
Authentication of Multi-dimensional Top-K Query
on Untrusted Server

Xiaoyu Zhu†‡, Jie Wu‡, Wei Chang§, Guojun Wang¶∗, and Qin Liu∥
†School of Information Science and Engineering, Central South University, Changsha, 410083, China

‡Center for Networked Computing, Temple University, PA, 19122, USA
§Department of Computer Science, Saint Joseph’s University, PA, 19131, USA

¶School of Computer, Guangzhou University, Guangzhou, 510006, China
∥School of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China

†zhuxiaoyu@csu.edu.cn, ‡jiewu@temple.edu, §wchang@sju.edu, ∥gracelq628@hnu.edu.cn
∗Correspondence to: csgjwang@gmail.com

Abstract—Consider a database where each record has multiple
attributes. An untrusted server is in charge of processing queries
over this database, and we want to provide a mechanism for
users to verify the correctness of their query results. Here each
query, referred to as a multi-dimensional top-k query, retrieves
k records whose output with user-supplied ranking function is
among top k. Multi-dimensional top-k query is widely used in real
applications. However, as the traditional query authentication
methods cannot be directly deployed on multi-dimensional top-
k query, it is still a challenging problem to authenticate the
multi-dimensional top-k query results. In this paper, we propose
an authentication solution to support multi-dimensional top-k
query based on signature chain. By using signature chain for
each record and its successors on each dimension, our solution
allows users to efficiently verify the soundness and completeness
of multi-dimensional top-k query results. Through theoretical
analysis and simulation, we demonstrate the effectiveness of our
proposed solution.

Index Terms—Data outsourcing, multi-dimension, query au-
thentication, top-k query

I. INTRODUCTION

Database outsourcing has lately emerged as a common
practice for companies and institutions. It allows a data owner
to delegate the maintenance and administration of his database
to a powerful third-party server. Users access the database
by contacting the server instead of the owner. This model is
applicable to a wide range of computing platforms, including
cloud computing, edge computing, database caching, etc.
Database outsourcing poses the challenge that the server may
be untrusted. The server may return incorrect results for a
variety of reasons. For example, the server may manipulate
data due to possible virus or even controlled by an outside
attacker. It may also return incomplete results in order to save
computational resources. Hence, it is vital to provide users the
service to authenticate the query results, regardless of whether
each result appears in the original database (soundness) or
whether all data records in the original database that satisfy
the query condition are included in the query results (com-
pleteness).

The problem of authenticating the query results has been
studied a lot in the past decades. Devanbu et al. [1] proposed
a solution to solve the problem of authenticating range query
for the first time. The proposed solution allows a data owner
sort the data records to be outsourced and build a Merkle Hash
tree (MH-tree) [2] on these data records. The data records and
the corresponding MH-tree are then both outsourced to the
third party. Without causing ambiguity, we will use the terms
third party and server interchangeably. In response to a range
query, the server is required to return the query result and some
part of the MH-tree that can serve as the proof that the data
records in the query result are original and contiguous in order.
Pang et al. [3] proposed an alternative solution which builds
a digital signature chain instead of an MH-tree. The two au-
thentication data structures, MH-tree and signature chain have
since inspired a large body of research (e.g.,[3],[4],[5],[6])
on authenticating various queries such as multi-dimensional
range query, and KNN query and spatial queries. However,
they support only simple query authentication.

In this paper, we consider the problem of authenticating
multi-dimensional top-k query. The outsourced data contain
multiple dimensions/attributes, the users can ask queries with
ranking functions and retrieve k records whose output is
among top k. The ranking function can be the sum of arbitrary
composition of attributes, each attribute can be assigned a
weight and have a degree. For example, Assume there is a
three-dimensional dataset Student(GPA, Award, Paper); a user
may want to retrieve the students whose rank scores are among
the top k. The user may submit such a ranking function Score
= 5GPA + 3Award + 2Paper2, where GPA, Award, Paper
are the Student’s corresponding attribute values, (5, 3, 2) are
the weights for (GPA, Award, Paper) respectively, and Paper
has a degree up to 2. Multi-dimensional top-k query has many
important applications, including information retrieval in cloud
computing [7], [8], social network [9], location-based services
[10], system monitoring [11], resource allocation [12], disease
prediction [13], and etc. Users can use existing SQL tool to
define and issue multi-dimensional top-k query.

Recently, Yang et al. [14] proposed a function query authen-978-1-5386-2542-2/18/$31.00 © 2018 IEEE

tication method, which is similar to the multi-dimensional top-
k query. But in their method, the ranking function definition is
submitted by the data owner rather than the user, which limits
users’ query preference. In addition, their solution has several
major limitations. The communication and computation cost
of the signature construction process is very high, as each data
record may have n signatures, the signature size can be O(n2)
at most, where n is the total number of data records. However,
the signature generation is a computationally expensive oper-
ation, which will bring a lot of burden to the data owner who
is generally equipped with limited resources. Moreover, the
dataset update process is not efficient, when the data owner
wants to add or delete one data record, it needs to recompute
all the signatures, which will lead to inefficiency in real world
application.

To date, authenticating multi-dimensional top-k query ef-
ficiently remains a challenging problem; we want to enable
users to submit queries according to their query preference
and authenticate query results in an efficient way. In this
paper, we propose an idea to solve the multi-dimensional top-k
authentication problem.

The contributions of this paper are summarized as follows:

• We propose an authentication solution to verify multi-
dimensional top-k query results efficiently. Our method
supports efficient signature construction process, and each
record is chained with its successors on each dimension;
the communication and computation cost is reduced due
to the signature construction design.

• Our method supports efficient data updates by the data
owner, which only needs to modify several signatures
for the update operation, and our method gives users
great query flexibility; the query function definition can
be submitted by the users instead of the data owner.

• We give the performance analysis and conduct extensive
experiments, which shows the effectiveness and efficiency
of our method.

The remainder of the paper is organized as follows: Section
II gives the overview of our solution. In section III, we
describe the details of our proposed solution. Following in
section IV, we extend our solution. Section V presents the
security analysis and performance analysis. Finally, section VI
concludes our paper.

II. OVERVIEW

A. Query Definition

The dataset D has d dimensions (each dimension is a
numerical attribute). To query data records over D, a user
provides a multi-dimensional top-k query, which includes a
ranking function Score(r) and a filter condition k. The query
is defined below.

A Multi-dimensional top-k query Q = {Score(r), k}
retrieves data records r whose ranking score Score(r) is
among the k smallest. For each data record r ∈ D, the ranking

function of this data record is defined as

Score(r) =w0+

w11t1 + w12t
2
1 + · · ·+ w1mtm1 +

w21t2 + w22t
2
2 + · · ·+ w2mtm2 +

· · ·
wd1td + wd2t

2
2 + · · ·+ wdmtmd

(1)

Here, d is the number of dimensions, m is the highest
degree, (t1, t2, · · · , td) is the data record r’s attribute values
on dimension (1, 2, · · · , d) respectively, and wij is a positive
weight for term tmd , where 1 ≤ i ≤ d and 1 ≤ j ≤ m.

B. Security Goal

Our security goal is to offer approaches for authenticating
multi-dimensional top-k queries. In our setting, we assume that
the server is untrusted and may present to the user a tampered
result. Our proposed solutions can allow the user to verify the
soundness and completeness of the query results.

Soundness: The user can verify that all qualifying data
records returned are correct. They have not been tampered
with, nor have spurious data records been introduced.

Completeness: The user can verify that the results covers
all the qualifying data records. The data records satisfying the
query condition are all included in the results, and the number
of the data records is at least k.

C. Scheme Outline

The system involves three types of parties: data owner,
server, and data user. Our scheme includes five algorithms as
follows:

• Init(T) → D: The data owner takes a dataset T as input
and outputs a new dataset D.

• KeyGen(k) → {pk, sk}: The data owner takes a security
parameter k as input and outputs a public key pk and a
private key sk.

• SigGen(sk,D) → S: The data owner takes private key
sk and dataset D as inputs and outputs a set of signatures
S.

• GenProof(Q,D) → {R, V O}: The server takes query
Q and dataset D as inputs and outputs query results R
and a verification object V O.

• V erify(pk,R, V O) → {0, 1}: The user takes public key
pk, query results R, a verification object V O as inputs,
and outputs 0 if verification fails; otherwise, the output
equals 1.

From a systematic point of view, our scheme works as
follows:

Initialization phase. The data owner runs the Init algo-
rithm to generate D, and runs KeyGen algorithm to generate
public key pk and private key sk. The public key pk is shared
with the user, the private key sk is kept secret.

Signature phase. The data owner runs the SigGen algo-
rithm to generate a set of signatures S for data records in D.
Then, she uploads D and S to the server.

Query phase. The server first receives a multi-dimensional
top-k query Q from the user, then the server outputs all data
records matching Q into the query results R. The server runs
the GenProof algorithm to generate a verification object V O.
Finally, the server returns query results R and a verification
object V O to the user.

Verification phase. The user runs V erify algorithm to
check if the query results are correct, or not.

III. PROPOSED SOLUTION

We discuss how to create signature chains for two-
dimensional dataset and how to verify query results using
signature chains.

A. Signature Chains Construction

The signature chain construction contains three steps. First,
initiate the dataset by partitioning grids and adding dummy
data. Second, generate boundaries for the new dataset. Third,
generate signatures for the new dataset.

Grid. The original dataset T can be sorted in an increasing
order for x and y dimension. The data record is expressed as
rij = (xi, yj), where xi and yj are the attribute values on the
x and y dimension, respectively. Some data records have two
successors, one in the x dimension, another in the y dimension.
This allows us to create two signature chains over the x and
y dimensions for a two-dimensional data record. As there are
some data records that do not have a successor, we need to
add some dummy data and boundaries in order to guarantee
that every record has two successors.

The dataset T is partitioned into grids according to the x and
y dimension’s attribute values; some grids have one record,
and some do not have a record. The owner generates a dummy
data for each empty grid, and the dummy data is assigned the
corresponding grid’s axes values. The new dataset D contains
the original data T and generated dummy data.

Boundary. Then, the owner generates boundaries for the
new dataset, each record should be bounded by two records.
The new dataset is denoted as D = {rij |1 ≤ i ≤ p, 1 ≤ j ≤
q}, where p is the number of attributes for the x dimension,
q is the number of attributes for the y dimension. The owner
first generates two values (x0 = −∞, xp+1 = ∞) for the x
axis, then generates two values (y0 = −∞, yq+1 = ∞) for the
y axis. The owner generates a set of lower boundaries Bl and
upper boundaries Bu for the new dataset D. The boundaries
are generated as follows:

• For 1 ≤ i ≤ p, generate ri0 = (xi, y0) and put it into Bl.
For 1 ≤ j ≤ q, generate r0j = (x0, yj) and put it into
Bl.

• For 0 ≤ i ≤ p, generate ri,q+1 = (xi, yq+1) and put it
into Bu; For 0 ≤ j ≤ q, generate rp+1,j = (xp+1, yj)
and put it into Bu.

• The boundaries for D can be expressed as B = {Bl, Bu}.
Signatures. Given a set of n two-dimensional data records

D = {rij |1 ≤ i ≤ p, 1 ≤ j ≤ q}, each record can be sorted
in two lists. Assuming that the order increases, we have ri1 <
ri2 < · · · < riq for 1 ≤ i ≤ p in x dimension. Meanwhile, we

11 21 12
(| |)Sig r r r

31 41 32
(| |)Sig r r r

41 51 42
(| |)Sig r r r

21 31 22
(| |)Sig r r r

14 24 15
(| |)Sig r r r

34 44 35
(| |)Sig r r r

44 54 45
(| |)Sig r r r

24 34 25
(| |)Sig r r r

12 22 13
(| |)Sig r r r

32 42 33
(| |)Sig r r r

42 52 43
(| |)Sig r r r

22 32 23
(| |)Sig r r r

13 23 14
(| |)Sig r r r

33 43 34
(| |)Sig r r r

43 53 44
(| |)Sig r r r

23 33 24
(| |)Sig r r r

04 14 05
(| |)Sig r r r

03 13 04
(| |)Sig r r r

02 12 03
(| |)Sig r r r

01 11 02
(| |)Sig r r r

10 20 11
(| |)Sig r r r

30 40 31
(| |)Sig r r r

40 50 41
(| |)Sig r r r

20 30 21
(| |)Sig r r r

Fig. 1. Signatures construction process.

have r1j < r2j < · · · < rpj for 1 ≤ j ≤ q in y dimension.
On these sorted lists, each record should be chained in two
dimensions, the owner builds signature chains as follows: For
each data record rij ∈ D ∪ Bl, rij has a successor ri+1,j in
x dimension and a successor ri,j+1 in y dimension. The data
owner creates the signature for rij as follows:

Sig(rij |ri+1,j |ri,j+1)

= Sig(H(H(rij)|H(ri+1,j)|H(ri,j+1)))
(2)

Here, H(·) is a hash function (e.g., SHA1), and Sig is a
signature generation algorithm (e.g., RSA). Through verifying
this signature, it proves that there exists no record between
rij and ri+1,j in the x dimension; and no record between rij
and ri,j+1 in y dimension. In other words, rij and ri+1,j are
contiguous in the x dimension, rij and ri,j+1 are contiguous
in the y dimension. The whole set of signatures for dataset D
are defined as S. Then, the owner sends the dataset D, the
boundaries B, and signatures S to the server.

In the approach above, the owner creates q + 1 signature
chains in the x dimension, p + 1 signature chains in the y
dimension. The total number of signatures is equal to the
number of records in D ∪ Bl, which is bounded by O(n).
Figure 1 shows the signatures created for dataset D; we take
Sig(r11|r21|r12) = Sig(H(H(r11)|H(r21)|H(r12))) as an
example, r11’s successor in x dimension is r21, its successor
in y dimension is r12, so its signature concatenates itself and
its two successors.

B. Query Result Verification

In this subsection, we introduce three parts. First, the server
generates a V O for query results R. Next, the user verifies
the soundness and completeness of R. Finally, the owner can
update the dataset efficiently.

Verification object. Let R be the query results; the server
generates a verification object V O for R as follows. First, find
the maximum i and j in R = {rij} and denote them as p and
q respectively. Put {ri0|1 ≤ i ≤ p} and {r0j |1 ≤ j ≤ q}
into lower boundaries Bl. Second, for each data record rij
in R ∪ Bl, if its successors ri+1,j or ri,j+1 is not found in
R ∪ Bl ∪ Bu, then add it in upper boundaries Bu. Then for
each data record rij in results R and lower boundaries Bl, the

Algorithm 1 Query result verification
Input: Query Q = {Score(r), k}, results R, verification
object V O = {Bl, Bu, Sq}.
Output: 0 or 1.

1: for For each record rij ∈ {R ∪Bl} do
2: Find its corresponding signature in Sq

3: Find its successors ri+1,j and ri,j+1 in R ∪Bl ∪Bu

4: if Eqn. 3 is not satisfied then
5: Return 0
6: end if
7: end for
8: if the number of data in R is not equal to k then
9: Return 0

10: end if
11: Set the maximum score of results in R as Scorem
12: for each rij in Bu do
13: if Score(rij) > Scorem then
14: Return 0
15: end if
16: end for
17: Return 1

server finds its corresponding signature Sig(rij |ri+1,j |ri,j+1)
and puts it into Sq. Finally, the server returns the verification
object V O = {Bl, Bu, Sq} to the user.

Verification. On receiving the query results R and verifica-
tion object V O from the server, the user verifies the soundness
and completeness of the query results as follows. For each
data record rij ∈ {R ∪ Bl}, the user finds its signature
Sig(rij |ri+1,j |ri,j+1) in Sq, and find its successors ri+1,j and
ri,j+1 in R ∪Bl ∪Bu. Then the user checks if the following
equation holds:

Sig−1(Sig(rij |ri+1,j |ri,j+1), pk)

= H(H(rij)|H(ri+1,j)|H(ri,j+1))
(3)

Where Sig−1 is the signature verification algorithm with the
owner’s public key pk.

If the check is passed, it means rij , ri+1,j and ri,j+1 are in
the original order, and there is no data record in between which
satisfies the query condition. Then, the user checks whether the
number of original data in result is equal to the filter condition
k. Finally, the user proceeds to check the completeness of
boundary records by verifying if the boundary’s score is larger
than the highest score of R. If any of them is larger than
the highest score, the check is failed. If any of the check is
failed, the user outputs 0. Otherwise, he outputs 1. A more
formal description of the above verification process is given
in Algorithm 1.

Data update. The data update process of our solution is
very simple. When the data owner updates a data record,
the data owner first finds the data record’s predecessors in
each dimension, then generates a new signature for these
predecessors.

IV. EXTENSIONS

In this section, we extend two-dimensional top-k query
authentication method to multi-dimensional.

A. Multi-dimensional Top-k Query Authentication

We now considers a multi-dimensional dataset; the process
of multi-dimensional top-k query authentication solution is
similar to the two-dimensional solution.

Grid. Given a set of data records, each data record has
d attributes. The owner first partitions the data space into
small grids according to d dimensional attribute values. For
each empty grid, the owner assigns it a dummy data over d
attributes, the dummy data’s attribute in each dimension is
equal to its corresponding axis value. The original data and
dummy data constructs the new dataset D.

Boundary. The new dataset is denoted as D =
{ri,··· ,j |r1,··· ,1, r2,··· ,1, · · · , rp,··· ,q}, where p is the number
of attributes for the first dimension, q is the number of
attributes for the last dimension. First, generate two values
(x0 = −∞, xp+1 = ∞) for the first dimension, and so on
until you generate two values (y0 = −∞, yq+1 = ∞) for the
last dimension. The owner generates a set of lower boundaries
Bl and upper boundaries Bu for the new dataset D. The
boundaries are generated as follows:

• Generate lower boundaries ri,··· ,0 = (xi, · · · , y0), · · · ,
r0,··· ,j = (x0, · · · , yj) for each dimension and put them
into Bl.

• Generate upper boundaries ri,··· ,q+1 = (xi, · · · , yq+1),
· · · , rp+1,··· ,j = (xp+1, · · · , yj) for each dimension and
put them into Bu.

• The boundaries for D can be expressed as B = {Bl, Bu}.
Signature. Each data record ri,··· ,j has d successors, a

successor ri+1,··· ,j in the first dimension, a successor in
the second dimension, and so on. ri,··· ,j+1 denotes the the
successor in the last dimension. The data owner creates the
signature of ri,··· ,j as follows:

Sig(ri,··· ,j) =Sig(H(H(ri,··· ,j)|H(ri+1,··· ,j)|
· · · |H(ri,··· ,j+1)))

(4)

Verification object. The user submits a multi-dimensional
top-k query Q to the server. The server put the query results
satisfying the query conditions in R. Then, the server generates
the verification object V O for results R. Compute the lower
boundaries Bl, upper boundaries Bu, find the signatures Sq,
and put them into V O. Finally, the server returns the query
results R and a verification object V O to the user.

Verification. On receiving the query results R and verifica-
tion object V O from the server, the user verifies the soundness
and completeness of the query results as follows: For each data
record ri,··· ,j ∈ R ∪ Bl, find its signature Sig(ri,··· ,j) in Sq,
find its d successors ri+1,··· ,j , · · · , ri,··· ,j+1 in R ∪Bl ∪Bu.
Then, the user checks if the following equation holds:

Sig−1(Sig(ri,··· ,j), pk) = H(H(ri,··· ,j)|
H(ri+1,··· ,j)| · · · |H(ri,··· ,j+1))

(5)

Then, the user proceeds to check the completeness for the
boundary records.

V. PERFORMANCE STUDY

In this section, we study the performance of the proposed
solutions through security, overhead analysis, and simulation.

A. Security Analysis

We prove that the proposed multi-dimensional top-k query
authentication scheme can achieve the security goals as fol-
lows. Let R be the query results, B be the boundaries.

We first discuss the case in which R is not sound: Some
record ri,··· ,j in R is forged. This happens when the adversary
creates a fake record ri′,··· ,j′ to replace ri,··· ,j . In order
to make the user accept the manipulated query result, the
adversary must forge a signature Sig(ri,··· ,j) using the digest
of fake ri′,··· ,j′ . This is computationally infeasible without
knowing the private key of the data owner.

Then we discuss three cases that R is not complete:
Case 1: At least one initial boundary record is forged. The

adversary needs to replace the initial boundaries. In order to
let user accept the forged result, the adversary must forge
fake signatures for initial boundaries. This is computationally
infeasible without knowing the private key of the data owner.

Case 2: At least one end boundary record is forged. There
are two ways to do so. The first one is to remove or add some
end records; the user will detect the error and discover that
the number of original records in result is not equal to k. The
second one is to replace some end records with some other
records in the original database. The error will be detected
when checking the score of the boundary records. It will
discover that some boundary record’s score is smaller than
the query result’s maximum score.

Case 3: Two contiguous records in R are not contiguous in
the original dataset. This happens when the adversary removes
some record from R. Suppose record ri,··· ,j is removed. In
order to avoid being detected, the adversary must forge d
signatures {Sig(ri−1,··· ,j), · · · , Sig(ri,··· ,j−1)} to replace sig-
nature Sig(ri,··· ,j). This is computationally infeasible without
knowing the private key of the data owner.

B. Overhead

We now analyze the overhead introduced by the proposed
technique on the data owner, the server, and the user side,
respectively. We give the performance analysis compared with
the benchmark method in [14] (denoted by FQA).

1) Data Owner Overhead: The data owner’s computation
cost incurred in constructing the signatures. The key factor is
the size of signatures, and it’s not sensitive to the number of
dimension, as it only needs to execute one more hash operation
for each record as the number of dimension increases one
number. Next, we analyze the total number of signatures and
signature chains that need to be created, and we compare our
solution with FQA.

The data owner first preprocesses the dataset and generates a
new dataset. Suppose there are n data in the new dataset with d

dimensions. The data owner needs to create n signatures, FQA
needs to construct 2 ∗Cn+2

2 signatures, which is much larger
than our method. The signature generation is a computationally
expensive operation. Moreover, in FQA, the data owner needs
extra computation costs in computing intersections and space
partitioning, which is really a large computation cost. For
two-dimensional dataset, the total number of signature chains
is 2

√
n. The number of chains is 2

3
√
n2 + 3

√
n for three-

dimensional dataset, which is bounded by O(n). The number
of chains is bounded by O(dn) for d-dimensional dataset. In
FQA, the number of signature chains is bounded by O(n2).
As d is much smaller than n generally, our method’s signature
chains are much smaller than FQA. As for the update cost,
each record is chained with d records in our method, so only
d signatures need to be modified in update process. However,
FQA needs to construct all the signatures, which is really a
large communication and computation cost for the data owner.

2) Server Overhead: For the server, there is a one-time cost
in receiving the dataset and corresponding signatures from
the data owner. After that, the main cost is constructing the
verification object and sending it to users. The average cost
of constructing V O can be written as O(k), where k is the
number of query results.

3) User Overhead: Each user needs to retrieve the public
key from the data owner. This one-time cost is minimal. There
are two main overheads, the communication cost of receiving
R and V O from the server, and the computation cost in the
verification process. The average cost of verifying signatures
can be written as O(k).

C. Simulation

We have implemented a detailed simulator that allows us
to evaluate the performance of the proposed technique from
various aspects. Our simulator incorporate a data generator
that can be configured to generate various kinds of data. We
use SHA-1 for digest function and RSA (256 bits) for digital
signature. Our simulation platform is a Windows server with
Intel 64-bit i7 CPU running on 2.00GHz and 8 GB RAM.
We give the simulation result compared with the benchmark
method in [14] (denoted by FQA) in two-dimensional linear
query setting. The number of dimension d and the highest
degree m are default as 2 and 1 respectively.

The experiment results show the comparison of our methods
and FQA in four overheads, which are the owner’s computa-
tion overhead, owner-CSP communication overhead, CSP-user
communication overhead, and user’s computation overhead,
respectively.

Fig. 2(a) shows the comparison of ours with FQA in owner’s
computation overhead with the number of records n from
10,000 to 100,000. We can see that FQA needs much higher
computation overhead than ours, accurately FQA incurs 6
times construction overhead of our method in average.

Fig. 2(b) shows the comparison of ours with FQA in Owner-
CSP communication overhead with the number of records n
from 10,000 to 100,000. The size of constructed signatures

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

Number of records n (x10000)

T
im

e
 (

s
)

Ours

FQA

(a) Owner’s computation overhead

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

Number of records n (x10000)

S
ig

n
a
tu

re
 s

iz
e
(M

B
)

Ours

FQA

(b) Owner-CSP comm. overhead

100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

Size of query result k

V
O

 s
iz

e
(K

B
)

Ours

FQA

(c) CSP-user comm. overhead

100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

Size of query result k

T
im

e
 (

m
s
)

Ours

FQA

(d) User’s computation overhead

Fig. 2. Computation and communication cost

grow linearly with the number of data records, FQA incurs
about 33 larger signature size than our solution in average.

Fig. 2(c) shows the comparison of ours with FQA in CSP-
user communication overhead with the size of query results
k from 100 to 500. The result shows that the size of V O
increases linearly to the size of query result, and our method’s
V O size is larger than FQA’s, as our method needs to generate
more boundaries for the query results.

Fig. 2(d) shows the comparison of ours with FQA in user’s
computation overhead with the size of query results k from
100 to 500. We can see that our method is a bit larger than
the FQA, as our method needs to verify more boundaries than
FQA.

In conclusion, our method incurs a larger cost in the CSP-
user communication overhead and user computation overhead.
However, we can largely reduce the communication and com-
putation cost in constructing signatures. In our solution, the
signatures generated by data owner is much smaller than FQA,
and the data owner has much smaller computation power than
the server. Meanwhile, the data owner may insert, modify,
or delete the data record frequently. Our method only needs
to modify several signatures for one data record, but FQA
needs to compute all the signatures, thus our solution is more
applicable to the dynamic dataset.

VI. CONCLUSION

In this paper, we consider the problem of outsourcing a
database to an untrusted server; the user submits a multi-
dimensional top-k query to the server, and the server returns
results which satisfy the users’ query. We propose a solution
that allows users to verify if the query results are sound
and complete. The user can submit queries according to their
preference, and the data owner does not need to pre-compute
all the possible results. We develop a solution for efficient ver-
ification of multi-dimensional top-k query based on creating a
signature chain for data records in each dimension. We prove
that our solution is secure, and the experiment results show the
proposed solutions are practical and can be used in real-world
applications.

ACKNOWLEDGMENT

This work is supported in part by the National Natu-
ral Science Foundation of China under Grants 61632009
& 61472451, in part by the Guangdong Provincial Natural

Science Foundation under Grant 2017A030308006 and High-
Level Talents Program of Higher Education in Guangdong
Province under Grant 2016ZJ01, in part by NSF and CSC
grants CNS 1629746, CNS 1564128, CNS 1449860, CNS
1461932, CNS 1460971, CNS 1439672, in part by the China
Scholarship Council under Grant 201606370141.

REFERENCES

[1] P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine, “Au-
thentic data publication over the internet,” Journal of Computer
Security, vol. 11, no. 3, pp. 291–314, 2003.

[2] R. C. Merkle, “A certified digital signature,” in Conference on
the Theory and Application of Cryptology, 1989, pp. 218–238.

[3] H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan, “Verifying
completeness of relational query results in data publishing,” in
ACM SIGMOD, 2005, pp. 407–418.

[4] Y. Tang, T. Wang, X. Hu, R. Sailer, L. Liu, and P. Pietzuch,
“Outsourcing multi-version key-value stores with verifiable data
freshness,” in ICDE, 2014, pp. 1214–1217.

[5] Y. Yang, S. Papadopoulos, and D. Papadias, “Authenticated
indexing for outsourced spatial databases,” The VLDB Journal,
vol. 18, no. 3, pp. 631–648, 2009.

[6] S. Su, H. Yan, X. Cheng, P. Tang, P. Xu, and J. Xu, “Authentica-
tion of top-k spatial keyword queries in outsourced databases.”
in DASFAA, 2015, pp. 567–588.

[7] Q. Liu, S. Wu, S. Pei, J. Wu, T. Peng, and G. Wang, “Secure
and efficient multi-attribute range queries based on comparable
inner product encoding,” in IEEE CNS, to be appeared, 2018.

[8] Q. Liu, G. Wang, X. Liu, T. Peng, and J. Wu, “Achieving
reliable and secure services in cloud computing environments,”
Computers & Electrical Engineering, 2016.

[9] Q. Liu, G. Wang, F. Li, S. Yang, and J. Wu, “Preserving privacy
with probabilistic indistinguishability in weighted social net-
works,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 5, pp. 1417–1429, 2017.

[10] S. Zhang, K.-K. R. Choo, Q. Liu, and G. Wang, “Enhancing
privacy through uniform grid and caching in location-based
services,” Future Generation Computer Systems, 2017.

[11] H. Zheng, W. Chang, and J. Wu, “Coverage and distinguishabil-
ity requirements for traffic flow monitoring systems,” in IWQoS,
2016, pp. 1–10.

[12] W. Chang and J. Wu, “Progressive or conservative: Rationally
allocate cooperative work in mobile social networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 7,
pp. 2020–2035, 2015.

[13] C. Reitz, M.-X. Tang, N. Schupf, J. J. Manly, R. Mayeux, and
J. A. Luchsinger, “A summary risk score for the prediction of
alzheimer disease in elderly persons,” Archives of neurology,
vol. 67, no. 7, pp. 835–841, 2010.

[14] G. Yang, Y. Cai, and Z. Hu, “Authentication of function
queries,” in ICDE, 2016, pp. 337–348.

