SendSF (messageID, source = myID, destination = x,
messageLc, PATH )

Algorithm 5 NBD Initiation - Algorithm initiated by a newly
declared BN node

/* Set the sourceBNID to the ID node that is initiating the
broadcast of the NBD message. */
sourceBNID = myID
/* Set the ring size of the NBD message propagation. */
NBDringSize = ρ
/* Initialize the number of hops from BN to 0 */
numOfHops = 0
/* Initialize PATH_TO_BN list to only contain the ID of the
current node. */
PATH_TO_BN = myID
/* BroadcastNBD message to all neighbors. */
Broadcast NBD (messageID, sourceBNID, myID,
NBDringSize, numOfHops, PATH_TO_BN )

B. The New BN Declaration (NBD) Broadcast algorithm

At the end of the backbone discovery process, the newly
discoveredBN nodes will broadcast a a NewBN Declaration
(NBD) message to inform all of the nodes withinρ hops from
itself that it is a part of the backbone. Algorithm 5 is used by
the BN node to initiate the broadcast process of theNBD

message. In theNBD message, theBN node includes the
following parameters:

• messageID: This variable contains the messageID to
prevent looping.

• sourceBNID: This is theID of the sending BN node.
• myID: This is theID of the node forwarding the BND

message. Initially, it is equal to thesourceBNID.
• BNDringSize: This is the size of the broadcast ring in

number of hops. It is set toρ.

Algorithm 6 NBD Propagation - Algorithm at an Intermediate
Nodey When Receiving aNBD Message From a Nodex.

When nodey receives anNBD (messageID, sourceBNID,
myID, BNDringSize, numOfHops, PATH_TO_BN )
from a nodex.
savePATH_TO_BN in the routing table as a path to the
sourBNID node, which is now a part of the backbone
numOfHops = numOfHops + 1
if (numOfHops ≤ ringSize ) then

/* Add myID to the discoveredPATH_TO_BN list. */
PATH_TO_BN = PATH_TO_BN | myID
Broadcast NBD (messageID, sourceBNID, myID,
BNDringSize, numOfHops, PATH_TO_BN ) message
to all neighbors

else
/* Ring size is exceeded. */
Drop NBD message

end if

• numOfHops: This variable contains the number of hops
that this message has traversed so far. This variable starts
at 0 and is incremented as theBND message propagates
through the nodes.

• PATH_to_BN : This is the path to theBN node that
is discovered so far. As the BND message is propagated,
each intermediate node concatenates its ownID to the
end of the PATH_to_BN it received in from the
previous node.

Algorithm 6 describes the steps taken by an intermediate
nodey when it receive theNBD message from another node
x. Namely, when theNBD message reaches a node, it does
the following. It caches the path,PATH_TO_BN , to the
newly discoveredBN node. Nodey now can use this path to
send messages to theBN node in order to transmit them to
the sink through the backbone. It then increments the number
of hops. If the new number of hops in the message is still
less than or equal to theringSize, then it adds its own
ID to PATH_TO_BN , and broadcasts the message to its
neighbors. Otherwise, it drops the message. Figure 2 provides
an illustration of theNBD message propagation. As theSF
message propagates back from the sink, each of the newly
discoveredBN nodes broadcasts anNBD message, which
is initiated and propagated according to Algorithms 5 and
6 respectively. The figure shows theBN nodes, which are
nodesA, B, C, I, K, L, andM . These nodes constitute the
discovered backbone. It also shows theNB nodes, which were
not designated as part of the backbone. Each of theNB nodes
is shown with the corresponding distance (in number of hops)
from the nearestBN node. The dashed lines show the path
of each of theNB nodes to the nearestBN node according
the the described algorithms. These paths are discovered after
the broadcast and propagation of theNBD messages from
theBN nodes.

III. PERFORMANCEEVALUATION

A. Simulation Setup

This section evaluates the performance of the proposed
topology discovery framework, providing insights into the
impact of various parameters.
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Fig. 2: Illustration of theNBD message propagation in the nearest BN node discovery algorithm.
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Fig. 3: Time for backbone discovery

The thick linear sensor network is generated according
to the model stated in Sections I and II. A thick LSN is
modeled as a rectangle in our simulations. Key parameters
in the simulations include the thickness (i.e. the width) ofthe
thick LSN, the length of the thick LSN, the number of sensor
nodes, the communication range of a sensor node, and the
size of the broadcast ringρ. In our simulation, the default
values of these input parameters are set as follows: the width
W is 500 meters, the lengthL is 10000 meters, the number
N of sensor nodes is 1000, the communication rangeRange

of each sensor node is 100 meters, the default ring sizeρ is
W

2Range
− 1, which is equal to 2.

In all simulations, the position of each sensor node is
uniformly generated within the 2-dimensional rectangle that
represents the thick LSN. Two sensor nodes can communicate
if and only if the distance between them is not larger than the
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Fig. 4: Number of LD+SF messages

communication range. The node that initiates the backbone
discovery is the leftmost node within the 2-D rectangle;
similarly, the sink is the rightmost node within the thick LSN.

The performance metrics used in our evaluations are the
time for backbone discovery, the number ofLD andSF mes-
sages used in the backbone discovery process, and the number
of new backbone node declaration (NBD) messages. Our
simulation seeks to investigate the impacts of these parameters.
Thus, we ran experiments with one varying parameter while
keeping the others to their default values. Each experiment
run lasts for sufficiently long time, so as to better reflect the
performance of the proposed algorithm.

B. Simulation Results

Fig. 3 shows the time for topology discovery while varying
the number of sensor nodes and varying the communication
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Fig. 5: Number of NBD messages

range. We make two important observations. Firstly, we find
that, if the communication range is fixed, when the number
of sensor nodes increases, the time for backbone discovery
decreases in general. This is because, when the number of
sensor nodes increases, since the size of the thick LSN is fixed,
the density of sensor nodes increases as well. Consequently,
the number of communication links between sensor nodes
increases, which finally translates into the decreased number
of hops between the initiator and the sink. Secondly, for a
large communication range, the time for backbone discovery
decreases more slowly. For example, if the communication
range is 100, when the number of sensor nodes increases from
1000 to 3000, the time for backbone discovery decreases by
25%; however, when the communication range is 200, the time
for backbone discovery decreases by 7%. The reason is that,
when the communication range is large, the number of possible
communications links is large too, which mitigates the positive
effect from the increase of the number of sensor nodes.

Fig. 4 demonstrates the results of the impact of the number
of sensor nodes and communication range on the number
of LD and SF messages. Generally, if the communication
range is fixed, when the number of sensor nodes increases,
the number ofLD andSF messages increases; similarly, if
the number of sensor nodes is fixed, when the communication
range increases, the number ofLD andSF messages increases
too.LD messages are used by the sensor nodes, especially the
sensor node that initiates the backbone discovery process,to
find the shortest path to the sink node; theSF messages are
used by the sensor nodes, especially the sink node, to notifythe
backbone nodes that they are part of the discovered backbone.
Given the meanings of these two types of messages, it is not
hard to see the trend in the figures.

We also plot the impact of varying number of sensor
nodes and varying communication on the number ofNBD

messages. The simulation results are shown in Fig. 5. The
new backbone node declaration messages are used by the
backbone nodes to inform all of the sensor nodes that they
are part of the newly constructed backbone. Part (a) of Fig. 5
shows that, if the communication range is fixed, when the
number of sensor nodes increases, the number ofNBD

messages increases too. This is because, when the number
of sensor nodes increases, there are more backbone and non-
backbone nodes within the thick LSN, thus, the new backbone
declaration messages that are broadcast by a backbone node
have to be broadcast to a larger number of nodes. On the other
hand, part (b) of Fig. 5 shows that, if the number of sensor

nodes is fixed, when the communication range increases, the
number ofNBD messages increases as well. The main reason
behind this phenomenon is that, a large communication range
enables every sensor to directly communication with a larger
number of other sensor nodes, therefore, the number of new
backbone declaration messages increases.

In summary, the proposed topology discovery framework
works well in a variety of settings in thick LSNs. We hope our
findings can reveal some potential insights for future related
research.

IV. CONCLUSIONS ANDFUTURE RESEARCH

Due to the linear nature of the structure or geographic area
that is being monitored, the topology of some WSNs exhibits a
linear form. The resulting network was defined in our previous
work as an LSN. In this paper, we present a graph-search-
based algorithm for backbone discovery in thick LSNs. The
resulting backbone can be used for efficient routing of the
data collected by the other nodes in the the network. The
routing strategy can then take advantage of the linearity of
the network and discovered backbone in order to enhance the
robustness and fault tolerance of the network. Our future work,
will focus on the these important issues to use the linearityof
the backbone to allow the routing protocol to overcome node
failures by jumping over failed nodes, or going around them
through local backbone maintenance.
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