
Non-Aligned Multi-Scale Data Completion for
Sparse Mobile CrowdSensing

Wenbin Liu1,2, Hao Du1,2, En Wang1,2, Dongming Luan1,2, Bo Yang1,2, Yongjian Yang1,2, Jie Wu3
1 College of Computer Science and Technology, Jilin University, China

2 Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, China
3 China Telecom Cloud Computing Research Institute, China

Email: {liuwb16,duhao22}@mails.jlu.edu.cn, wangen@jlu.edu.cn,
luandm20@mails.jlu.edu.cn, {ybo,yyj}@jlu.edu.cn, wujie@chinatelecom.cn

Abstract—Sparse Mobile CrowdSensing has emerged as a
practical method for data collection, recruiting mobile users to
collect partial data and leveraging spatiotemporal correlations
to infer the missing data. To improved the QoS of crowdsourced
data, existing methods typically assume that the scales of
collected data are similar. However, in real-world scenarios, the
diversity of user devices results in data collections that vary in
scale. More importantly, the collected coarser-scale data points
often do not perfectly correspond to multiple finer-scale data
points, resulting in highly complex compositional relationships
and posing significant challenges for multi-scale data completion.
To address these challenges, this paper proposes a multi-scale
data completion framework designed to process and integrate
multi-scale data with non-aligned compositional relationships.
We first align features across scales using the least common
multiple scaling, then enhance the interaction and integration
of data across scales through a bidirectional processing strategy
and modified Mamba architectures, specifically ST-Mamba and
Cross-Mamba. Evaluated on six real-world datasets, our study
demonstrates the effectiveness of the proposed framework in
handling multi-scale data completion challenges, particularly
when dealing with non-aligned compositional relationships.

Index Terms—Mobile CrowdSensing, Quality of Service, multi-
scale completion, spatiotemporal data, non-aligned composition.

I. INTRODUCTION

Sparse Mobile CrowdSensing (Sparse MCS) [1] has
emerged as a promising and cost-effective method for data
collection in diverse real-world scenarios. Sparse MCS recruits
participants equipped with mobile devices, such as smart-
phones, vehicles, or drones, to collect partial data. Then, data
completion, the core of Sparse MCS, utilizes spatiotemporal
correlations to reconstruct complete data. This ensures data
completeness while reducing collection costs, thereby enhanc-
ing Quality of Service (QoS). Currently, Sparse MCS has
shown its effectiveness in traffic management [2], environ-
mental monitoring [3], and disaster relief [4].

However, the differences in data collection scales have been
significantly neglected by previous research. Existing data
completion methods in Sparse MCS, such as compressive
sensing [5], matrix completion [6], and deep learning-based
techniques [7, 8], often assume that the scales of collected data

sensed unsensed

Previous (Aligned Multi-Scale Data)

Our (Non-Aligned Multi-Scale Data)
Sensors Diversity

Scales Diversity

scale-adjusted resample data integration ST-Mamba Cross-Mamba input

fine coarse

Fig. 1: The Non-Aligned Multi-Scale Scenarios.

are the same or similar. Nevertheless, in real-world scenarios,
the diversity of user devices often results in data collections
that vary in scale [9]. Here, “scale” refers to the sensing range
of the devices. As shown in Fig. 1 (left part), consider a
scenario where we aim to collect traffic flow data by recruiting
three users, each utilizing different devices: a smartphone, a
vehicle, and a drone. Obviously, the data collected by the
smartphone covers a smaller area, whereas the drone gathers
traffic flow data over a much larger range. Such multi-scale
data demonstrates significant correlations, such as summation
relationships in traffic flow or averaging patterns in air quality,
which can enhance data completion. However, existing single-
scale methods are inadequate for effectively handling multi-
scale sensing data and leveraging the relationships between
different scales. Therefore, there is a pressing need for multi-
scale data completion methods.

To develop an effective multi-scale data completion method
for Sparse MCS, three challenges in enhancing QoS arise:

1) How to handle multi-scale data with non-aligned
compositional relationships? Recently, a few data mining
works, such as Pyraformer [10] and Timemixer [11], have
explored the construction and handling of multi-scale data.
These studies typically start with single-scale input and artifi-
cially create multi-scale data through up- and down-sampling.
As shown in Fig. 1 (right part), due to the sampling process
ensuring consistent relationships across scales, the created
coarse-scale data point is perfectly decomposed into fine-scale
data points. This relationship is referred to as aligned multi-
scale data, which can be structured and processed using a979-8-3315-4940-4/25/$31.00 © 2025 IEEE

tree-like framework. However, in practical sensing scenarios,
the collected coarse-scale data points often do not decompose
perfectly into multiple fine-scale data points, referred to as
non-aligned multi-scale data. This leads to irregular and
intricate relationships between data at different scales, posing
significant challenges for processing multi-scale data.

2) How to effectively capture intra-scale and inter-scale
correlations? Multi-scale data exhibit correlations not only
within the same scale (intra-scale) but also across different
scales (inter-scale). Intra-scale correlations describe relation-
ships within the same scale, providing insights into localized
relationships. Inter-scale correlations, on the other hand, lever-
age numerical associations across scales, offering additional
information for data completion. However, sparse and irregular
data lead to incomplete relationships within the same scale, af-
fecting intra-scale correlations by breaking localized patterns.
Moreover, non-aligned compositional relationships disrupt the
correspondence between scales, making it difficult to directly
capture inter-scale correlations. Together, these issues make
interactions within and across scales particularly challenging.

3) How to construct a lightweight and effective model
for handling multi-scale data? Processing multi-scale data
inherently involves higher complexity than single-scale inputs
and leads to increased computational overhead. Traditional
machine learning methods, despite their low computational
costs, primarily address linear spatiotemporal relationships and
perform poorly in adapting to multi-scale data processing.
Conversely, deep learning methods like Transformers [12]
are highly effective and adaptable but lead to significant
computational costs. In this context, Mamba [13], an effective
and lightweight parallel processing architecture, has attracted
our attention. However, its insensitivity to spatiotemporal
information limits its applicability in handling multi-scale data.

To address these challenges, we propose a novel frame-
work for non-aligned multi-scale data completion. 1) To
handle non-aligned compositional relationships, we design
a Scale-Adjusted Resampling Method based on least common
multiple scaling to align multi-scale structures. Additionally,
we develop a Spatial Feature Interaction Module (SFIM)
to address feature differences across scales after positional
alignment. 2) To effectively capture intra-scale and inter-
scale correlations, we separately capture intra-scale and inter-
scale correlations, and introduce a bottleneck mechanism in
the inter-scale stage to address non-aligned compositional rela-
tionships. 3) To construct a lightweight and effective model,
we implement the above interactions using a spatiotemporally
sensitive variant of Mamba, called ST-Mamba, for intra-scale
processing, and a modified Cross-Mamba for inter-scale infor-
mation exchange. Both modules ensure linear computational
complexity, achieving lightweight and effective processing.

Our work has the following contributions in enhancing QoS
of crowdsourced data:

• We investigate the problem of multi-scale data completion
in Sparse Mobile CrowdSensing. We propose a novel
framework that utilizes sparse data collected at differ-

ent scales with non-aligned compositional relationships,
enabling comprehensive data completion.

• We propose an effective multi-scale data representation
method for data completion. We design a Scale-Adjusted
Resampling Method to align features across multiple
scales. Furthermore, we develop the SFIM to address fea-
ture differences across scales after positional alignment.

• We propose the ST-Mamba, a spatiotemporally sensitive
Mamba variant for intra-scale feature interaction. Further-
more, inspired by bottleneck techniques, we design the
Cross-Mamba for inter-scale feature interaction.

• We evaluate the proposed methods using six real-world
datasets, demonstrating that our approach effectively ad-
dresses the multi-scale data completion problem.

II. RELATED WORK

A. Sparse Mobile CrowdSensing

Sparse MCS [1] has emerged as a practical solution for
QoS data collection, which recruits users to collect partial data
and leverages spatiotemporal correlations to infer the remain-
ing ones. Recently, with technological advancements, deep
learning-based methods have gradually become the de facto
choices in Sparse MCS. Wang et al. [6] first introduced a deep
learning-enabled approach to enhance QoS for Sparse MCS .
Liu et al. [7] also introduced a neural network-based fine-
grained data completion and prediction framework. Further-
more, Wang et al. [8] developed a spatiotemporal Transformer
model for data inference and long-term prediction in Sparse
MCS. However, current algorithms typically assume that data
scales are identical or similar, which contradicts the diversity
of sensing devices in real-world scenarios. Addressing this dis-
crepancy in multi-scale contexts remains a critical challenge.

B. Multi-scale Model

In recent years, many studies have focused on the analysis
of multi-scale features in spatiotemporal data. Liu et al. [10]
introduced Pyraformer to enhance prediction accuracy by cap-
turing scale correlations with a pyramid attention mechanism.
Similarly, Wang et al. [11] introduced TimeMixer, employing
a decomposable multi-scale mixing mechanism to integrate
information from various scales. Chen et al. [14] constructed
the Multi-Scale Adaptive Graph Neural Network, improv-
ing feature extraction and integration by learning multi-scale
graph topologies. Additionally, Zhang et al. [15] presented
CorrFormer, which uses tree structures to reduce computa-
tional complexity while maintaining prediction performance.
Despite these advancements, the diversity of sensing devices
contributes to challenges with non-aligned multi-scale inputs,
underscoring the pressing need for further research in this area.

C. Mamba and Its Variants

Mamba [13] has been proposed as an efficient architec-
ture for handling long-range dependencies in sequential data.
Recently, many studies have focused on the application and
extension of Mamba. For example, Liu et al. [16] introduced

publish
tasks

8:00 10:00

. . .

sense data from a period of time

. . .

sensors sensed or inferred unsensed completion modelmulti-scale inputs results

scale S

scale 1 scale 1

scale S

.

Platform

Fig. 2: The workflow of our work: the platform recruits users to collect partial data at multiple scales for data completion.

Vmamba, which employs a visual state space model for effi-
cient visual representation learning. This method incorporates
a cross-scan module to traverse the spatial domain, transform-
ing non-causal visual images into ordered block sequences
for processing. Zhu et al. [17] developed Vision Mamba,
which enhances visual representation learning efficiency by
randomly shuffling visual images and utilizing a bidirectional
state space model. Additionally, Li et al. [18] proposed STG-
Mamba, which leverages a selective state space model for
spatiotemporal graph learning. Despite advancements, since
Mamba is designed for sequential tasks, its handling of spatial
information is limited. Current adaptations struggle with non-
intuitive sequential traversals. Enhancing Mamba’s spatial
sensitivity remains a critical challenge.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In this paper, we consider a comprehensive application
scenario of Sparse MCS. The platform recruits users with
various devices to collect partial data at specific locations
and times, and then integrates the collected data. Ultimately,
the platform utilizes these sparse, multi-scale data to achieve
complete data collection. To better represent this process, we
divide the entire sensed map into a grid with a height of H
and a width of W subareas, and the data collection process is
segmented into T equal-length time slices.

Scale. We categorize the sensing capabilities of sensors held
by users, defined as scales, into S different levels. Each scale,
denoted as g(s) for level s, represents the magnification factor
relative to the finest scale1. For example, a scale of 5 means
that each sensing unit covers an area of 5×5 units at the finest
scale 2. This representation helps us to uniformly process and
analyze data across different scales. For different scales, we
can divide the map into subareas of varying sizes as follows:

H(s) = H/g(s),W (s) = W/g(s), s = 1, 2, · · · , S, (1)

Data. For the time slice t, the data sensed in the row h and
column w of the sensing map at scale level s is defined as

1To simplify matters, we assume that all scales inherently contain the finest
scale. Our method can be easily adapted to other scenarios by assuming the
finest scale is the greatest common denominator of all scales.

2To simplify matters, we assume each sensing unit covers a square area.

x
(s)
t,h,w. Unsensed data is recorded as 03. The true value of this

data is denoted as y(s)t,h,w, all true values at scale s are denoted
as Y(s). To describe the sensing situation at each scale s, we
introduce a sampling matrix M(s) ∈ RT×H(s)×W (s)

, where
m

(s)
t,h,w = 1 indicates that data in the h−row and w−column

during the t−time slice has been sensed; if m(s)
t,h,w = 0, it in-

dicates unsensed data. The sensed dataset can be expressed as:

X = {X(1),X(2), · · · ,X(S)}, (2)

X(s) = Y(s) ⊙M(s), s = 1, 2, · · · , S, (3)

where X represents all the sensed data across different scales,
and the dot product (⊙) represents the element-wise product.

Method. Utilizing the completion algorithm I(), we input
the sensed multi-scale data X to complete the data at all scales,
which is represented as Ŷ. Given that data from all other scales
can be derived from the finest scale, and because acquiring
finer-scale data is inherently more challenging, our primary
metric emphasizes minimizing discrepancies at the finest scale.
Therefore, we compare Ŷ(1) with the ground truth Y(1). We
denote δ as the error between the completion result and the
ground truth at the finest scale, expressed as:

I(X) = Ŷ ≈ Y, (4)

δ(Ŷ(1),Y(1)) =
∑T

i=1

∑H

j=1

∑W

k=1

∣∣∣y(1)i,j,k − ŷ
(1)
i,j,k

∣∣∣ . (5)

B. Problem Formulation

Problem [Non-Aligned Multi-Scale Data Completion]:
Given T time slices, S different scales of data, and H ×W
subareas of the finest scale size, we aim to sense data from a
limited number of subareas across different scales and utilize
this data to reconstruct complete data. We strive to minimize
the error between the completion results and the ground truth.

min δ(Ŷ(1),Y(1))=
∑T

i=1

∑H

j=1

∑W

k=1

∣∣∣y(1)i,j,k − ŷ
(1)
i,j,k

∣∣∣ . (6)

3If 0 has a specific meaning, an alternative value will be used.

strive to minimize the error between the completion results
and the ground truth. Given that data from all other scales can
be derived from the finest scale, our primary metric focuses
on minimizing discrepancies specifically at the finest scale.

min δ(Ŷ(1),Y(1)) =

T∑

i=1

H∑

j=1

W∑

k=1

∣∣∣y(1)i,j,k − ŷ
(1)
i,j,k

∣∣∣ . (7)

C. Work Flow

The workflow of our work is shown in Fig. 2. We consider
an urban Sparse MCS task aimed at acquiring location-specific
data over a designated time period to infer complete data.
Initially, the platform publishes sensing tasks to users equipped
with various sensing devices. These users then collect data in
specified areas and times, subsequently uploading their data to
the platform. After a specified period, the platform aggregates
and categorizes the data according to the sensing scale of
each user. Ultimately, this data is fed into a completion
model, which outputs the multi-scale completion results.

IV. METHOD

A. Overall Structure

As shown in Fig. 3, the model we proposed consists
of several key components: Multi-scale Data Representation,
Intra-scale Feature Interaction, Inter-scale Feature Interaction,
and the output section. Initially, we perform a preliminary
data embedding for all scales. Specifically for the finest
scale, we directly employ ST-Mamba for intra-scale feature
interaction, while for other scales, we first perform scale-
aligned downsampling based on the features learned from the
previous scale to construct new scale features. Subsequently,
we utilize the Sparse Feature Integration Module (SFIM) to
merge these newly constructed features with sparse input
features corresponding to each scale, enriching the information
obtained. Following this integration, we apply ST-Mamba for
feature interaction at that scale. Once features from all scales
have been processed, they are fed into the Inter-scale Feature
Interaction component, where our Fusion-Mamba mechanism
explores the relationships among multiple scales. Finally, the
learned features are fed into the output layer to get the
completion results across all the scales, and the network is
trained based on the multi-scale loss.

B. Multi-scale Data Representation

1) Data Embedding: Data embedding are pivotal to
the effectiveness of our completion model. A robust data
embedding can significantly enhance model performance
and accuracy. Given that our model is aimed to process
multi-scale spatiotemporal data, accurately representing the
spatiotemporal characteristics and scales is key to designing
the embedding module.

Our data embedding module, which is inspired by the ST-
Transformer, includes four principal components: Value em-
bedding, spatiotemporal position embedding, spatial embed-
ding and temporal embedding. For unsensed data, following
the Masked Autoencoder [22] strategy, we embed it with

Inputs

SFIM

Representation

Em
bedding

ST-Mamba

SFIM

Intra-scale
Interaction

Outputs

m
ulti-scale loss

scale 1

… …

Em
bedding

Em
bedding

ST-Mamba

 Resample

ST-Mamba

 Resample

Cross-Mamba

… …
scale 2

scaleS

… …

Inter-scale
Interaction

Fig. 3: The structure of our model.

a uniformly randomized learnable vector. The rest of the
embedding constructions are consistent with [8]. Furthermore,
to make the model scale-sensitive, we design unique param-
eters for inputs of different scales, while inputs at the same
scale share the same parameters. This approach improves the
model’s adaptability to multi-scale inputs, ensuring that it can
effectively handle the diverse and dynamic characteristics of
spatiotemporal data across various scales.

The embedding of scale s X
(s)
emb ∈ RT×H(s)×W (s)×dmodel

can be expressed as:

X
(s)
emb = X

(s)
val +X(s)

p + S
(s)
f +T

(s)
f , (8)

where X
(s)
val represents value embedding, X(s)

p spatiotemporal
position embedding, S

(s)
f represents spatial embedding and

T
(s)
f represents temporal embedding.
2) Spatial Scale-aligned Downsampling: Accurate scale

alignment is crucial when handling multi-scale data. Consider
downsampling a 5× 5 data matrix to a 3× 3 size. Typically,
this might involve a convolution operation with a stride of 2,
kernal size of 2 and padding of 1. While this configuration
ensures the output size from 5 × 5 to 3 × 3, it fails to align
scales properly. The stride and kernal settings do not consider
the direct spatial relationships between the original and target
sizes, potentially leading to spatial misalignments that can
affect subsequent analyses due to incorrect feature alignment
and loss of information.

To address this problem, we develop a novel scale-aligned
convolution architecture in our model, designed to ensure
effective alignment between different scales. This approach
involves an initial upsampling step to align the coarse-scale
data with the finer-scale spatially, followed by a downsampling
step to match the dimensions of the target scale.

For example, to downsample from 3 × 3 to 2 × 2, we
first upsample the 3 × 3 data to 6 × 6 (their least common
multiple size) using a deconvolution operation. Then, we apply
a standard convolution to downsample from 6 × 6 to the
target size of 2× 2. This method ensures that the features are
correctly aligned spatially across scales, effectively addressing
the challenges of non-hierarchical decomposition in multi-
scale data processing. Formally,

X(s)
conν = relu(conv(relu(deconv(X(s−1)

rep)))). (9)

Cross-Mamba

Cross-Mamba

Fig. 3: The structure of our model.

C. Workflow

Our workflow is shown in Fig. 2. Consider a real-word
example, platform publishes an urban data sensing task and
recruits five users for data collection. Two of these users
employ smartphones (fine-scale), two use vehicles (mid-scale),
and one operates a drone (coarse-scale). The platform assigns
specific times and locations for data collection based on the
scale of each user’s device. Following these directives, the five
users collect and upload their data. The platform aggregates
the data across different scales and feeds the spatiotemporal
maps corresponding to each scale into the completion model,
ultimately generating completion results for all scales.

IV. METHOD

A. Overall Structure

As illustrated in Fig. 3, our model consists of four com-
ponents: Data Representation, Intra-scale Feature Interaction,
Inter-scale Feature Interaction, and Output Section. Initially,
we conduct preliminary data embedding across all scales.
Subsequently, scale-aligned resampling is utilized to construct
new scale features from finer-scale features. These newly
constructed features are then merged with sparse input features
for each scale via the SFIM, to address feature differences. Fol-
lowing this, ST-Mamba is employed to process these integrated
features for intra-scale interaction. After processing features
from all scales, they are input into the Inter-scale Feature
Interaction component, where the Cross-Mamba mechanism
analyzes the relationships among different scales. Finally, we
use the output layer to get results, and the network is trained
based on the multi-scale loss.

B. Multi-scale Data Representation

1) Data Embedding: Data embedding is crucial for model’s
performance and accuracy, especially when handling multi-
scale spatiotemporal data. Our embedding module integrates
value embedding, position embedding, spatial information (lat-
itude, longitude, POI) embedding, and temporal information
(timestamp, holiday) embedding. Furthermore, to enhance the
model’s responsiveness to different scales, we design different
parameters for inputs of different scales, while inputs at the
same scale share the same parameters. This approach improves
the model’s adaptability to multi-scale inputs, ensuring that it

Up Down

deconv
kernal conv

kernal

finish

deconv

Fig. 4: The example of scale-adjusted convolution.
can effectively handle the diverse and dynamic characteristics
of spatiotemporal data across various scales.

The embedding of scale s X
(s)
emb ∈ RT×H(s)×W (s)×dmodel

can be expressed as:

X
(s)
emb = X

(s)
val +X(s)

p + S
(s)
f +T

(s)
f , (7)

where X
(s)
val represents value embedding, X

(s)
p represents

spatiotemporal position embedding, S
(s)
f represents spatial

embedding, and T
(s)
f represents temporal embedding.

2) Scale-Adjusted Resampling Method: Constructing multi-
scale features is crucial in multi-scale research, and an effec-
tive method can significantly boost model efficiency. Our goal
is to capture the multi-scale characteristics of spatiotemporal
data across both spatial and temporal dimensions.

In the spatial dimension, the diversity of sensing devices
introduces variability in spatial scales. Standard convolutional
methods often struggle with non-aligned compositional rela-
tionships between scales. For example, downsampling a 5× 5
data matrix to 3×3 typically involves a convolution operation
with a stride of 2, kernel size of 2, and padding of 1. However,
ideally, each 3 × 3 output cell should correspond to an area
of approximately 5/3 × 5/3 in the original matrix. Although
the traditional convolution operation can ensure the correct
output size, it cannot achieve this non-integer mapping, leading
to misalignments. These misalignments can cause significant
information loss and challenges in feature alignment, adversely
impacting subsequent analyses.

To address this issue, we develop a novel scale-adjusted
convolution approach designed to ensure effective alignment
between different scales. This method includes an initial
upsampling step to spatially align coarser-scale data with finer-
scale data, followed by a downsampling step to match the
dimensions of the target scale. As illustrated in Fig. 4, to
downsample from 3× 3 to 2× 2, we first upsample the 3× 3
data to 6 × 6 (their least common multiple size). Then, we
apply a standard convolution to downsample from 6×6 to the
target size of 2× 2. This process can be expressed as:

X(s)
conν = relu(conv(relu(deconv(X(s−1)

rep)))), (8)

where X
(s−1)
rep represents the features from scale s − 1. In

addition, to enrich features, we utilize both pooling and
convolution results in constructing the coarse-scale features.
Here, we employ AdaptivePool to ensure the pooled output is
aligned to the required dimensions, expressed as:

X
(s)
pool = AdaptivePool(X(s−1)

rep),

X
(s)
down = Linear(concat(X

(s)
pool,X

(s)
conν)).

(9)

dow
n

Em
bedding

scale s-1
scale s

deconv conv

pool

FFN

Fig. 5: The structure of Sparse Feature Integration Module.

In the temporal dimension, as our data collection follows
fixed time intervals, there is no issue of non-alignment. In
this case, we adopt a method similar to traditional time series
analysis by downsampling with a stride of 2 for temporal.
These techniques allow us to effectively process spatial scales
and capture connections between long-term and short-term
data, thus enhancing the depth of our multi-scale data analysis.

3) Sparse Feature Integration Module (SFIM): After re-
sampling, the newly constructed features and the originally
collected sparse data often exhibit significant differences.
These differences, arising from variations in data scale and in-
formation content, hinder the effective utilization of both types
of features. In this respect, we propose SFIM to fuse these two
types of features, enabling comprehensive data utilization.

Since the two inputs contain information of two different
distributions, simple fusion may lead to poor learning and
ultimately impair model performance. To fully explore and
leverage the association between these two features, we design
a bidirectional processing strategy similar to the one in [19].
As illustrated in Fig. 5, because the features constructed
represent a coarser time scale, and the input features represent
a finer time scale, we use deconvolution to upsample the
features constructed from the previous scale, enhancing their
time resolution to better match the input fine-scale features. At
the same time, we use convolution to downsample the direct
input fine-scale features to align with the constructed coarse-
scale features. Then, we fuse these two types of features:

T
(s)
down = deconv(X

(s)
down),Z

(s)
down = T

(s)
down +X

(s)
emb, (10)

T
(s)
emb = conv(X

(s)
emb),Z

(s)
emb = T

(s)
emb +X

(s)
down. (11)

Additionally, to further optimize the feature integration
process, we introduce a weight matrix W, calculated through
a Feed Forward Neural Network (FFN) that combines the
previously fused two types of features, outputting a weight
value to dynamically adjust the contribution of each scale
feature in the final integration output.

W = σ(FFN(pool(Z
(s)
down) + Z

(s)
emb)), (12)

X(s)
rep = W ⊙ Z

(s)
down + (1−W)⊙ Z

(s)
emb. (13)

where (⊙) denotes element-wise multiplication and σ denotes
the sigmoid function. This method enables us to adaptively
adjust the impact of features based on their information and
importance, thereby maximizing the utilization of limited
information while minimizing information loss.

Norm

Mamba Block

L×

Conv1D

σ

SSM

σ

Linear projection
Sequence transform

Multiplication
σ SiLU activation

Mamba Block

Space-Sensitive Block

Sort Nodes
idx

ReSort Nodes

𝑲𝑸

MatMul

Scale

Softmax

Sum

Space-Sensitive
Block

ST-Mamba

Fig. 6: The structure of ST-Mamba model.

C. Intra-scale Feature Interaction

An important issue in dealing with multi-scale data is
to capture intra-scale information correlations. Currently, the
attention-based architectures, such as Transformers, are com-
monly employed to capture these relationships due to their
comprehensive capabilities. However, the quadratic complex-
ity of Transformers leads to substantial computational over-
head. While some attempts have been made to address this
issue by deploying lighter variants of Transformers, these
efforts often result in reduced effectiveness. Consequently,
Mamba has emerged as a promising alternative due to its
potential for efficiency. However, Mamba lacks spatiotemporal
sensitivity, which we address with our ST-Mamba design.

1) Mamba: Mamba is a lightweight model designed to
handle sequential problems, essentially an improvement on
State Space Models (SSM) [20]. SSM is based on a continuous
system that models the evolution of internal states over time.
The continuous system can be expressed as:

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t), (14)

where h(t) ∈ RN represents hidden state, A ∈ RN×N repre-
sents evolution parameter, B ∈ RN×1 and C ∈ RN×1 repre-
sent projection parameters. To make the system applicable to
real-world scenarios, the continuous system is discretized by
the Zero-Order Hold method. This transformation converts the
continuous parameters A, B, and C into discrete counterparts:

Ā = exp(∆A), B̄ = (∆A)−1(exp(∆A)− I) ·B, (15)

ht = Āht−1 + B̄xt, yt = Cht. (16)

where ∆ represents the sampling time interval.
SSM models are designed for linear time-invariant scenar-

ios, however, many real-world scenarios are non-linear time-
variant. To overcome this limitation, Mamba introduces an
input-dependent selection mechanism that enables effective in-
formation filtering from the input. Specifically, the parameters
B ∈ RB×L×N , C ∈ RB×L×N and ∆ ∈ RB×L×N are directly
derived from the input data x ∈ RB×L×N , thereby enhancing
adaptability and processing efficiency in dynamic environ-
ments. Mamba also introduces the selective scan method to

global view

local view

down
cal

score

0.2 0.2

0.2 0.4
0.1

0.5 0.2

0.1 0.2
0.3

0.3 0.3

0.3 0.1
0.4

0.4 0.1

0.2 0.3
0.2

0.08 0.02

0.04 0.06

0.02 0.02

0.02 0.04

0.12 0.12

0.12 0.04

0.15 0.06

0.03 0.06

Fig. 7: The structure of importance score calculation method
with complexity optimization.

improve data scanning and processing efficiency, significantly
boosting inference speed, which can be expressed as:

K = (CB,CAB, . . . ,CA
L−1

B),y = x ∗K, (17)

where K is a structured convolutional kernel.
2) ST-Mamba: Our task involves handling spatiotemporal

data, making the capture of spatiotemporal correlations crucial.
[21] has demonstrated the feasibility of applying Mamba to
time series data, effectively capturing temporal dependencies.
However, since Mamba is designed for sequential tasks, its
architecture is insensitive to spatial information. To address
this issue, we have improved the original Mamba architecture
to better capture spatial correlations.

In sequential models like Mamba, later nodes are inher-
ently more important as they incorporate the receptive fields
of preceding nodes. This property works well for temporal
sequences where the order of data collection is linear and
sequential. However, in the context of spatiotemporal data, the
spatial arrangement of nodes is not naturally ordered, posing
a challenge in effectively capturing spatial correlations.

To tackle this issue, we propose the ST-Mamba architecture.
As illustrated in Fig. 6, we first input the data into a Space-
Sensitive Block to determine the importance of spatial nodes.
After sorting the nodes based on their spatial importance, we
feed the ordered data into Mamba. Within the Space-Sensitive
Block, we utilize an attention mechanism to calculate the
scores of nodes based on their spatial relevance. Here, we
employ spatial attention, which focuses solely on nodes within
the same time slice, ensuring that temporal order is preserved
and that the computational complexity remains linear with
respect to time4. This process can be expressed as:

Q
(s)
Sp = X(s)

repW
Q
Sp, K

(s)
Sp = X(s)

repW
K
Sp, (18)

attn
(s)
Sp = softmax(Q

(s)
SpK

(s)
Sp/

√
dk), (19)

where WQ
Sp and WK

Sp are learnable weights for the spatial
dimensions, and

√
dk is the dimension of K(s)

Sp . Unlike simply
stacking attention and Mamba blocks, our method uses atten-
tion scores to assign spatial order to the nodes, effectively

4In practical applications, as the sensed map is fixed, the number of spatial
points remains constant and can be viewed as a fixed value.

Scale S
Scale S+1

space

time

time

space

tim
e

slice
tim

e
slice

origin features bottlenecks

… … …
Fig. 8: The example of Cross-Mamba.

enhancing spatial information integration. This method not
only retains the lightweight advantage of the Mamba model
but also enhances its sensitivity to spatial information, making
it more efficient and accurate in handling spatiotemporal data.

3) Complexity Optimization: Due to the large number of
spatial nodes at the finest scale, the computational overhead
remains significant. For this purpose, we simplify the finest
scale calculation process. As illustrated in Fig. 7, we first
downsample the data to obtain global features and calculate
the global scores. For the finest-scale nodes within the corre-
sponding coarse-scale nodes, we compute their local scores.
The final score of a node at the current scale is the product
of the global score of its coarse-scale region and its local
score. Finally, we use a learnable weight to perform a weighted
average of the scores across different scales, as detailed below:

score(s) = Global(s)(X(1)
rep)× Local(s)(X(1)

rep),

score =
∑S

s=2
score(s) ×ws−1,

(20)

where Global(s) and Local(s) denote the global and local
score calculation methods from the perspective of scale s, and
w represents the learnable weight. Ultimately, we denote the
intra-scale interaction features at scale s as X

(s)
intra:

X
(s)
intra = ST-Mamba(X(s)

rep). (21)

D. Inter-scale Feature Interaction

Capturing correlations between multiple scales in multi-
scale tasks is crucial. Unlike the Transformer architecture,
which achieves direct interaction through cross-attention,
Mamba struggles with direct interactions between multiple
data scales. Simply inputting all scale data into a single
Mamba model poses two problems: determining the order
of multi-scale information and incurring significant computa-
tional overhead. Inspired by the bottleneck architecture [22],
we integrate this structure into Mamba, called Cross-Mamba.

The bottleneck architecture significantly reduces computa-
tional cost while preserving the main features of the data.
As illustrated in Fig. 8, since the later nodes in the Mamba
architecture can learn from the preceding nodes, we append
additional empty nodes (bottlenecks) to the original sequence
and input them into ST-Mamba to enable the learning of global
receptive fields. Subsequently, we prepend the learned content
to finer-scale nodes, allowing them to learn the receptive fields

of coarser scales. Similarly, the final empty nodes obtain global
receptive fields, and this process is repeated down to the finest
scale. We place bottleneck nodes at the end of each time
dimension to capture all spatial information within each time
slice:

[X
(1)
inter,E

(1)] = STM
(
[X

(1)
intra,B

(1)]
)
, (22)

[,X
(s)
inter,E

(s)] = STM
(
[E(s−1),X

(s)
intra,B

(s)]
)
, (23)

[,X
(S)
inter] = STM

(
[E(S−1),X

(S)
intra]

)
, (24)

where represents placeholder, STM represents ST-Mamba
method, B(s) represents bottleneck nodes of scale s, E(s)

represents the learned information, and s ∈ [2,S− 1]. This
ensures a comprehensive learning process, leveraging the bot-
tleneck structure to effectively capture multi-scale correlations.

E. Multi-scale Loss

For each scale, we use a linear layer to obtain the final
completion results and consider the completion effect of each
scale during the final loss calculation. Formally:

Ŷ(s) = Linear(X
(s)
inter), (25)

L =
∑S

s=1
Cs ×MSE(Ŷ(s),Y(s)), (26)

where Cs is a constant denoting the weight of the s-th scale
result. We show our whole workflow in Algorithm 1.

V. THEORETICAL ANALYSIS

We prove the necessity of multi-scale data utilization in
Theorem 1 and the complexity of ST-Mamba in Theorem 2.

Definition 1. Let Xmulti denote the multi-scale data repre-
sentation information, and let Xsingle denote the input data
information at only single scale.

Theorem 1. The mutual information between Xmulti and the
target variable Y consistently exceeds the mutual information
between Xsingle and Y.

Proof. Mutual information is defined as follows:

I(Y;Xmulti) = H(Y)−H(Y | Xmulti),

I(Y;Xsingle) = H(Y)−H(Y | Xsingle),
(27)

where H(Y) denotes the entropy of Y, and H(Y | Xmulti)
and H(Y | Xsingle) represent the conditional entropy given
multi-scale and single-scale data, respectively.

Since Xmulti is constructed by integrating data from mul-
tiple scales, it inherently encapsulates all the information
in Xsingle and additional features from other scales. This
additional information reduces the uncertainty of the target
variable Y, leading to:

H(Y | Xmulti) ≤ H(Y | Xsingle). (28)

Combining Eq. (27) and Eq. (28), we obtain:

I(Y;Xmulti) ≥ I(Y;Xsingle), (29)

Algorithm 1: The algorithm of our method.
Input: X - sparse multi-scale inputs

1 while not convergent and count < MAX ITER do
2 Data Representation:
3 X

(1)
emb ← Eq.(7)(X(1));

4 X
(1)
rep ← X

(1)
emb;

5 for each s in [2, S] do
6 X

(s)
emb ← Eq.(7)(X(s));

7 X
(s)
down ← Eq.(9)(X(s−1)

rep);
8 X

(s)
rep ← Eq.(12)(X(s)

emb,X
(s)
down);

9 Intra-scale Feature Interaction:
10 for each s in [1, S] do
11 X

(s)
intra ← Eq.(21)(X(s)

rep);
12 Inter-scale Feature Interaction:
13 [X

(1)
inter,E

(1)]← Eq.(22)([X(s)
intra,0]);

14 for each s in [2, S − 1] do
15 [X

(s)
inter,E

(s)]← Eq.(23)([E(s−1),X
(s)
intra,0]);

16 X
(S)
inter ← Eq.(24)([E(S−1),X

(s)
intra]);

17 Output:
18 for each s in [1, S] do
19 Ŷ(s) ← Eq.(25)(X(s)

inter);
20 L ← Eq.(26)(Ŷ,Y);
21 return Ŷ(1).

indicating that the multi-scale representation improves the
mutual information with the target variable Y compared to
single-scale data. This result highlights the importance of
utilizing multi-scale data for completion.

Definition 2. Denote L(s) = H/g(s)×W/g(s) as the number
of spatial nodes, T as the number of time slices.

Theorem 2. The computational complexity of ST-Mamba is
linear with respect to the number of time slices T .

Proof. ST-Mamba is composed of two main parts: the spa-
tial sensitivity module and the Mamba processing unit. In
the spatial sensitivity module, for each scale s (except the
finest scale), the computational complexity is governed by
the interactions within each time slice. This results in a
complexity T ×

(
L(s)

)2
. The finest scale is calculated dif-

ferently, following Eq. (20), its computational complexity is:∑S
s=2

[
T ×

(
L(s)

)2]
. Adding the linear Mamba complexity

for processing all scales, which is
∑S

s=1 T × L(s). The total
complexity becomes:

T ×
[
2×

∑S

s=2

(
L(s)

)2

+
∑S

s=1
L(s)

]
. (30)

Since the sensed map is deterministic in real scenarios,
L(s) can be treated as a constant. Thus the complexity of ST-
Mamba is linearly related to T .

TABLE I: Completion performance under the same sensed quantity.

Data
Set

Air-Quality Weather Traffic
PM2.5 PM10 Humidity Temperature P1 P2

Models MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
MF 60.070 7.000 60.146 7.000 33.601 4.465 363.61 16.543 6250.6 42.251 8623.4 49.746

DMF 69.753 6.175 68.866 6.134 57.170 5.738 351.84 13.621 14660.8 69.171 18115.0 76.284
GCN 2.969 1.545 2.865 1.520 2.158 1.064 61.313 5.466 599.94 14.880 938.05 17.785

Mamba 2.220 0.945 2.662 1.008 3.069 1.220 35.419 4.048 491.85 12.914 710.42 15.594
Informer 2.526 1.288 3.374 1.506 2.949 1.294 47.384 4.984 534.42 13.717 627.17 14.207
Timesnet 1.359 0.855 1.729 1.005 2.317 1.111 44.491 4.837 451.28 13.196 568.56 14.799

TS-BGMC 3.589 1.424 3.585 1.426 22.33 3.565 384.365 15.799 9452.02 51.930 12601.53 60.269
ST-Transi 1.108 0.765 1.221 0.802 1.306 0.873 13.782 2.665 425.81 12.214 520.97 13.710

ST-Mamba 0.989 0.703 1.053 0.740 2.294 1.086 30.410 3.812 480.95 12.804 594.77 14.281
Our 0.857 0.653 1.009 0.723 1.269 0.859 13.179 2.616 419.18 12.043 500.97 13.510

0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5
0 . 4
0 . 8
1 . 2
1 . 6
2 . 0
2 . 4
2 . 8

MS
E

S e n s e R a t i o

 O u r S T - M a m b a M a m b a
 G C N S T - T r a n s i T i m e s n e t

(a) PM2.5

0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5
0 . 4
0 . 8
1 . 2
1 . 6
2 . 0
2 . 4
2 . 8

MS
E

S e n s e R a t i o

 O u r S T - M a m b a M a m b a
 G C N S T - T r a n s i T i m e s n e t

(b) PM10

0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 50 . 4
0 . 8
1 . 2
1 . 6
2 . 0
2 . 4
2 . 8
3 . 2

MS
E

S e n s e R a t i o

 O u r S T - M a m b a M a m b a
 G C N S T - T r a n s i T i m e s n e t

(c) Temperature

0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5
1 0
2 0
3 0
4 0
5 0
6 0

MS
E

S e n s e R a t i o

 O u r S T - M a m b a M a m b a
 G C N S T - T r a n s i T i m e s n e t

(d) Humidity

0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5
3 0 0
3 5 0
4 0 0
4 5 0
5 0 0
5 5 0
6 0 0

MS
E

S e n s e R a t i o

 O u r S T - M a m b a M a m b a
 G C N S T - T r a n s i T i m e s n e t

(e) P1

0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0
9 0 0

MS
E

S e n s e R a t i o

 O u r S T - M a m b a M a m b a
 G C N S T - T r a n s i T i m e s n e t

(f) P2

Fig. 9: Completion performance under different sensed ratios with multi-scale inputs.

0 . 0 50 . 0 40 . 0 30 . 0 20 . 0 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9

0 . 0 1
0 . 0 2

0 . 0 3
0 . 0 4

0 . 0 5

s e n s e r a t i o 2s e n s e r a t i o 1

M S
E

(a) scale1,scale2

0 . 0 50 . 0 40 . 0 30 . 0 20 . 0 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9

0 . 0 1
0 . 0 2

0 . 0 3
0 . 0 4

0 . 0 5

s e n s e r a t i o 3s e n s e r a t i o 1

M S
E

(b) scale1,scale3

0 . 0 50 . 0 40 . 0 30 . 0 20 . 0 1
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9

0 . 0 1
0 . 0 2

0 . 0 3
0 . 0 4

0 . 0 5

s e n s e r a t i o 4s e n s e r a t i o 1

M S
E

(c) scale1,scale4

0 . 0 50 . 0 40 . 0 30 . 0 20 . 0 1
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9

0 . 0 1
0 . 0 2

0 . 0 3
0 . 0 4

0 . 0 5

s e n s e r a t i o 3s e n s e r a t i o 2

M S
E

(d) scale2,scale3

0 . 0 50 . 0 40 . 0 30 . 0 20 . 0 1
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9

0 . 0 1
0 . 0 2

0 . 0 3
0 . 0 4

0 . 0 5

s e n s e r a t i o 4s e n s e r a t i o 2

M S
E

(e) scale2,scale4

0 . 0 50 . 0 40 . 0 30 . 0 20 . 0 1
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9

0 . 0 1
0 . 0 2

0 . 0 3
0 . 0 4

0 . 0 5

s e n s e r a t i o 4s e n s e r a t i o 3

M S
E

(f) scale3,scale4

Fig. 10: Completion performance under two different scales.
VI. PERFORMANCE EVALUATION

A. Setting

1) Datasets: We conduct experiments on three datasets.
Air-Quality5 is derived from CHAP [23, 24] and contains

meteorological air quality data. We select PM2.5 and PM10
as the experimental datasets and select 20× 20 stations.

Weather6 contains meteorological data from 2017 to 2018.
We select Humidity and Temperature as the experimental
datasets and select 24× 12 stations for experiments.

Traffic7 is derived from TaxiBJ [25], which contains mete-
orological traffic flow data in Beijing. We select P1 and P2 as
the experimental datasets and select 16× 16 stations.

2) Data Preprocessing: We set the total number of scales
to 4. To demonstrate the adaptability of our proposed method
to real-world scenarios with non-aligned compositions, we use
different scales for different datasets. Specifically, the scales
for the Air-Quality dataset are set to 1, 2, 4, and 5, and for
the Weather dataset, they are 1, 2, 3, and 6. Additionally, to
prove that our approach is also effective in aligned scenarios,
the scales for the Traffic dataset are set to 1, 2, 4, and 8.

We preprocess the data to obtain results at different scales.
Taking the scale of 2 as an example, we downsample the
original data by a factor of 2 × 2. The downsampling rules

5https://nnu.geodata.cn/featured data.html
6https://www.kdd.org/kdd2018/kdd-cup
7https://gitee.com/arislee/taxi-bj

follow the inherent patterns of the data: for Air-Quality and
Weather use averaging, while Traffic for summation.

3) Baselines: We categorize the existing methods into
three categories: temporal interpolation, spatial completion and
spatiotemporal completion methods.

Spatial Completion Methods: We consider MF [26], which
is based on matrix factorization; DMF [27], a neural network
implementation of matrix factorization; and GCN [28], which
utilizes a graph convolutional network approach.

Temporal Interpolation Methods: We consider Mamba
[13], a linear-time sequence modeling method; Informer,
which employs sparse attention mechanisms [29]; and Times-
net [30], a general approach to time series embedding.

Spatiotemporal Completion Methods: We analyze meth-
ods like ST-BGMC [7], a matrix completion technique that uti-
lizes spatiotemporal constraints; ST-Transi [8], a Transformer-
based method; and our own proposal, ST-Mamba, a variant of
Mamba model designed to handle spatiotemporal data.

4) Experimental Settings: In our experiment, the datasets
are divided into training, validation, and test sets in a 7 : 2 : 1
ratio. We use Mean Squared Error (MSE) and Mean Abso-
lute Error (MAE) as our evaluation metrics. All experiments
are conducted under PyTorch and accelerated using a single
NVIDIA GeForce RTX 3090 GPU. In our model dmodel is set
to 64, T is set to 16, model layer is set to 1 and bottleneck size
is set to 4. To better complement the results at finer scales,
we give them more weight, so C is set to {0.4, 0.3, 0.2, 0.1}.

B. Completion Performance

1) Performance under the same sensed quantity: We con-
duct experiments with a sensing rate of 0.01 for each scale
input. Since existing completion methods are designed for
single-scale, we ensure a fair comparison by inputting the
finest scale data with the total sensing amount from all
scales into other models. As shown in TABLE I, our method
significantly outperforms the others. In real-world multi-scale
scenarios, the worse performance of single-scale methods
highlighting the effectiveness of leveraging multi-scale data.

2) Performance under the finest scale sense ratios: We
evaluate model completion effects under different finest scale
sensing ratios, with a 0.01 ratio for other scales. The number
of sensed data for other models matches the total number
from all scales in our method. As shown in Fig. 9, our multi-
scale model excels due to its ability to capture multi-scale data
correlations. Although it sometimes lags behind Transformer-
based models, it has significantly lower overheads. For Air-
Quality and Weather datasets, high spatial similarity enhances
spatiotemporal algorithm performance. For the Traffic dataset,
stronger temporal correlations result in similar performance
between spatiotemporal and temporal algorithms, causing
overlap in the graph. Additionally, comparisons with ST-
Mamba demonstrate the effectiveness of Cross-Mamba.

3) Performance under multi-scale sense ratios: Fig. 10 fur-
ther explores the impact on model completion performance as
the sense ratios of two scales are increased. Due to experimen-
tal constraints, this part of the study is only conducted on the
PM2.5 dataset. The results show that the overall performance
of the model tends to increase as the scale increases and that
finer scales provide better results for the same sensing range.

C. Ablation Study

Due to the space constraints, we use PM2.5, Humidity and
P1 as the representative datasets for our experiments.

TABLE II: Performance of different resample methods.

Method Air Weather Traffic

MSE MAE MSE MAE MSE MAE

scale-adjusted+pool 0.857 0.653 1.269 0.859 419.177 12.043
scale-adjusted 0.877 0.673 1.292 0.873 448.466 12.157
pool 0.975 0.717 1.512 0.949 464.561 12.377
conv 0.974 0.716 1.452 0.930 497.299 12.579

1) Resample method: We compared the performance of
mainstream resampling methods with our proposed up-down
sampling approach. As shown in TABLE II, our method,
which considers the alignment of scale features, significantly
outperforms other methods. Additionally, considering both
pooling and convolution information yields superior results.

2) Feature integration module: We compared our SFIM
with two common methods, Insert and Concat. Specifically,
Insert involves directly filling the sparse input features into the
downsampled features, while Concat involves concatenating
both feature sets followed by a linear layer for feature fusion.
The results, as illustrated in Fig. 11, show superior perfor-
mance with our approach. This improvement is attributed to

0 . 1 0 . 2 0 . 3 0 . 4 0 . 50 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

MS
E

S e n s e R a t i o

 S F I M
 I n s e r t
 C o n c a t

(a) Air

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4

MS
E

S e n s e R a t i o

 S F I M
 I n s e r t
 C o n c a t

(b) Weather

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5
3 0 0

4 0 0

5 0 0

MS
E

S e n s e R a t i o

 S F I M
 I n s e r t
 C o n c a t

(c) Traffic

Fig. 11: Performance of feature integration module.
the distinct data distributions in the two inputs; simplistic
approaches tend to allow these distributions to interfere with
each other, leading to a decrease in performance.

0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0
1 . 1

MS
E

S e n s e R a t i o

 O u r S e l f - A t t n L i n e a r

(a) Performance

8 1 6 2 4 3 2 4 00
2
4
6
8

1 0
1 2
1 4

Me
mo

ry(
GB

)

T i m e S l i c e s

 O u r S e l f - A t t n L i n e a r

(b) Memory

8 1 6 2 4 3 2 4 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0

Sp
ee

d(s
/ep

oc
h)

T i m e S l i c e s

 O u r S e l f - A t t n L i n e a r

(c) Speed

Fig. 12: Performance and cost of Space-Sensitive Block.
3) Space-Sensitive Block: Through previous experiments,

we have demonstrated the superior performance of our pro-
posed ST-Mamba compared to the origin Mamba, highlighting
the effectiveness of our space-sensitive module. Therefore,
this section will not redundantly prove the effectiveness of
this method through further experiments. Instead, we will
conduct detailed experiments on the complexity optimization
of our space-sensitive module, examining both performance
and overhead. We conducted comparative analyses among
linear scoring [31] and original self-attention scoring. As
shown in Fig. 12, our approach effectively reduces the model’s
complexity without causing significant performance loss.

2 4 6 8 10 12 14 16 18 20

2 0
1 8
1 6
1 4
1 2
1 0
8
6
4
2

0 . 1 7 0

0 . 6 4 0

1 . 1 1 0

1 . 5 8 0

2 . 0 5 0

2 . 5 2 0

2 . 9 9 0

(a) Air

2 4 6 8 10 12 14 16

1 6
1 4
1 2
1 0
8
6
4
2

0 . 5 0 5

0 . 6 6 0

0 . 8 1 5

0 . 9 7 0

1 . 1 2 5

1 . 2 8 0

1 . 4 3 5

(b) Traffic

Fig. 13: Visualization of spatial importance.

D. Spatial Sensitivity Analysis

We have shown the importance of spatial nodes for air and
traffic. As illustrated in the Fig. 13, the importance scores
for air quality data are notably concentrated in specific urban
areas, likely indicating regions with significant environmental
pressures or monitoring demands, such as industrial activity
zones. Conversely, the importance scores for traffic flow
data are more uniformly distributed across the entire city,
suggesting a widespread impact and connectivity of the urban
traffic system. These differences suggest that our model can
be responsive to different types of urban data.

TABLE III: Computing overhead for main methods.

Mamba Transformer Our
running time 22 s/epoch 246 s/epoch 39 s/epoch
memory cost 1520 MB 47624 MB 2050 MB

E. Computing Overhead

We compared the computational overhead of our model
with Mamba and Transformer architectures. As shown in
TABLE III, our model achieves significantly improved com-
pletion performance with computational costs slightly higher
than Mamba, but substantially lower than those of the Trans-
former. This demonstrates our model’s efficiency in balancing
performance with computational demands.

VII. CONCLUSION

In this paper, we introduce a novel multi-scale data com-
pletion framework designed to address the challenges posed
by non-aligned multi-scale data in Sparse Mobile Crowd-
Sensing scenarios. We construct multi-scale data under non-
aligned compositional relationships using our scale-adjusted
resampling architecture and merge it with sparse multi-scale
inputs through the SFIM. Then, we employ ST-Mamba and
Cross-Mamba for intra-scale and inter-scale interactions, re-
spectively. Our future work delves into the dynamic handling
of temporal scales and explores the relationship between multi-
scale data collection locations and model performance, aiming
to further exploit the potential of multi-scale data.

ACKNOWLEDGMENT

This work is supported in part by Jilin Science and
Technology Research Project 20250102220JC, National
Natural Science Foundation of China under Grant Nos.
62472194 and 62272193, and Graduate Innovation Fund
of Jilin University No. 2025CX212. En Wang is the
corresponding author of this paper.

REFERENCES

[1] L. Wang, D. Zhang, Y. Wang, C. Chen, X. Han, and A. M’hamed,
“Sparse mobile crowdsensing: challenges and opportunities,” IEEE
Communications Magazine, vol. 54, no. 7, pp. 161–167, 2016.

[2] F. Calabrese, G. Di Lorenzo, and C. Ratti, “Human mobility prediction
based on individual and collective geographical preferences,” in 13th
International IEEE Conference on Intelligent Transportation systems,
2010, pp. 312–317.

[3] L. Chen, J. Hoey, C. D. Nugent, D. J. Cook, and Z. Yu, “Sensor-
based activity recognition,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 42, no. 6, pp. 790–808, 2012.

[4] A. Crooks, A. Croitoru, A. Stefanidis, and J. Radzikowski, “# earth-
quake: Twitter as a distributed sensor system,” Transactions in GIS,
vol. 17, no. 1, pp. 124–147, 2013.

[5] Y. Mostofi, “Compressive cooperative sensing and mapping in mobile
networks,” IEEE Transactions on Mobile Computing, vol. 10, no. 12,
pp. 1769–1784, 2011.

[6] E. Wang, M. Zhang, Y. Yang, Y. Xu, and J. Wu, “Exploiting outlier value
effects in sparse urban crowdsensing,” in IEEE/ACM Ixnternational
Symposium on Quality of Service, 2021, pp. 1–10.

[7] W. Liu, Y. Yang, E. Wang, and J. Wu, “Fine-grained urban prediction
via sparse mobile crowdsensing,” in IEEE 17th International Conference
on Mobile Ad Hoc and Sensor Systems, 2020, pp. 265–273.

[8] E. Wang, W. Liu, W. Liu, C. Xiang, B. Yang, and Y. Yang, “Spatiotem-
poral transformer for data inference and long prediction in sparse mobile
crowdsensing,” in IEEE Conference on Computer Communications,
2023, pp. 1–10.

[9] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T.
Campbell, “A survey of mobile phone sensing,” IEEE Communications
magazine, vol. 48, no. 9, pp. 140–150, 2010.

[10] S. Liu, H. Yu, C. Liao, J. Li, W. Lin, A. X. Liu, and S. Dustdar,
“Pyraformer: Low-complexity pyramidal attention for long-range time

series modeling and forecasting,” in International Conference on Learn-
ing Representations, 2022, pp. 1–20.

[11] S. Wang, H. Wu, X. Shi, T. Hu, H. Luo, L. Ma, J. Y. Zhang,
and J. ZHOU, “Timemixer: Decomposable multiscale mixing for time
series forecasting,” in The Twelfth International Conference on Learning
Representations, 2024.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, vol. 30, 2017, pp. 1–11.

[13] A. Gu and T. Dao, “Mamba: Linear-time sequence modeling with
selective state spaces,” arXiv preprint:2312.00752, 2023.

[14] L. Chen, D. Chen, Z. Shang, B. Wu, C. Zheng, B. Wen, and W. Zhang,
“Multi-scale adaptive graph neural network for multivariate time series
forecasting,” IEEE Transactions on Knowledge and Data Engineering,
vol. 35, no. 10, pp. 10 748–10 761, 2023.

[15] J. Zhang, Y. He, W. Chen, L.-D. Kuang, and B. Zheng, “Corrformer:
Context-aware tracking with cross-correlation and transformer,” Com-
puters and Electrical Engineering, vol. 114, p. 109075, 2024.

[16] Y. Liu, Y. Tian, Y. Zhao, H. Yu, L. Xie, Y. Wang, Q. Ye, J. Jiao,
and Y. Liu, “VMamba: Visual state space model,” in The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024.

[17] L. Zhu, B. Liao, Q. Zhang, X. Wang, W. Liu, and X. Wang, “Vision
mamba: Efficient visual representation learning with bidirectional state
space model,” in Forty-first International Conference on Machine Learn-
ing, 2024.

[18] L. Li, H. Wang, W. Zhang, and A. Coster, “Stg-mamba: spatial-
temporal graph learning via selective state space model,” arXiv preprint
arXiv:2403.12418, 2024.

[19] H. Wu, K. Wang, F. Xu, Y. Li, X. Wang, W. Wang, H. Wang, and
X. Luo, “Spatio-temporal twins with a cache for modeling long-term
system dynamics,” 2024.

[20] A. Gu, Modeling Sequences with Structured State Spaces. Stanford
University, 2023.

[21] Z. Wang, F. Kong, S. Feng, M. Wang, X. Yang, H. Zhao, D. Wang, and
Y. Zhang, “Is mamba effective for time series forecasting?” Neurocom-
puting, vol. 619, p. 129178, 2025.

[22] A. Nagrani, S. Yang, A. Arnab, A. Jansen, C. Schmid, and C. Sun,
“Attention bottlenecks for multimodal fusion,” Advances in Neural
Information Processing Systems, vol. 34, pp. 14 200–14 213, 2021.

[23] J. Wei, Z. Li, M. Cribb, W. Huang, W. Xue, L. Sun, J. Guo, Y. Peng,
J. Li, A. Lyapustin et al., “Improved 1 km resolution pm 2.5 estimates
across china using enhanced space–time extremely randomized trees,”
Atmospheric Chemistry and Physics, vol. 20, no. 6, pp. 3273–3289,
2020.

[24] J. Wei, Z. Li, W. Xue, L. Sun, T. Fan, L. Liu, T. Su, and M. Cribb,
“The chinahighpm10 dataset: generation, validation, and spatiotemporal
variations from 2015 to 2019 across china,” Environment International,
vol. 146, p. 106290, 2021.

[25] J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal residual networks
for citywide crowd flows prediction,” in Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, 2017, pp. 1655–1661.

[26] Z. Wen, W. Yin, and Y. Zhang, “Solving a low-rank factorization
model for matrix completion by a nonlinear successive over-relaxation
algorithm,” Mathematical Programming Computation, vol. 4, no. 4, pp.
333–361, 2012.

[27] E. Wang, M. Zhang, X. Cheng, Y. Yang, W. Liu, H. Yu, L. Wang, and
J. Zhang, “Deep learning-enabled sparse industrial crowdsensing and
prediction,” IEEE Transactions on Industrial Informatics, vol. 17, no. 9,
pp. 6170–6181, 2020.

[28] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[29] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
“Informer: Beyond efficient transformer for long sequence time-series
forecasting,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 12, 2021, pp. 11 106–11 115.

[30] H. Wu, T. Hu, Y. Liu, H. Zhou, J. Wang, and M. Long, “Timesnet:
Temporal 2d-variation modeling for general time series analysis,” in The
Eleventh International Conference on Learning Representations, 2023,
pp. 1–23.

[31] Z. Shen, M. Zhang, H. Zhao, S. Yi, and H. Li, “Efficient attention:
Attention with linear complexities,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, 2021, pp. 3531–
3539.

