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Abstract—Edge computing is a new computing paradigm rising
gradually in recent years. Applications, such as object detection,
virtual reality and intelligent cameras, often leverage Deep
Neural Networks (DNN) inference technology. The traditional
paradigm of DNN inference based on cloud suffers from high
delay because of the limited bandwidth. From the perspective
of service providers, caching DNN models on the edge brings
several benefits, such as efficiency, privacy, security, etc.. The
problem we concerned in this paper is how to decide the cached
models and how to allocate processors of edge servers to reduce
the overall system cost. To solve it, we model and study the DNN
Model Caching and Processor Allocation (DMCPA) problem,
which considers user-perceived delay and energy consumption
with limited edge resources. We model it as an integer nonlinear
programming (INLP) problem, and prove its NP-Completeness.
Since it is considered as a long-term average optimization
problem, we leverage the Lyapunov framework to develop a
novel online algorithm DMCPA-GS-Online with Gibbs Sampling.
We give the theoretical analysis to prove that our algorithm is
near-optimal. In experiments, we study the performance of our
algorithm and compare it with other baselines. The simulation
results with the trace dataset from real world demonstrate the
effectiveness and adaptiveness of our algorithm.

Index Terms—Edge Computing, DNN Model Caching, Prox-
imity Inferences, Gibbs Sampling, Lyapunov Optimization

I. INTRODUCTION

The rapid development of 5G and Artificial Intelligence
(AI) in recent years [1], [2] result in the emergence of a
large number of smart applications and smart devices, making
people’s lives more convenient and intelligent. Therefore, how
to support the smart life of users with better Quality of Service
(QoS) [3] has attracted more and more attention from service
providers, for example, Virtual Reality (VR), intelligent cam-
eras and so on. These applications need to transfer a large
amount of data between user-side and cloud-side inevitably,
which overwhelms the core network and causes congestion and
blockages in it [4]. Fortunately, service providers have realized
that the traditional cloud computing paradigm is falling behind
modern applications and find the new network computing
paradigm, which is called Edge Computing (EC) [5], [6].

Edge computing can effectively enhance the QoS at the net-
work edge. An edge server can be regarded as a cloudlet with
limited storage and computation ability, which is equipped
with CPU, GPU or other computing or processing devices
for deep learning inference tasks. We are able to deploy
DNN models on edge servers for users to conduct “proximity
inferences” [7] in virtue of the following advantages of EC:

(1) Edge servers are located at the network edge, which
means they are close enough to users to reduce the raw data
transmission consumption during the DNN inference process.
(2) DNN inference requests from users often comprise local
geographic characteristics, such as similar inference tasks [8],
so deploying a portion of deep models which are hotspots
on edge servers in different locations can efficiently reduce
communication delay and avoid excessive model deployment
cost on the edge servers. (3) Users need to submit large
amounts of input data to deep models for inference, however
the bandwidth of the core network is usually insufficient to
handle the excessive transmission demand generated from the
edge. In EC paradigm [9], the data transmission demand
is greatly reduced because most of them are handled by
edge servers, immensely relieving the transmission pressure
of the core network. (4) Edge computing permits to conduct
inference on nearby servers rather than transmit sensitive data
to the remote cloud, and protects user privacy effectively [10].

Since the storage and computation resources of the remote
cloud can be infinite in most cases, we can assume that the
cloud prepares all the deep models in advance that may be
requested by users, while edge servers are limited by resources
and can only undertake a subset of all these deep models.
Moreover, a user usually connects to one edge server with
requests to a specified deep model. If the requested deep model
is deployed on the connected edge server coincidentally, the
network transmission delay between the user device and the
cloud is completely eliminated, which is called “edge-hit”. As
shown in the above, QoS experience will reach the best if the
edge server is powerful and voluminous enough to accom-
modate all deep models which may be requested. However,
edge servers are usually provided with limited storage and
computation resources, and service providers are limited by
service costs and cannot extend the service abilities of services
infinitely. So it is not possible to cache all the deep models
on edge servers, but only a subset of them can be selected for
deployment limitedly, which brings a conflict between QoS
experience and edge capacity. More specifically, an edge server
can be equipped with several DNN processors and each one
has provisioning cost and maintaining cost that the service
provider needs to consider. Consequently, it brings us the first
challenge: Which and how many DNN processors need to
equip on each edge server, making the cost of provisioning and
maintaining DNN processor hardwares by the service provider
as little as possible. Another problem is that the computation978-1-6654-6824-4/22/$31.00 © 2022 IEEE



and storage capacity of DNN processor is often described by
its floating-point computation power flops and memory size,
which means the number of DNN models that can be deployed
on a DNN processor is limited, while the coming user request
follows a certain distribution. The fact brings us the second
challenge: How to cache the DNN Model based on the known
distribution of user requests to minimize the overall cost of
user QoS-aware delay violations.

The main contributions of this paper are as follows.

• We consider the DNN Model Caching and Processor Al-
location problem in EC environments. The edge resources
are assumed limited while the cloud is nearly unlimited
but constrained by bandwidth. Besides, the characteristics
of user request distribution (or user mobility) are consid-
ered for optimization.

• Under the constraints of DNN model inference delay,
we formulate the problem with the purpose of reducing
user perception delay and energy consumption cost with
careful model caching and processor allocation strategy.
The problem is an Integer Nonlinear Program (INLP) ,
which is proved to be NP(Non-deterministic Polynomial)-
Complete.

• We propose a novel online algorithm called DMCPA-
GS-Online, which can efficiently cache models and al-
locate processors in an online manner without future
information. DMCPA-GS-Online leverages the Lyapunov
framework to transform the origin problem into a series
of time-stepping subproblems. These subproblems can
be solved by an extended version of Gibbs Sampling
Algorithm, which is proved to be near-optimal.

• We evaluate the performance of DMCPA-GS-Online
through a trace dataset from the real world practically and
extensively. The results demonstrate that our proposed
algorithm outperforms other baselines.

The rest of this paper is organized as follows. Section II
reviews related works. Section III gives the formulation of
our problem. Section IV introduces our proposed algorithm
DMCPA-GS-Online and gives theoretical analysis. We evalu-
ate our model and algorithm in Section V. Finally, Section VI
concludes this paper.

II. RELATED WORK

In recent years, edge computing is attracting more and
more attentions in network field. With the breakthrough and
development of deep learning [11], artificial intelligence ap-
plications are developing rapidly. The massive amount of data
generated by deep learning needs to be processed at the edge
in a timely manner [12]. Some works investigate decouple
deep structure [13]–[15] with dividing a complex network
into multiple parts and deploying them on cloud and edge
servers respectively, but it will inevitably bring additional
network transmission overhead. Another way considers deep
compressive offloading to speed neural network inference by
trading edge computation for network latency [16]. Different
from these works, our work focus on caching deep learning-

based intelligent services to the edge network to enhance the
user experience of services at the edge.

Since DNN model can be viewed as service, there has been
many works considering service placement in edge computing
[17]–[26]. For example, in [18], the authors consider how
to deploy collaborative edge applications to achieve the best
overall system performance. In [19], a heterogeneous MEC
(Mobile Edge Computing) system is considered and it focuses
on the problem of placing multiple services in the system to
maximize the total reward. The problem of jointly optimizing
access network selection and service placement for MEC is
investigated with the aim of improving QoS by balancing ac-
cess, switching and communication delays [20]. The problem
of joint optimization of service placement and request routing
in MEC-enabled multicell networks with multidimensional
(storage-compute-communication) constraints is investigated
[22], [23]. However, these works have no specific analysis
for DNN tasks, and the impact of input data on network
transmission and inference delay is not fully considered, which
causes insufficient modeling.

In addition, the uncertainty of users has brought a series
of studies on dynamic edge computing environments [27]–
[30]. In [27], the authors consider the user request admission
problem and use data mining and machine learning technology
to estimate the user historical trajectory. However, it will
inevitably bring estimation error and affect the system per-
formance. In our work, we solve the user uncertainty without
future information in an online manner. The dynamic service
caching and task offloading problem [28] in a 5G-enabled
MEC with varying user demand and processing delay is
investigated [29], and an online learning algorithm is proposed
for the problem using multi-armed bandit (MAB) technique.
In [30], the performance optimization problem of mobile edge
services under long-term cost budget constraints is inves-
tigated, and the Lyapunov optimization method is applied.
Compared with our work, it only considers the migration of
services between edge servers, while neglects the power of
service with cloud-edge collaboration.

III. PROBLEM

In this section, we first introduce our DNN Model Caching
and Processor Allocation problem with “edge-hit” and “cloud-
hit”. Then we explain our overall system model with the
definition of user perception delay. Our goal is to minimize
the overall system cost of delays and energy with constraint
edge server capacities.

A. Overview

We consider such a caching scenario in edge as shown
in Fig. 1. Base stations (BSs) are located in the area where
DNN inference requests from users are raised in an online
manner. Each BS is equipped with an edge server that provides
computation and storage capacity. Besides, these edge servers
are equipped with multiple processors with DNN computation
ability for inference. These BSs only serve users in edge
regions that they cover, where the edge region means the
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Fig. 1. An overview of our problem.

area that all user requests from which can be handled by
the edge. To simplify, users prefer to access the BS with
lower delay and better signal quality if they are in an overlap
among several edge regions. Each BS is connected to the cloud
server via the backbone network. Since edge servers have no
enough computation and storage capacity to cache all kinds
of DNN models, a user request will encounter two caching hit
conditions: Edge-Hit and Cloud-Hit, which is determined by
the case that the model is cached or not.
• Edge-Hit: When a user sends a DNN inference request to

the nearest BS and the requested DNN model is already
cached on the edge server, the request can be directly
processed by the DNN model on the edge server. The
inference result can be quickly returned to the user.
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Fig. 3. Cloud-Hit

• Cloud-Hit: If the request arrives at the BS but the edge
server does not cache the target DNN model, it will be
forwarded to the cloud server, resulting in the edge-cloud
data transmission delay depending on the user data size.
Once the cloud server finishes the DNN inference task
and returns to the edge, the edge forwards the result to
the user with the cloud-edge downlink delay.

Obviously, Edge-Hit entails less transmission delay than
Cloud-Hit. However, it demands more caching cost of DNN
models provided by the edge server. How to achieve a good
trade-off between QoS experience and DNN caching cost is
one of our study goal.

B. The Model and Notations

We first denote the set of edge servers located in the fixed
area as S, where Si ∈ S represents the i-th edge server and
the total size is Ns. The set of users is denoted as U, where
Uk ∈ U represents the k-th user and the total size is Nu.
Meanwhile, M represents the set of all deep models, where

TABLE I
KEY NOTATIONS FOR DMCPA PROBLEM

Notation Definition
G = (S,U,M) The overall set G for DMCPA problem.

S The set of edge servers, where Si ∈ S and |S| = Ns.
U The set of users, where Uk ∈ U and |U| = Nu.
M The set of models, where Mj ∈ M and |M| = Nm.

xi,j(t) ∈ {0, 1} A binary indicator, whether DNN model Mj is
cached on edge server Si at time slot t.

yi,j(t) ∈ Z
An integer indicator, which indicates the number of
processors allocated for Model Mj by edge server Si

at time slot t.

dinput
k

The input data size uploaded by user Uk for DNN
inference, which obeys a certain distribution at time
slot t.

cinput
k (t)

The inference computing workload of user Uk ,
cinput
k (t) = θdinput

k (t), where θ is a constant
that indicates the computation workload per bit.

Pk,i(t)
The distribution that the user Uk attached to
the edge server Si at time slot t.

Dj The maximum inference delay model Uj are expected.

wj
The resource vector of Mj that occupies on edge
server.

ei,j
The energy consumed by a single processor
for model Mj on edge server Si.

aj
The initialization cost for DNN Model Mj caused
by loading models on edge servers.

Lcloud↓ The propagation delay of the cloud server to return
the inference results.

ci,j
The inference computing ability of a single processor
for model Mj on edge server Si.

φi
The maximum number of processors that can be
provided by server Si.

Wi
The maximum resource vector of edge server Si

can provide.
Lacc
k,i The BS access delay of user Uk to edge server Si.

Bcloud
i

The bandwidth between edge server Si and
the cloud server.

Mj ∈ M represents the j-th type of deep models and the
total size is Nm. These can be represented by the overall set
G = (S,U,M).

We believe that the distribution of user connection to edge
servers deserves consideration. We use Pk,i(t) to indicate the
probability of a user Uk attached to edge server Si at time
slot t. The reasons behind are as follows [31]: (1) service
providers can easily estimate user probabilities by statistics
on edge servers; (2) user requests usually follow a certain
geographic and time pattern, which can be captured as constant
in one time slot; (3) the expectation of the cost under a certain
policy can be calculated and we can optimize it to reduce the
overall cost based on the distribution.
Bcloudi denotes the bandwidth from edge server Si to the

cloud server. Lcloud↑k,i =
dinput
k

Bcloud
i

denotes the transmission delay
of the DNN input of user Uk submitted to Si and sent from Si
to reach the cloud. Lcloud↓ denotes the downlink delay of the
inference result returned by the cloud, which we consider as
a constant because the result size of DNN inference is usually
small enough. Dj denotes the maximum inference delay model
Mj can guarantee.

Here ci,j denotes the inference computation ability provided
by a single DNN processor on edge server Si for model
Mj . We use cinputk = θdinputk to denote the computation



workload by user Uk, where θ is a constant that indicates
the computation requirement per bit.

As for the decision variables, we use the binary indicator
xi,j(t) ∈ {0, 1} to indicate whether the model Mj is cached
on edge server Si at time slot t as our cache decision vector.
When xi,j(t) = 1, it means that DNN model Mj is cached
on Si and vice versa. We use the integer indicator yi,j(t) ∈ N
to indicate the number of DNN processors on edge server Si
as the processor allocation vector. The maximum number of
processors that edge server Si can provide is denoted as φi.

C. User Perception Delay

User perception delay consists of three parts: server access
delay, network transmission delay and model inference delay.
• Server Access Delay: It represents the delay from the

submission of user Uk DNN inference request to the edge
server Si, which is denoted by Lacck,i [27].

• Network Transmission Delay: If model Mj is cached
on the edge server Si, network transmission delay is
considered as 0; otherwise it is calculated as Lcloudk,i =

Lcloud↑k,i + Lcloud↓ =
dinput
k

Bcloud
i

+ Lcloud↓.
• Model Inference Delay: If model Mj is cached on the

edge server, the model inference delay is related to the
number of processor deployment as Ledgek,i,j =

θdinput
k (t)

yi,j(t)ci,j
;

if model Mj is not cached, the model inference delay
depends on the inference delay of the cloud server,
which can be neglected (or represented as a constant for
generalization) since the cloud computation capacity is
viewed as nearly unlimited.

According to the above definition, the user perception delay
of user Uk accessing server Si for requesting DNN model Mj

can be calculated as:

Lk,i,j(t) = Lacck,i + (1− xi,j(t))Lcloudk,i + xi,j(t)L
edge
k,i,j (1)

D. The Formulation of Problem

With the distribution of Pk,i(t) , the expectation of model
average delay of model Mj can be calculated as:

LPj (t) =
1

Nu

∑
Uk∈U

∑
Si∈S

Pk,iLk,i,j(t). (2)

To achieve a good QoS experience, we consider that the
maximum inference delay Dj that the model Mj can guar-
antee. If the average delay exceeds Dj , then QoS experience
will be degraded; otherwise it will not affect. Based on this
observation, we come up with the violation metric of model
delay as follows:

T d(t) =
∑
Mj∈M

max{LPj (t)−Dj , 0} (3)

Obviously, edge server Si is limited by the maximum
resource capacity, which can be described as:∑

Mj∈M
xi,j(t)wj ≤Wi,∀Si ∈ S, (4)

where wj denotes the weight vector of resources required by
DNN model Mj , i.e., gflops, gpu memory. Wi denotes the
maximum resource vector that edge server Si can provide.

Since deploying processors on each server requires the
additional deployment cost (pay-as-you-go model) [32], which
is usually related to the purchase cost of processors and
consumption cost to maintain, we do not wish to overpay
this deployment cost from the service provider’s point of
view. Therefore we use the following equation as part of our
optimization objective:

T e(t) =
∑
Si∈S

∑
Mj∈M

ei,jyi,j +aj max{xi,j(t)−xi,j(t− 1), 0},

(5)
where aj denotes the initialization cost for DNN Model Mj

caused by loading models from disks on edge servers. The cost
is considered in the case that xi,j(t) = 1 and xi,j(t− 1) = 0,
which means Mj is just deployed on Si at the time slot t. ei,j
denotes the energy consumed by a single processor for model
Mj on edge server Si.

The entire problem, which is called DNN Model Caching
and Processor Allocation (DMCPA) problem, can be described
in formulation as follows, where α and β is the trade-off knob
between user perception delay and energy consumption:

P0 : min
∀t,x(t),y(t)

lim
T→∞

1

T

T−1∑
t=0

E[T (t)] (6)

s.t. C1 : T (t) = αT d(t) + βT e(t), (7)

C2 :
∑
Mj∈M

xi,j(t)wj ≤Wi,∀Si ∈ S, (8)

C3 :
∑
Mj∈M

yi,j(t) ≤ φi,∀Si ∈ S, (9)

C4 : xi,j(t) ∈ {0, 1},∀Si ∈ S,∀Mj ∈M, (10)
C5 : yi,j(t) ∈ Z,∀Si ∈ S,∀Mj ∈M, (11)
C6 : min{yi,j(t), 0} ≤ xi,j(t) ≤ yi,j(t), (12)

C7 : lim
T→∞

1

T

T−1∑
t=0

E[LPj (t)] ≤ Dj ,∀Mj ∈M. (13)

C1 gives the definition of T (t) in Eq. 6. C2 ensures that
the sum of the model-consuming resources hosted on edge
server Si does not exceed the maximum resources that the
server can provide. C3 ensures that the number of processors
allocated to DNN services on server Si does not exceed the
total number of processors on Si. C4 and C5 ensure that
the final solution is feasible. C6 is based on the observation
that xi,j(t) = min{yi,j(t), 1} since allocating processors to
model which is not cached is unreasonable. C7 ensures the
average user perception delay should not exceed the maximum
toleration delay Dj required by Mj .

E. The Complexity Analysis of DMCPA Problem

When focusing on the one step optimization target T (t)
without considering the long-term average target, it is an
Integer Nonlinear Programming problem (INLP). We prove



that Knapsack Problem can be reduced to a special case of
DMCPA problem:

Theorem 1. Knapsack problem ≤P DMCPA problem.

Proof. First we fix all the variables of y(t) of DMCPA
problem. Thus the objective value is only related to x(t).
For the objective part, the original nonlinear function can
be transformed into the linear function by assigning β = 0,
Dk = 0, Pk,i(t) = 1, Lacck,i = 0, ci,j = ∞ and Lcloud↓ = 0.

Then we have the optimization target max
∑
i,j,k

dinput
k

Bcloud
i

xi,j
with constraints

∑
Mj∈M xi,j(t)wj ≤Wi and xi,j(t) ∈ {0, 1}.

It is a Multiple Knapsack Problem (MKP), which can be
reduced to Knapsack Problem as proved widely [33]. So
we come to the conclusion: Knapsack Problem ≤P DMCPA
problem.

Lemma 2. DMCPA problem belongs to NP-Complete.

Proof. Firstly we prove that DMCPA problem belongs to NP.
The decision version of DMCPA problem can be verified in
polynomial time, so DMCPA problem belongs to NP. Since
Knapsack problem belongs to NP-Complete and DMCPA
problem is harder than Knapsack Problem, DMCPA problem
belongs to NP-Complete.

IV. ALGORITHM

In this section, we introduce the optimization algorithm
of DMCPA problem. The long-term model delay tolerance
constraint in P0 makes it difficult to solve with an online
schema. So we leverage the Lyapunov technique [34] by
transforming the original time-exception problem into a series
of minimization problems in one time slot. Then, we propose
an online algorithm regardless of global information in future
by solving a subproblem with Gibbs Sampling.

A. Problem Transformation by Lyapunov

In the original problem P0, we have no knowledge of the
arrival of user requests, such as cinputk , making it difficult
to guarantee the user delay constraint inevitably. Fortunately,
we can construct virtual queues using Lyapunov optimization,
which can depict the impact of this stochastic constraint for
solving this problem. These queues hold the residual of the
delay constraints for the current time slot. Our goal is to
keep the queues stable as much as possible while optimizing
the long-term objective. And for each model Mj , there is a
corresponding queue Qj(t) with an initial value of 0:

Qj(t+ 1) = max{Qj(t) + LPj (t)−Dj , 0}. (14)

Qj(t) portrays the j-th queue’s backlog for the t-th time
slot. In fact, the t + 1-th queue is derived by the t-th queue
and its arrival/departure increments of the current time slot.

From the above equation, it follows that:

Qj(t+ 1) ≥ Qj(t) + LPj (t)−Dj (15)

LPj (t)−Dj ≤ Qj(t+ 1)−Qj(t) (16)

T−1∑
t=0

LPj (t)−Dj ≤ Qj(T )−Qj(0) = Qj(T ) (17)

1

T

T−1∑
t=0

E[LPj (t)−Dj ] ≤
E[Qj(T )]

T
(18)

Recall C7 in P0, we can use Eq. 18 to convert it to the
following new constraint:

lim
T→∞

E[Qj(T )]

T
≤ 0 (19)

So we have the new problem P1:

P1 : min
∀t,x(t),y(t)

lim
T→∞

1

T

T−1∑
t=0

E[T (t)] (20)

s.t. (C1)− (C6), (21)

C7 : lim
T→∞

E[Qj(T )]

T
≤ 0,∀Mj ∈M. (22)

Let Θ(t) = [Q1(t), · · · , QNm
(t)]. We define the quadratic

Lyapunov function: L(Θ(t)) = 1
2

∑
j Qj(t)

2 firstly. Then, we
can use ∆(Θ(t)) = L(Θ(t + 1)) − L(Θ(t)) to present the
increment of all queues’ backlog, which is called Lyapunov
drift. Using Lyapunov drift, we have the drift-plus-penalty
algorithm in Lyapunov optimization.

Theorem 3. For the possible values of Qj(t) in all time slots,
we have the following stable statement:

∆(Θ(t)) ≤ B +
∑
j

Qj(t)(L
P
j (t)−Dj), (23)

where B = 1
2

∑
j(L

P
j (t)−Dj)

2 is a constant value.

Proof. According to Eq. 14, the following inequality holds:

Qj(t+ 1)2 ≤ (Qj(t) + LPj (t)−Dj)
2. (24)

So we have the following conclusion by accumulation:

1

2

∑
j

Qj(t+ 1)2 ≤ 1

2

∑
j

Qj(t)
2

+
1

2

∑
j

(LPj (t)−Dj)
2 +

∑
j

Qj(t)(L
P
j (t)−Dj).

(25)

∆(Θ(t)) =
1

2

∑
k

Qk(t+ 1)2 − 1

2

∑
k

Qk(t)2

≤ 1

2

∑
j

(LP,Qj (t)−Dj)
2 +

∑
j

Qj(t)(L
P
j (t)−Dj)

≤ B +
∑
j

Qj(t)(L
P
j (t)−Dj).

(26)

As a result, the above theorem is proved.

After introducing Lyapunov queues, we can optimize with-
out breaking the convention that the current time slot needs to
follow, which means the control queue remains stable.

P2 : min
∀t,x(t),y(t)

E[∆(Θ(t)) + V · T (t)|Θ(t)] (27)



s.t. (C1)− (C6), (28)

C7 : lim
T→∞

E[Qj(T )]

T
≤ 0,∀Mj ∈M. (29)

Recall Eq. 23, the new problem can be expressed as:
P3 : min

∀t,x(t),y(t)
E[B + V · T (t)+ (30)∑

j

Qj(t)(L
P
j (t)−Dj)|Θ(t)] (31)

s.t. (C1)− (C6), (32)

C7 : lim
T→∞

E[Qj(T )]

T
≤ 0,∀Mj ∈M. (33)

B. The DMCPA-GS-Online Algorithm

We have the online algorithm for DMCPA problem as
shown in Alg. 1. First we initialize Qj(0) as zero. For each
time slot, we receive the user input dinputk (t) and current
distribution P from the EC environment. With Alg. 2, get the
optimal solution x∗(t) and y∗(t) by solving P3 in the current
time slot. At the end of each iteration, update Qj by Eq. 14.

Algorithm 1: The DMCPA-GS-Online Algorithm
Input: Qj(0)← 0, xprev(0)← 0
for t = 0 to T do

receive dinputk (t) from environment;
update current distribution P from environment;
get x∗(t), y∗(t) by solving P3 using Alg. 2;
xprev(t+ 1)← x∗(t);
for Mj ∈M do

Qj(t+ 1)← max{Qj(t) + LPj (t)−Dj , 0};
end

end

Theorem 4. The time average penalty (optimization goal) of
DMCPA-GS-Online is O( 1

V ).

Proof. According to Eq. 26 and the fact that x∗(t), y∗(t) is
the optimal value of P3, we have:

∆(Θ(t)) + V · T (t) ≤ B + V · T (t) +
∑
j

Qj(t)(L
P
j (t)−Dj)

= B + V · T (dinput(t), x∗(t), y∗(t))

+
∑
j

Qj(t)(L
P
j (dinput(t), x∗(t), y∗(t))−Dj)

(34)
where dinput(t) = [dinput1 (t), · · · , dinputNu (t)]. So we have the
following expectation result:

E[∆(Θ(t)) + V · T (t)|Θ(t)]

≤ E[B + V · T (dinput(t), x∗(t), y∗(t))

+
∑
j

Qj(t)(L
P
j (dinput(t), x∗(t), y∗(t))−Dj)]

= B + V · E[T (dinput(t), x∗(t), y∗(t))]+∑
j

E[Qj(t)|Θ(t)]E[LPj (dinput(t), x∗(t), y∗(t))−Dj ]

≤ B + V · T ∗,

(35)

where T ∗ = min(limT→∞
1
T

∑T−1
t=0 )E[T (t)].

Accumulate the above equation on all time slots, we have:

(B + V · T ∗)T ≥
T−1∑
t=0

E[∆(Θ(t)) + V · T (t)|Θ(t)] =

E[L(Θ(T ))] + V ·
T−1∑
t=0

E[T (t)|Θ(t)] ≥ V ·
T−1∑
t=0

E[T (t)|Θ(t)].

(36)
Therefore, we can draw the final conclusion:

lim
T→∞

1

T

T−1∑
t=0

E[T (t)|Θ(t)] ≤ T ∗ +
B

V
. (37)

As long as V is set large enough, the solution obtained by
executing the drift-plus-penalty algorithm can approach the
optimization goal T ∗ of P1, which obeys O( 1

V ).

Theorem 5. Using DMCPA-GS-Online, all queues keep mean
rate stable and the constraint C7 in P3 can be neglected.
In other words, the long-term optimization problem can be
addressed by solving a series of subproblems P3 without C7

in each time slot.

Proof. ∀Mj ∈ M, suppose we have the solution x(t), y(t)
which is not optimal satisfied:

∃ε > 0,E[LPj (dinput(t), x?(t), y?(t))−Dj ] ≤ −ε. (38)

Let denote Tmin and Tmax which satisfies Tmin ≤
T (dinput(t), x(t), y(t)) ≤ Tmax, so we have the conclusion,
where B

′
= B + V (Tmax − Tmin):

∆(Θ(t)) + V · T (t) ≤ B + V · T (dinput(t), x?(t), y?(t))

+
∑
j

Qj(t)(L
P
j (dinput(t), x?(t), y?(t))−Dj)

(39)
∆(Θ(t)) + V · Tmin ≤ B + V · Tmax
+
∑
j

Qj(t)(L
P
j (dinput(t), x?(t), y?(t))−Dj) (40)

E[∆(Θ(t))] + V · Tmin ≤ B + V · Tmax
+
∑
j

E[Qj(t)|Θ(t)]E[(LPj (dinput(t), x?(t), y?(t))

−Dj)] ≤ B + V · Tmax − ε
∑
j

E[Qj(t)|Θ(t)]

(41)

E[L(Θ(t+1))]−E[L(Θ(t))] ≤ B′−ε
∑
j

E[Qj(t)|Θ(t)] (42)

E[L(Θ(T ))] ≤ B′ · T − ε
T−1∑
t=0

∑
j

E[Qj(t)|Θ(t)] ≤ B′ · T.

(43)
Recall the definition of Lyapunov function that L(Θ(t)) =

1
2

∑
j Qj(t)

2, we have 1
2

∑
j E[Qj(T )2] ≤ B′ · T .

According to Cauchy Inequality [35] (
∑
i xiyi)

2 ≤
(
∑
i x

2
i )(
∑
i y

2
i ), we have:

(
∑
j

E[Qj(T )])2 ≤ Nm
∑
j

E[Qj(T )2] ≤ 2NmB
′ · T. (44)



Square on both sides and the limit is taken:

lim
T→∞

∑
j E[Qj(T )]

T
≤ lim
T→∞

√
2NmB

′

T
= 0. (45)

Note the fact that Qj(t) ≥ 0, so we come to the conclusion
that:

lim
T→∞

E[Qj(T )]

T
= 0,∀Mj ∈M. (46)

Therefore we can ignore C7 in P3 and solve it directly using
the DMCPA-GS algorithm and the theorem is proved.

Lemma 6. The time average queue size of DMCPA-GS-Online
is O(V ), determining convergence speed of queues’ backlog.

Proof. As for the time average queue size of DMCPA-GS-
Online, recall Eq. 43 and we find:

1

T

T−1∑
t=0

∑
j

E[Qj(t)|Θ(t)] ≤ B
′

ε
− E[L(Θ(T ))]

≤ B + V (Tmax − Tmin)

ε
.

(47)

Since E[L(Θ(T ))] ≥ 0. Note V is the only changeable
parameter which determines the size of queues’ backlog and
convergence speed. So the lemma is proved.

Consequently, how to solve P3 becomes the key of our
online problem, which will be discussed in the following.
It belongs to NP-Hard as well. Therefore, a novel algorithm
based on Gibbs Sampling is considered to solve it.

C. The DMCPA-GS Algorithm for P3

The proposed algorithm DMCPA-GS based on Gibbs Sam-
pling [36], [37] for P3 is shown in Alg. 2. First initialize
y randomly each time. Then compute the optimal caching
strategy x based on y, and the optimal target value T (x, y)
which can be abbreviated as T . Suppose there is another
feasible tuple (x

′
, y
′
) and the optimal value is T (x

′
, y
′
), which

is abbreviated as T
′
. Then we can establish the following

conditional migration probability from (x, y) to (x
′
, y
′
):

Pr(y
′ |y) =

1

1 + e(T ′−T )/ω
, (48)

where ω > 0 as a control parameter. In the sampling process
of DMCPA-GS, it is necessary to determine the neighbor state
for sampling. In Alg. 2, M empty sets are first initialized.
Then each time φi processors on the server are assigned to
these M sets with a random number. The assigned quantity
of a set can be 0. In this way, the search of neighbor state
will become very random, and it is easy to jump out even if
it falls into local optimization. Therefore, it performs well in
searching the optimal solution in global.

In the following, we demonstrate the convergence of
DMCPA-GS using Thm. 7.

Theorem 7. With the decrease of ω, the probability of con-
vergence to global optimal solution increases gradually. In
particular, the algorithm converges to the global optimal value
with a probability of close to 1 when ω → 0.

Algorithm 2: The DMCPA-GS Algorithm for One
Time Slot Problem P3

Input: ω,N, y0, x(t− 1), method
Result: x(t), y(t), T (t)
ycur ← y0;

xcur ←
{

1, if ycur ≥ 1
0, o.w.

;

T cur ← T (xcur, ycur);
for Si ∈ S do

/* N is the max iteration times. */
for n = 1 to N do

repeat
j ← RandomInt(0,M);
flip a coin with fair probability;
if the coin comes up with heads then

ynexti,j ←
ynexti,j +Rand(0, φi −

∑
j′ yi,j′ );

else
ynexti,j ← ynexti,j −Rand(0, yi,j);

end
until ynext is feasible;

xnext ←
{

1, if ynext ≥ 1
0, o.w.

;

Tnext ← T (xnext, ynext);
pi ← 1

1+e(Tnext−Tcur)/ω
;

flip a coin with probability pi of heads;
if the coin comes up with heads then

ycur ← ynext; T cur ← Tnext;
end

end
end
return xcur, ycur, T cur;

Proof. For each server Si, suppose the overall decision space
of processor allocation is Y = {y1, · · · , yM}. In DMCPA-
GS, the DNN model yj is selected in each iteration and
the decision space of yj is a φ-dimension Markov Chain,
where each dimension represents the number of processors
are deployed on Si for the model yj . For the convenience of
the following description, we only consider two DNN models,
whose decision space is Y = {y1, y2}. During each iteration,
due to the random selection of yj jumping from the current
allocation strategy to another, we have:

Pr({y′1, y2}|{y1, y2}) =
e−T ({y

′
1,y2})/ω

e−T ({y′1,y2})/ω + e−T ({y1,y2})/ω

Pr({y1, y
′

2}|{y1, y2}) =
e−T ({y1,y

′
2})/ω

e−T ({y1,y
′
2})/ω + e−T ({y1,y2})/ω

.

(49)
We denote π({y1, y2}) as the stable probability distribution

of the allocation strategies {y1, y2}. According to the smooth
distribution property of Markov Chain, we have

π({y1, y2}) Pr({y′1, y
′

2}|{y1, y2})
= π({y′1, y

′

2}) Pr({y1, y2}|{y
′

1, y
′

2}).
(50)
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Fig. 4. The impact of Lyapunov parameters.

Substitute into Eq. 49 and we have

π({y1, y2})×
e−T ({y

′
1,y
′
2})/ω

e−T ({y′1,y
′
2})/ω + e−T ({y1,y2})/ω

= π({y′1, y
′

2})×
e−T ({y1,y2})/ω

e−T ({y′1,y
′
2})/ω + e−T ({y1,y2})/ω

(51)

According to the symmetry, we find that the equation holds
when π({y1, y2}) = γe−T ({y1,y2})/ω , where γ is a constant.
Let Φ is the decision space of the processor allocation and∑
{y1,y2}∈Φ π({y1, y2}) = 1 holds, the stable probability

distribution of π({y1, y2}) meets:

π({y1, y2}) =
e−T ({y1,y2})/ω∑

{ŷ1,ŷ2}∈Φ e
−T ({ŷ1,ŷ2})/ω

=
1∑

{ŷ1,ŷ2}∈Φ e
(T ({y1,y2})−T ({ŷ1,ŷ2}))/ω

(52)

Then for the global optimal strategy {y∗1 , y∗2}, it is natural
to have T ({y∗1 , y∗2}) ≤ T ({ŷ1, ŷ2}) by the definition of
optimality. Thus, we have π({y∗1 , y∗2})→ 1 when ω → 0.

V. EVALUATION

In this section, we perform a series of experiments to verify
the effectiveness of our algorithm.

A. Evaluation Settings

We set up a typical edge computing scenario where there
are 5 edge servers, and for each edge server, a total of 10
types of DNN models can be deployed to these servers. We
assume that there will be at least 200 users existing in this
edge computing scenario and submitting tasks to the edge
servers for “proximity inference”. For the maximum inference
delay model Mj is expected, Dj is set as 40 ms. As for the
probability P , we assume that it follows the trace of a dataset
from the real world. Lacc refers to the delay from each user
to the nearest BS, which we consider to be 5 ms. The input
data size of user dinputk follows the Poisson distribution with an
expectation of 100 mb and the ratio of computing consumption
for one bit θ is 100. The bandwidth from the edge server to the
cloud, which we consider to be 1000 mb/s in stability, and the
delay to return the processing results from the cloud is about
100 ms. ci,j is the inference computing ability of a single
processor on edge server Si for model Mj and is assumed to
be about 500 cycles/ms. In addition, we use φi to indicate the

maximum number of processors that can be provided by server
Si, which is set as 20. Wi is the upper bound of the total size
of DNN models that edge server Si can handle, which is set
as 300. In the meanwhile, the value of wj follows the uniform
distribution with expectation about 10 and variance about 3.
As for the values of α and β, they can be determined by the
service providers’ preference, we set both to 0.5 by default.

B. Motivation Validation

As shown in Fig. 4(a), we study the variation of P collected
from the dataset. One of our observations is that the value of
P is more stable when the observation time span is longer. The
horizontal axes of the two subgraphs depict the change ranges
in hours and days respectively. The vertical axes depict the
distribution of the change range. We can see that the cases
with small change between days is more intensive by the
comparison of the two subgraphs.

C. The Impact of Lyapunov Parameters

1) The Trade-off by Tuning V : Fig. 4(b) shows the role of
the parameter V in DMCPA-GS-Online algorithm. We can find
that after many iterations, the final algorithm will converge to
a fixed value, which is controlled by V . When V is larger, the
convergence speed of the algorithm is O(V ), so it needs more
iteration rounds to converge, and the corresponding solution is
closer to that of the original problem. On the contrary, when
V is smaller, the algorithm converges faster and the delay
constraint keeps more stable.

2) The Impact of the Model Delay Constraint Dj: Fig. 4(c)
shows the convergence of the long-term optimization target
T with different settings of Dj . For this purpose, we set
three different values 30, 40 and 50 as Dj . We find that the
convergence value of T is related to Dj . With the smaller
the value of D, the tolerable inference delay is smaller, which
results in the higher the delay penalty, and so the larger T .
On the contrary, the greater the value of Dj , the delay penalty
is smaller, even reaching 0 if Dj is large enough.

D. The Impact of Problem Scale for DMCPA-GS

In this part, we validate the convergence of DMCPA-GS
and then explore the effect of different problem scales on the
convergence speed.

In Theorem. 7, DMCPA-GS Algorithm converges to the
optimal value with probability close to 1 as w → 0. Therefore,
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Fig. 5. The impact of different parameters for DMCPA-GS.

we investigate the effect of different values of w on the
convergence in this experiment part. As shown in Fig. 5(a),
we can find that as the number of iterations increases, the
objective value is approaching the optimal value. And the
smaller w brings faster convergence speed. In other words,
it takes less iterations times to converge to the optimal value.
We also note that if w is small, the convergence speed may
be different, but eventually will converge to the optimal value.
However, if w is too large (greater than 1), the algorithm will
be too difficult to converge, which means the objective value
will oscillate continuously. Therefore we verify the correctness
of the theorem.

By setting different values for the number of users, we
can see from Fig. 5(a) that different convergence curves are
obtained by setting w to 200, 400, 600 and 800 respectively.
The default value of w is 0.001. When the number of users
increases, we can see that it takes more iteration times to
converge relatively. However, since Gibbs Sampling algorithm
belongs to random algorithms, the initial state and random
neighborhood state selection will affect the convergence proce-
dure with a certain probability of faster or slower convergence.
Different convergence trajectories are obtained for each run,
and only a certain run of the convergence procedure is shown
in Fig. 5(b). Based on a similar method of experimental setting,
we design experiments with different number of types of DNN
models, which are 5,10,15,20 respectively in Fig.5(c). In these
cases, the convergence of Gibbs Sampling algorithm with
iteration times is studied. We can see that with the scale of the
problem increases, the convergence speed will slow down, but
it will converge eventually. In practical scenarios, the setting
of the number of iteration times will affect the final results of
the algorithm, which includes the optimality of the solution
and the running time of the algorithm.

E. Comparision of Different Algorithms

Fig. 6 compares our proposed algorithm DMCPA-GS-
Online with three different baselines. These baseline algo-
rithms are described as follows:
• Cloud-Only: At each time, only consider forwarding

all DNN inference requests to cloud and edge does not
undertake any inference tasks.

• Edge-Average: Each time, each server selects as many
acceptable DNN models as possible, and evenly allocates
processors to these models.

• Edge-Random: Each time, several DNN models are ran-
domly selected on each server and deployed on the edge
side, and the random number of processors is allocated.

From Fig. 6(a) and Fig. 6(b), we can see that DMCPA-
GS-Online is the best compared with the other three baseline
algorithms under different w settings. Cloud-Only performs
the worst due to its large transmission delay. Edge-Random
and Edge-Average perform almost the same, but worse than
DMCPA-GS-Online because they do not consider the differ-
ence in computing requirements of user request distribution.
From Fig. 6(c), we can see that with the increase of cloud-
edge bandwidth Bcloudi , the long-term optimization target T
also decreases. Specially, Cloud-Only is most affected by this
parameter, while other algorithms are less.

VI. CONCLUSION

Nowadays more and more applications leverage DNN
models for better service. In edge computing environments,
caching models on edge servers greatly enhances the user QoS
experience with benefits of efficiency, privacy, reliability and
security. In this paper, we consider the DNN Model Caching
and Processor Allocation (DMCPA) problem. Under limited
resources of edge and model guaranteed delays, our goal is to
minimize the user perception delay and energy consumption
with careful model caching and processor allocation strategy.
We formulate it as an Integer Nonlinear Program (INLP)
and proves its NP-Completeness. The novel online algorithm
DMCPA-GS-Online is proposed without future information
and the theoretical analysis is given. Experiments based on
trace dataset from the real world demonstrate our algorithm
outperforms other baselines.
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