
Multi-resource Energy-efficient Routing in Cloud
Data Centers with Network-as-a-Service

Lin Wang∗§, Antonio Fernández Anta†, Fa Zhang‡, Jie Wu¶ Zhiyong Liu∗∥
∗Beijing Key Laboratory of Mobile Computing and Pervasive Device, ICT, CAS, China

†IMDEA Networks Institute, Spain
‡Key Lab of Intelligent Information Processing, ICT, CAS, China

§University of Chinese Academy of Sciences, China
¶Department of Computer and Information Sciences, Temple University, USA

∥State Key Laboratory for Computer Architecture, ICT, CAS, China

Abstract—With the rapid development of software defined
networking and network function virtualization, researchers have
proposed a new cloud networking model called Network-as-a-
Service (NaaS) which enables both in-network packet processing
and application-specific network control. In this paper, we revisit
the problem of achieving network energy efficiency in data
centers and identify some new optimization challenges under the
NaaS model. Particularly, we extend the energy-efficient routing
optimization from single-resource to multi-resource settings. We
characterize the problem through a detailed model and provide
a formal problem definition. Due to the high complexity of direct
solutions, we propose a greedy routing scheme to approximate
the optimum, where flows are selected progressively to exhaust
residual capacities of active nodes, and routing paths are assigned
based on the distributions of both node residual capacities and
flow demands. By leveraging the structural regularity of data
center networks, we also provide a fast topology-aware heuristic
method based on hierarchically solving a series of vector bin
packing instances. Extensive simulations show that the proposed
routing scheme can achieve significant gain on energy savings
and the topology-aware heuristic can produce comparably good
results while reducing the computation time to a large extent.

I. INTRODUCTION

As inter-node communication bandwidth is the principal
bottleneck in data centers, there has been a large body of
work on optimizing the performance of DCNs (e.g., [1], [2]).
However, in order to apply these proposals to production
DCNs, a lot of effort has to be undertaken, including both
hardware- and software-end modifications. This is due to the
specific deployment settings designed for the routing and
forwarding protocols used in current data centers. As a result,
incremental implementations are usually not achievable and
significant effort has to be made for every single design.

The situation has been changed with the evolution of
network architecture. On the one hand, researchers proposed
to decouple control plane from data plane, which enables
rapid innovation in network control. This idea then naturally
led to the advent of Software Defined Networking (SDN).
Instead of having all network nodes to run the routing protocol
in a distributed manner, SDN abstracts the network control

This work has been funded by the Regional Government of Madrid (CM)
under project Cloud4BigData (S2013/ICE-2894) cofunded by FSE & FEDER
and the National Natural Science Foundation of China (NSFC) Project for
Innovation Groups 61221062.

functionality to a logically centralized controller. The routing
decisions are then made by the controller and pushed to net-
work nodes through a well-defined Application Programming
Interface (API) such as OpenFlow [3]. As a result, network
policies can be totally implemented in the controller, which
needs only very basic software modification in the event
of network changes. On the other hand, the innovation in
data plane has also been sped up by the technology called
Network Function Virtualization (NFV) where packets are
handled by software-based entities on general-purpose servers
with network functions virtualized.

Taking advantage of the advancement of both control
plane and data plane in networks, a new cloud networking
model called Network-as-a-Service (NaaS) has been recently
proposed [4], [5]. In the NaaS model, packet forwarding
decisions are implemented based on specific application needs.
Moreover, NaaS enables the design of in-network packet modi-
fication and thus in-network services, such as data aggregation,
stream processing or caching can be specified by upper-layer
applications. Based on this new networking model, several
working examples have been studied, including in-network
aggregation for big data applications [6].

However, NaaS brings new challenges to traditional net-
work optimization problems by allowing in-network packet
operations, making existing solutions inefficient or even not
applicable to these problems any more. Particularly, we revisit
the problem of achieving network energy efficiency in data
centers and identify some new challenges under the NaaS
model. With packets being processed by virtual machines run-
ning on general-purpose servers, energy-related issues become
more prominent. The energy saving problem in DCNs has
been widely studied and most proposals are based on the
general approach of consolidating network flows and turning
off unused network elements (e.g., [7], [8], [9]). In packet
forwarding networks, link utilization is the most important
criterion for flow consolidation. However, this is no longer
valid under the NaaS model, where a network node can be
congested not only by data communications, but also by the
overloading of other resources such as processing units or
memory. Without considering other resources, a link utilization
oriented consolidation of flows may lead to severe resource

saturation at some network nodes and to serious network
instability. Therefore, it is essential to take into account
multiple resources when making routing decisions under the
NaaS model. To the best of our knowledge, this is the first
research attempt towards multi-resource traffic engineering.

The main contributions of this paper are as follows: i) we
identify new research challenges for conventional optimization
problems under the NaaS model, and characterize the network
energy saving problem through a detailed model with com-
plexity analyzed; ii) we propose a greedy routing scheme
where path selection is done based on the distributions of
node residual capacities and flow demands; iii) by utilizing
the structural property of DCNs, we provide a topology-aware
heuristic which can accelerate problem solving while produc-
ing comparably good results; iv) we validate the efficiency of
the proposed algorithms by extensive simulations and show
that significant energy efficiency gain in NaaS-enabled DCNs
can be achieved by the techniques proposed in this paper. Due
to the space limit, we leave the proofs and a comprehensive
discussion about the implication of the model and the proposed
algorithms in the full version of this paper [10].

II. PROBLEM STATEMENT

While the single-resource network energy optimization
problem has been well-studied [11], very little attention has
been received by the energy-efficient routing problem in
networks with multiple resources. With an emerging trend
of software packet processing in networks, this problem has
raised its significance. In the following, we provide a formal
modeling of the problem and examine its complexity.

A. Preliminary Notations

We abstract a given software packet-processing network as
graph G = {V, E}, where V is the set of N nodes, each
of which represents a general-purpose server with software
packet processing functionalities, and E is the set of undirected
edges representing the network links. Each node v ∈ V has
limited amounts of K different types of hardware resources,
namely CPU, memory, and network bandwidth, to name a
few. The total amount of type-k resource is constrained by
a positive capacity Cv,k (k ∈ {1, 2, ...,K}). Due to the fact
that packet-processing networks are usually constructed using
commodity general-purpose servers, it is reasonable to assume
that all the nodes in V are identical. Thus, for all v ∈ V , we
assume Cv,k = Ck for all k ∈ {1, 2, ...,K}.

We define a flow as a sequence of data packets that possess
the same entities in the packet headers such as the same source
and destination IP addresses. Suppose we are given a set of
M flow demands D = {d1, d2, ..., dM}. The packets from
the same flow dm will be routed following a single path in
order to avoid packet reordering at the destination. For all the
packets from a given flow, a processing procedure is defined on
every node on the flow’s routing path, which is used to carry
out some per-flow computation to the payloads of packets,
e.g., intercepting packets on-path to implement opportunistic
caching strategies [5]. Due to the fact that the data carried by

the packets from the same flow generally possess the same
structure (e.g., same packet size), we assume that (nearly) the
same amount of computation will be applied to the packets
from the same flow. As a result, we have to keep (almost) the
same reservation across each type of resource on every node
on the path for each flow. Each flow dm is represented by
a three-tuple (vsm, vtm, R⃗m) where vsm and vtm are the source
and destination respectively, while R⃗m is a K-dimensional
vector (rm,1, ..., rm,K) describing the amounts of resources
in all types required (and reserved) for a node to process
the packets from flow dm. These resource demands can be
obtained by applying the same technique used in [12]. For the
sake of simplicity and without loss of generality, we assume
that the rm,k for m ∈ {1, 2, ...,M} are normalized by Ck for
any k ∈ {1, 2, ...,K}, i.e. R⃗m ∈ [0, 1]K .

To quantify the performance of approximations, we term γ
as the performance ratio of an algorithm for a minimization
problem if the objective values in the solutions provided by
the algorithm are upper-bounded by γ times the optimal.

B. Problem Formulation

Using the introduced notation, the energy-efficient multi-
resource routing problem can be formally defined as follows.
For a vector x⃗, we denote by ||x⃗||∞ the standard ℓ∞ norm.

Definition 1 (ENERGY-EFFICIENT MULTI-RESOURCE
ROUTING (EEMR)). Given a network G = (V, E) and a
set of M flows d1, ..., dM whose demands are characterized
by R⃗1, ..., R⃗M from [0, 1]K , find a path Pm from vsm to vtm for
each flow dm such that ||A⃗v||∞ ≤ 1 for v ∈ V where A⃗v =∑

m:v∈Pm
R⃗m is the aggregation of the resource requirement

vectors of flows that are routed through node v. The objective
is to minimize |Q| where Q = {v | v ∈ V ∧ A⃗i ̸= (0, ..., 0)}
is the set of nodes that are used to carry flows.

The EEMR problem can be formulated as a Mixed Integer
Program (MIP) in the following way. We introduce two binary
variables xm,v and yv. The binary variable xm,v indicates
whether flow dm is routed through node v and yv indicates
whether node v is active or not. As the static power consump-
tion of a node is dominant, we only consider using power-
down based strategy as the main energy saving mechanism.
Our objective is to minimize the number of active nodes. Note
that we have an implicit assumption that feasible solutions
are always achievable, that is, the network with the designed
capability is able to handle the given traffic demands.

(P1) minimize
∑
v∈V

yv

subject to

||
∑

m∈{1,2,...,M}

R⃗m · xm,v||∞ ≤ 1 v ∈ V

xm,v ≤ yv v ∈ V, 1 ≤ m ≤ M

xm,v, yv ∈ {0, 1} v ∈ V, 1 ≤ m ≤ M

xm,v : flow conservation

The constraints of program P1 are as follows: the first con-
straint states that the flows routed through the same node
do not exceed the node resource dimensions; the second
constraint tells whether a node is active or not; the third
constraint ensures that each flow can only follow a single
path. Flow conservation on xm,v forces that the nodes that
flow demand dm is routed through form a path between vsm
and vtm in the network.

Note that when K = 1, P1 corresponds to the gen-
eral capacitated network design problem which has been
widely studied. For the uniform link capacitated version of
the problem, Andrews, Antonakopoulos and Zhang [13] pro-
vided a polylogarithmic approximation when the capacity on
each link is allowed to be exceeded by a polylogarithmic
factor. Recently, [14] explored the multicommodity node-
capacitated network design problem and provided a O(log5 n)-
approximation with O(log12 n) congestion. However, none of
the studies provide high-quality approximations in scenarios
with inviolable capacity constraints. This is mainly because
with strict capacity constraints, finding out whether there is a
feasible solution for the problem is already NP-hard.

C. Complexity Analysis

In contrast with the traditional energy-efficient routing (i.e.,
capacitated network design) problem, EEMR extends the con-
cept of “load” from single-dimensional to multidimensional,
which makes the problem even computationally harder. In
general, we have the following complexity results.

Theorem 1. Solving the EEMR problem is NP-hard.

Proof. Please refer to [10].

Theorem 2. There is no asymptotic PTAS for the EEMR
problem unless P=NP.

This is directly applied from the fact that the Vector Bin
Packing (VBP) problem with K ≥ 2 is know to be APX-hard
which implies that there is no asymptotic PTAS for it [15].
From the above reduction we know that actually VBP is a
special case for EEMR, meaning that solving EEMR has at
least the same time complexity as VBP.

III. ENERGY-EFFICIENT MULTI-RESOURCE ROUTING

The complexity analysis results show that the EEMR prob-
lem is NP-hard, for which no existing exact solutions can scale
to the size of current data center networks. Therefore, we resort
to an intuitive approach that can provide suboptimal solutions
very quickly. We detail our design in this section.

A. Key Observations

We propose a greedy routing scheme to solve the energy-
efficient multi-resource routing problem. The basic principle
is to use as few nodes as possible to carry all the traffic
flows while satisfying the capacity constraints in all resource
dimensions. More specifically, our design is based on the
following two observations: i) flows preferably follow paths
that consists of more active nodes (that already carry some

traffic) as this will introduce less extra energy consumption to
the network; ii) it is important to allocate routes for flows on
the active nodes such that all dimensions of the resources in
every active node can be fully utilized. The second observation
is a new concern steaming from the multi-resource context. In
the single-resource case, the only criterion for the efficiency of
a node is its resource utilization, i.e., the carried traffic divided
by the total capacity. As a result, steering flows to those nodes
with low utilizations will lead to an energy-efficient routing
solution. However, this approach is not applicable to the multi-
resource case. With multiple dimensions of resources, it is not
clear how to define the resource utilization of a node, thus
we will not be able to make routing decisions based on node
utilizations.

B. The Routing Scheme

The pseudocode of the routing scheme is shown in Algo-
rithm 1. The algorithm runs iteratively. In each iteration, it
first tries to use only the set of active nodes. By searching
the flow demand list, it tries to find out a candidate flow to
route on the subnetwork Ga composed by the active nodes and
the corresponding network links connecting these nodes. Note
that it is necessary to remove the nodes that are not capable of
carrying the flow, that is, when the flow is carried by the nodes,
at least one dimension of the resource capacities of the nodes
will be violated, leading to node congestion. We denote by Gm

c

the residual network after removing the incapable nodes and
the links attached to these nodes. We then carry out function
IsConn, a depth-first search procedure, to verify if the source
and the destination of the current flow are connected in Gm

c .
If a candidate flow dc that can be routed on Gm

c is found,
we stop the search procedure; otherwise we pick up a flow
demand uniformly at random (function RandSelect) from the
flow demand list. At this time, the residual capacity of the
subnetwork formed by current active nodes is not sufficient
for carrying any new flow, thus more nodes are needed to be
activated so that routing demands for the newly selected flow
can be satisfied. Once a candidate flow dc has been determined,
we remove the incapable nodes (those that satisfy S⃗v ⋖ R⃗c

which means that these exists at least one dimension k such
that S⃗v(k) > R⃗c(k)) according to the resources demand of
the candidate flow and we denote by Gc the resulted network.
Then, we apply a weight assignment process where we assign
weights to the active nodes in Va by invoking procedure
InvCount (see below), and the weights for other nodes to
be (K(K − 1)/2 + 1). In order to facilitate path selection,
we carry out a node-link transformation procedure to assign
weights for links based on the weights for nodes. The design
of node weight assignment and node-link transformation will
be detailed later in this section. At last, the candidate flow
will be routed by involving a shortest-path-based algorithm
such as Dijkstra algorithm on the weighted network Gc and
will be removed from the demands list. The above process is
repeated until the route for every flow has been assigned.

Inversion-based node weight assignment. We now de-
scribe the function InvCount for assigning weights to network

Algorithm 1 Multi-Resource Green (MRG) routing
1: Va = ∅; /*set of active nodes*/
2: for each (v ∈ V) S⃗v = {0}K ; /*residual resources*/
3: Ea ≜ {(v1, v2) ∈ E | ∀v1, v2 ∈ Va}; Ga ≜ {Va, Ea};
4: while (D is not empty)
5: dc == none;
6: for each (dm ∈ D) /*Search for a candidate flow*/
7: Gm

c = Ga \{v | S⃗v⋖R⃗m}; /*remove incapable nodes*/
8: if (IsConn(Gm

c , vsm, vtm) == true)
9: dc = dm; Gc = Gm

c ;
10: break;
11: if (dc == none) /*candidate flow not found*/
12: dc = RandSelect(D);
13: Gc = G \ {v | S⃗v ⋖ R⃗c};
14: for each (v ∈ V) /*node weight assignment*/
15: if (v ∈ Va) wv = InvCount(S⃗v, R⃗m);
16: else wv = K(K − 1)/2 + 1;
17: for each ((v1, v2) ∈ Ec) we = (wv1 + wv2)/2;
18: Pc = SPath(Gc, dc); /*shortest path routing*/
19: Va = Va ∪ Pc; D = D \ dc;
20: for each (v ∈ Pc) S⃗v = S⃗v − R⃗m;

nodes. The second observation we mentioned at the beginning
of this section suggests that once we have obtained a candidate
flow to route on the subnetwork comprised of the active
capable nodes, it is important to decide which nodes are
preferable to carry the candidate flow. We provide a measure
based on the distributions of the load vectors of both the node
residual capacities and the flow demand. The general notion is
that if the resource dimensions of a node are all kept balanced,
then more flows will likely fit into the node. As a consequence,
the number of nodes that need to be active will be reduced.
To clarify, we first introduce the concept of inversion.

Definition 2. Given two vectors X⃗ = ⟨x1, ..., xn⟩ and Y⃗ =
⟨y1, ..., yn⟩, an inversion is defined as the condition xi > xj

and yi < yj , 1 ≤ i, j ≤ n.

Property 1. Given two vectors in n dimensions, the total
number of inversions is upper bounded by n(n− 1)/2.

As we are focusing on the distributions of the node residual
capacities and the flow resources demands, it is straightforward
that an inversion can lead to much heavier resource dimensions
imbalance on a node as the scarce resource is demanded
more and the abundant resource is demanded less. Therefore,
in order to keep all the dimensions of resources balanced,
the number of inversions has to be minimized. Based on
this principle, the inversion-based node weight assignment
procedure assigns weights for nodes that are already active
according to the number of inversions shared by the node
residual capacity vector and the flow demand vector. The
weights of the inactive nodes are set to be one unit larger
than the maximum number of inversions that can be shared
by any residual capacity vector and flow demand vector. As
a result, if possible, the nodes that are active and with less

Algorithm 2 Hierarchical Green Routing (HGR)
1: function VBP(D) /*vector bin packing algorithm*/
2: idx = 1; dc = none; Sidx = {0}K ;
3: αk =

∑
dm∈D Rm(k)/

∑
dm∈D

∑K
k=1 Rm(k);

4: while (D is not empty)
5: Dc = D \ {dm ∈ D | Sidx ⋖Rm};
6: dc = argmindm∈Dc

∑K
k=1 αk(Sidx(k)−Rm(k))2;

7: if (dc == none) idx++; /*open a new bin*/
8: else D = D \ {dc}; /*pack the current item*/
9: return idx

10: for (0 ≤ i ≤ z − 1) /*# of aggr. nodes in each pod*/
11: Nagg

i = VBP({dm | vsm or vtm in pod i})
12: for (0 ≤ j ≤ z/2− 1) /*# of core nodes*/
13: N core

j = VBP({dm | (vsm or vtm mod (z2/4))/2 = j})

numbers of inversions will be preferably chosen to carry the
candidate flow and the inactive nodes have the lowest priority
to be used.

Path selection. The path selection process is equivalent
to solving a node-weighted single-source shortest path routing
problem. We notice that this problem can be transformed into
a traditional link-weighted single-source shortest path routing
problem by setting the weight of each link to be the half of the
sum of the weights of the endpoints of this link. Denote by R1

and R2 the node-weighted and the transformed link-weighted
shortest path routing problems respectively. We have

Property 2. Solving R1 is equivalent to soving R2.

As a result, solving the corresponding link-weighted single-
source shortest path routing problem will also give solutions to
the path selection for the candidate flow. It is well-known that
the link-weighted single-source shortest path routing problem
can be solved efficiently by using the Dijkstra algorithm.

C. Time Complexity

The algorithm runs iteratively and the total number of itera-
tions will be upper bounded by the number of flow deamands
M . In each iteration, the dominant time consumer is the depth-
first search for the candidate flow searching procedure, which
can be accomplished in O(|E|) time where |E| ≤ N2 is the
total number of edges in the network (N is the total number of
nodes). Therefore, the MRG algorithm takes O(|E|M2) time.

IV. TOPOLOGY-AWARE HEURISTIC

The proposed MRG algorithm can leverage the coordination
of the flow demands in multiple dimensions and minimize the
number of active network nodes efficiently. However, MRG is
generally conducted without taking into account the topology
features of the network. We notice that topologies of the
networks commonly used in data center networks such as fat-
tree or VL2 have very high level of symmetry and they are
usually well structured in layers. Therefore, we argue that the
routing algorithm can be further improved by taking advantage
of the topology characteristics. In this section, we provide a

new topology-aware heuristic for the most common tree-like
data center network topologies.

The key observation we have from tree-like topologies is
that the number of active nodes can be determined layer by
layer. We take a typical fat-tree topology as an example. The
number of edge nodes cannot be optimized since edge nodes
are also responsible for inter-host communication in the same
rack. In each pod, the number of aggregation nodes can be
determined according to the flow demands that flow out of
and into the pod. This is actually to solve a vector bin packing
problem as we have introduced previously. The core layer is a
bit different from the aggregation layer; for a z-ary fat-tree, all
the cores nodes that share congruence with respect to (z/2)
will be responsible for carrying the flow demands from the
aggregation nodes in the same positions in every pod. Thus
for these core nodes, solving a vector bin packing can give the
right number of nodes that need to stay active. Inspired by this
observation, we propose HGR, a hierarchical energy-efficient
routing algorithm based on solving a set of vector bin packing
problems. The pseudocode of HGR is shown in Algorithm 2.

Vector bin packing. The function VBP we adopted for
solving the vector bin packing problem is a norm-based
greedy algorithm [16]. The algorithm is bin-centric which
means that it focuses on one bin idx and always places
the most suitable remaining item that fits in the bin. To
find out the most suitable item, the algorithm looks at the
difference between the demand vector Rm and the residual
capacity vector Sidx under a certain norm. We choose the ℓ2-
norm and from all unassigned items, we choose the item that
minimizes

∑K
k=1 αk(Sidx(k)−Rm(k))2 where αk represents

the importance of dimension k among all dimensions and is
given by

αk =

∑
dm∈D Rm(k)∑

dm∈D
∑K

k=1 Rm(k)
.

If no item can be found to fit into the current bin idx, we open
a new bin and repeat the above procedure.

Time complexity. The HGR algorithm replies on solving
several instances of the vector bin packing problem. In the
worst case, the sizes of the vector bin packing instances can
be as large as O(M) and thus it will take O(M2) time to be
solved by VBP algorithm. As a result, the total time complexity
of HGR can be given by O(M2). Compared to the MRG
algorithm, HGR can provide a speedup of Ω(|E|). We will
validate this speedup by simulations.

V. EVALUATION

A. Simulation Settings

We deploy our algorithms on a laptop with a Core i5 2.6GHz
CPU with two physical cores and 8GB DRAM. All of the
algorithms are implemented in Python.

We choose fat-trees of different sizes as the data center net-
work topologies. This is because fat-tree is a typical topology
used in DCNs, and can provide equal-length parallel paths
between any pair of end hosts, which is very beneficial for
software packet processing paradigm to embed processing

20 40 60 80 100 200 300
Number of Flows

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
u
m

b
e
r

o
f

In
a
ct

iv
e
 N

o
d
e
s

(x
 1

0
0

%
)

SRSP SRG MRSP MRG

(a) Energy savings under different
numbers of flows

2 3 4 5 6 7 8 9 10
Number of Resource Dimensions

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

E
n
e
rg

y
 S

a
v
in

g
s

(x
 1

0
0
%

)

SRSP SRG MRSP MRG

(b) Energy savings under different
numbers of resource dimensions

Figure 1. Performance comparison for MRG under the scenarios where the
network topology is given by an 8-ary fat-tree with 208 nodes (128 end-hosts
and 80 packet processors).

functions into the routing paths regardless of the topology
details. The flow demands we used in our simulations are
generated randomly: the endpoints of each flow are chosen
uniformly at random from the set of end hosts. The require-
ment of each resource dimension of each flow is generated
following a normal distribution (in the positive side) where
the mean and the variation are all set to be 0.02 to provide
large resource demand diversity. The node capacity of each
resource dimension is assumed to be normalized to 1.

We carry out two groups of simulations for validating
MRG and HGR respectively: i) For evaluating the perfor-
mance of algorithm MRG, we compare it with three other
algorithms of interest: Single-Resource Shortest Path (SRSP),
Single-Resource Green (SRG), Multi-Resource Shortest Path
(MRSP). The efficiency of energy saving of the four algo-
rithms are examined on two fat-tree topologies in different
scales under different numbers of flow demands. We also
explore the impact of the number of resource dimensions under
certain scenarios. ii) The performance of algorithm HGR is
compared with that of algorithm MRG. We first study the
impact of the number of resource dimensions. Then, under
certain scenarios, we examine the efficiency of energy saving
and the running time of both MRG and HGR under different
numbers of flow demands. All the results are averaged among
20 independent tests and all the figures show with the average
and the standard deviation.

B. Performance of Algorithm MRG

Energy savings. The simulation results for evaluating the
energy saving performance of MRG are depicted in Fig. 1(a,
b, c). The energy saving ratio is represented by the number
of inactive nodes divided by the total number of nodes. It can
be seen from Fig. 1(a) that MRG outperforms the other three
algorithms with respect to energy savings under all scenarios.
SRSP and MRSP converge to very low energy saving ratios
very quickly while SRG and MRG can exploit more energy
saving potentials by carefully steering traffic flows. We also
compare the performance of all the algorithms under extremely
heavy load scenarios. When the number of flow demands
exceeds the capability of the network (and congestion happens
at some critical nodes), MRSP and MRG will block more flows
than SRSP and SRG. This is reasonable because MRSP and

Table I
RUNNING TIME STATISTICS OF THE ALGORITHMS (UNIT: SEC)

of flows 20 40 60 80 100 120

alg. MRG 5.37 16.63 37.00 58.26 92.63 101.89

alg. HGR 0.026 0.078 0.192 0.400 0.647 0.681

MRG take into account more resource dimensions and it is
likely that node capacities are violated more easily than with
single-resource solutions. However, when considering only
one resource dimension, some nodes will be congested due
to the neglect of other resource dimensions, although more
flow demands are likely to be assigned.

Impact of the number of resource dimensions. Fig. 1(b)
depicts the simulation results for examining scalability of
MRG with respect to the number of resource dimensions. It
can be obviously noticed that the energy saving performance
of MRG has a very significant improvement with the increase
of the number of resource dimensions and converges to a
high level. This is because with more resource dimensions,
the proposed inversion-based node weight assignment can
distinguish nodes from one another more accurately and thus
the path chosen for each flow will be more effective in terms
of energy saving.

C. Performance of Algorithm HGR

We first compare the scalability of MRG and HGR with
respect to the number of resource dimensions. The simulation
results are shown in Fig. 2(a). It can be observed that HGR
outperforms MRG when the number of resource dimensions
is very small. However, with the increase of the number of
resource dimensions, the energy saving performance of HGR
drops dramatically with a constant rate, while MRG performs
better and better and converges finally as we have discussed
before. This is mainly because HGR is largely based on the
vector bin packing heuristic which performs well when the
number of dimensions is small due to the greedy manner of
item assignment, but it has limited scalability with respect to
the number of dimensions.

We then choose a fair number of resource dimensions
(K = 3) and compare both the energy saving ratio and the
running time of MRG and HGR. The energy saving results are
depicted in Fig. 2(b). We observe that when the number of flow
demands is not very large, MRG and HGR are comparable
in terms of energy savings, but HGR suffers from some
performance degradation when the number of flows is very
large. However, HGR compensates this slight loss of energy
efficiency by a very significant reduction on the running time.
As can be seen from Table I, for a fat-tree with 80 packet
processing nodes (i.e., |E| = 192), the running time of HGR
is around 0.5 percent of that of MRG, which confirms the
lower bound on the speedup Ω(|E|).

VI. CONCLUSION

We study the energy-efficiency multi-resource routing prob-
lem which arises from the recently proposed cloud networking

2 3 4 5 6 7 8 9 10
Number of Resource Dimensions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
n
e
rg

y
 S

a
v
in

g
s

(x
 1

0
0
%

)

MRG(30) HGR(30) MRG(60) HGR(60)

(a) Energy savings under different
numbers of resource dimension

20 40 60 80 100 120
Number of Flows

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
u
m

b
e
r

o
f

In
a
ct

iv
e
 N

o
d
e
s

(x
 1

0
0

%
)

MRG HGR

(b) Energy savings under different
numbers of flows

Figure 2. Performance comparison for HGR under the scenarios where the
network topology is given by an 8-ary fat-tree with 208 nodes (128 end-hosts
and 80 packet processors).

model NaaS. This optimization problem differs from the
traditional energy-efficient routing problem by having node
capacities and flow demands represented by vectors in multiple
dimensions. We provide a simple iterative routing scheme
which selects flows iteratively to exhaust the residual capac-
ities in active nodes and assign routes to flows based on the
distributions of node residual capacities and flow demands.
To leverage the structural property of data center network
topologies, we also provide a topology-aware heuristic desig-
nated to fat-trees, which can provide comparably good energy
efficiency while significantly reducing the computation time.

REFERENCES

[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in NSDI,
2010, pp. 281–296.

[2] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: fine grained
traffic engineering for data centers,” in CoNEXT, 2011, p. 8.

[3] OpenFlow. https://www.opennetworking.org/images/stories/downloads/sdn-
resources/white-papers/wp-sdn-newnorm.pdf.

[4] T. Benson, A. Akella, A. Shaikh, and S. Sahu, “Cloudnaas: a cloud
networking platform for enterprise applications,” in SoCC, 2011, p. 8.

[5] P. Costa, M. Migliavacca, P. Pietzuch, and A. L. Wolf, “Naas: Network-
as-a-service in the cloud,” in Hot-ICE, 2012.

[6] P. Costa, A. Donnelly, A. I. T. Rowstron, and G. O’Shea, “Camdoop:
Exploiting in-network aggregation for big data applications,” in NSDI,
2012, pp. 29–42.

[7] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown, “Elastictree: Saving energy in data center
networks,” in NSDI, 2010, pp. 249–264.

[8] X. Wang, Y. Yao, X. Wang, K. Lu, and Q. Cao, “Carpo: Correlation-
aware power optimization in data center networks,” in INFOCOM, 2012.

[9] L. Wang, F. Zhang, J. A. Aroca, A. V. Vasilakos, K. Zheng, C. Hou,
D. Li, and Z. Liu, “Greendcn: A general framework for achieving energy
efficiency in data center networks,” IEEE Journal on Selected Areas in
Communications, vol. 32, no. 1, pp. 4–15, 2014.

[10] L. Wang, A. Fernández Anta, F. Zhang, J. Wu, and Z. Liu, “Multi-
resource energy-efficient routing in cloud data centers with network-as-
a-service,” 2015, arXiv:1501.05086 (http://arxiv.org/abs/1501.05086).

[11] N. Bansal, A. Caprara, and M. Sviridenko, “Improved approximation
algorithms for multidimensional bin packing problems,” in FOCS, 2006.

[12] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica, “Multi-resource fair
queueing for packet processing,” in SIGCOMM, 2012, pp. 1–12.

[13] M. Andrews, S. Antonakopoulos, and L. Zhang, “Minimum-cost net-
work design with (dis)economies of scale,” in FOCS, 2010.

[14] R. Krishnaswamy, V. Nagarajan, K. Pruhs, and C. Stein, “Cluster before
you hallucinate: approximating node-capacitated network design and
energy efficient routing,” in STOC, 2014, pp. 734–743.

[15] G. J. Woeginger, “There is no asymptotic ptas for two-dimensional
vector packing,” Inf. Process. Lett., vol. 64, no. 6, pp. 293–297, 1997.

[16] R. Panigrahy, K. Talwar, L. Uyeda, and I. Wieder, “Heuristics for vector
bin packing,” in ESA, 2011.

