
A Distributed Formation of Orthogonal Convex Polygons in Mesh-Connected
Multicomputers �

Jie Wu
Department of Computer Science and Engineering

Florida Atlantic University
Boca Raton, FL 33431

Abstract

The rectangular faulty block model is the most commonly
used fault model in designing a fault-tolerant and deadlock-
free routing algorithm in mesh-connected multicomputers.
The convexity of a rectangle facilitates simple and efficient
ways to route messages around fault regions using relatively
few virtual channels to avoid deadlock. However, such a
faulty block may include many nonfaulty nodes which are
disabled, i.e., they are not involved in the routing process.
Therefore, it is important to define a fault region that is con-
vex, and at the same time, to include a minimum number of
nonfaulty nodes. In this paper, we propose a simple and ef-
ficient distributed algorithm that can quickly construct a set
of special convex polygons, calledorthogonal convex poly-
gons, from a given set of rectangular faulty blocks in a 2-D
mesh (or 2-D torus). The formation of orthogonal convex
polygons is done through a labeling scheme based on itera-
tive message exchanges among neighboring nodes.

1. Introduction

In a mesh-connected multicomputer, processors (also
called nodes) exchange data and coordinate their efforts
by sending and receiving messages through the underlying
mesh network. Thus, the performance of such a system
depends heavily on the end-to-end cost of communication
mechanisms. Routing is the process of transmitting data
from one node to another node in a given system. As the
number of nodes in a mesh-connected multicomputer in-
creases, the chance of failure also increases. At the same
time, applications that run on such a system are often criti-
cal and may have real-time constraints. Therefore, the abil-
ity to tolerate failure is becoming increasingly important,
especially in routing.

Most literatures on fault-tolerant routing use disjoint
rectangular blocks ([1], [2], [6]) to model node faults (link

�This work was supported in part by NSF grant CCR 9900646 and grant
ANI 0073736. Email: jie@cse.fau.edu.

faults can be treated as node faults) and to facilitate routing
in 2-D meshes. First, a node labeling scheme that identifies
nodes (faulty and nonfaulty) that cause routing difficulties
is defined and such nodes are calledunsafe nodes. Con-
nected unsafe nodes form a faulty rectangular region called
a afaulty block.

Faulty blocks can be easily established and maintained
through message exchanges among neighboring nodes. The
convexity of each faulty block facilitates a simple fault-
tolerant and deadlock-free routing using relatively few vir-
tual channels ([6] and [7]). This feature is also a necessary
condition for progressive routing, where the routing process
never backtracks. The absence of backtracking in turn is a
necessary condition for minimal routing, where the destina-
tion is reached through a minimal path from the source. A
fault-tolerant minimal routing algorithm for 2-D meshes has
been developed in [9] using the faulty block model. There
are several studies ([2] and [8]) on fault-tolerant routing that
can handle non-rectangular fault regions, such as H-shape,
L-shape, T-shape, U-shape, and+-shape fault regions. De-
spite all the desirable features of the faulty block model,
a major problem is that a faulty block may include many
nonfaulty nodes treated as faulty (with the unsafe label).
Although some efforts have been made either to enhance
the faulty block definition to include fewer nonfaulty nodes
in a faulty block [5] or to activate some boundary nonfaulty
nodes in a faulty block as in [1] and [6], the above problem
still exists.

A convex region (polygon) is defined as a region (poly-
gon) P for which the line segment connecting any two
points inP lies entirely withinP . If we change the “line
segment” in the standard convex region definition to “hor-
izontal or vertical line segment”, the resultant region is
called anorthogonal convex region (polygon)[4]. Clearly,
a faulty block is a special orthogonal convex region. In 2-D
meshes, the boundary lines of a region are either horizontal
or vertical. Therefore, each region is a polygon. In the sub-
sequent discussion, we use the terms polygon and region
interchangeably. In this paper, we consider the following
problem: For a given faulty block, activate the maximum

1



number of nonfaulty nodes in the block subject to the condi-
tion that the resultant region(s) is still anorthogonal convex
polygon(s).

A simple and efficient distributed algorithm is presented
in this paper that determines a set of small orthogonal
convex polygons to cover all the faults in a given faulty
block. Let d(B) denote the diameter of faulty blockB,
whilemaxfd(B)g represents the maximum diameter of all
the faulty blocks in the faulty mesh. This algorithm is
based on iterative message exchanges among neighboring
nodes. Specifically, this approach consists of two phases.
In phase one, disjoint faulty blocks are constructed through
maxfd(B)g rounds of message exchanges among neigh-
bors in a given faulty mesh. In phase two, some non-
faulty nodes in faulty blocks are activated, by removing
them from the associated faulty blocks, through up to an-
othermaxfd(B)g rounds of message exchanges between
neighbors.

We show that a resultant region, called adisabled re-
gion, generated after removing activated nodes from the
given faulty block is the smallest orthogonal convex poly-
gon that covers all the faults in the region. Note that there
may have several disabled regions generated from a given
faulty block. In addition, we show that the number of non-
faulty nodes covered in these disabled regions (from a given
faulty block) is no more than that in the smallest orthogo-
nal convex polygon that includes all the faulty nodes in the
original faulty block. We note that for certain cases, a dis-
abled region can be further partitioned and more nonfaulty
nodes in the region can be removed. This brings the fol-
lowing open problem: For a given faulty block, find a set of
orthogonal convex polygons that covers all the faults in the
faulty block and contains a minimum number of nonfaulty
nodes. This problem is conjectured to be NP-complete [3].

2. Preliminaries

We consider only node faults and assume that faulty
nodes just cease to work. Also, each nonfaulty node knows
the status of its neighbors only; that is, there is noa priori
global information of fault distribution. A2-D n� n mesh
with n2 nodes has an interior node degree of4 and a net-
work diameter of2(n � 1). Each nodeu has an address
(ux; uy), whereux; uy 2 f0; 1; :::; n � 1g. Two nodesu:
(ux; uy) andv: (vx; vy) are connected if their addresses dif-
fer in one and only one dimension, say dimensionx. More-
over,jux � vxj = 1. Similarly, if they differ in dimension
y, thenjuy � vy j = 1.

Definition 1: A region isorthogonal convexif and only if the
following condition holds: For any horizontal or vertical
line, if two nodes on the line are inside the region, all the
nodes on the line that are between these two nodes are also
inside the region.

The difference between a standard convex region and an
orthogonal convex region is that the line in the latter is re-
stricted to only horizontal and vertical, whereas the line in
the former can be along any direction in a standard convex
region. Clearly, T-shape, L-shape, and +-shape fault regions
are orthogonal convex polygons, whereas U-shape and H-
shape fault regions are non-orthogonal convex polygons.

An application of orthogonal convex regions in achiev-
ing fault-tolerant routing in 2-D meshes has been discussed
in Chalasani and Boppana’sextendede-cube routing[2].

3. Node Status

Although the faulty block model for 2-D meshes has
been studied by many researchers, there is still no agree-
ment about terminology. Here we introduce a set of con-
cepts and terminology and express some existing models
and concepts in terms of the ones in the set. Three orthog-
onal classifications of nodes in 2-D meshes are given: (1)
faulty vs. nonfaulty, (2) safe vs. unsafe, and (3) enabled vs.
disabled.

All nodes are either faulty or nonfaulty (healthy). To
construct disjoint faulty blocks in 2-D meshes, nonfaulty
nodes are further classified into safe and unsafe nodes. Un-
safe nodes will be included in faulty blocks and implicitly
disabled (i.e., they are treated as faulty). Normally, a faulty
block is constructed by first identifying unsafe nodes de-
fined as follows:

Definition 2a: All faulty nodes areunsafe. A nonfaulty node
is unsafeif it has two or more unsafe neighbors; otherwise,
it is safe.

A faulty blockconsists of connected unsafe nodes. Let
u: (ux; uy) andv: (vx; vy) be two nodes in a 2-D mesh,
d(u; v) = jux�vxj+juy�uyj denotes thedistancebetween
u andv. The distancebetween two faulty blocksA and
B is defined asd(A;B) = minu2A;v2Bfd(u; v)g. It has
been shown that faulty blocks in 2-D meshes are disjoint
rectangles and the distance between any two faulty blocks
is at least 3. Figure 1 (a) shows an example of a faulty block
where black nodes represent faulty nodes and gray nodes
represent nonfaulty but unsafe nodes. The faulty block is
bounded by adjacent safe nodes (which are not shown in
the figure). Note that under this definition of boundary lines,
faulty nodes (ux; uy) and (ux+1; uy+1) (without any other
faulty nodes) are contained in one single region.

Clearly, a faulty block may include many nonfaulty
nodes, which is an undesirable feature. To reduce the num-
ber of nonfaulty nodes in a faulty block, the following en-
hanced definition of safe/unsafe nodes is used.

Definition 2b: All faulty nodes areunsafe. A nonfaulty
node isunsafeif it has an unsafe neighbor in both dimen-
sions; otherwise, it issafe.



(a) (b)

(g) (h)

Figure 1. Faulty blocks and disabled regions.

Note that the difference between Definitions 2a and 2b is
the following: When a node has exactly two unsafe neigh-
bors and both of them are along the same dimension, this
node is an unsafe node based on Definition 2a and a safe
node based on Definition 2b.

Figure 1 (b) shows the result of applying Definition 2b
to the same example of Figure 1 (a). In this case, there are
two disjoint faulty blocks. It can be proved that the distance
between two faulty blocks is at least 2. Besides, the total
number of nonfaulty nodes included in faulty blocks is less
than the one under Definition 2a.

To further reduce the number of nonfaulty nodes in a
faulty block, the concept of enabled/disabled nodes can
be introduced. Basically, a nonfaulty but unsafe node can
be made enabled in a faulty block, i.e., this node can be
excluded from the faulty block.The enabled status of a
node is defined based on the enabled/disabled status of its
neighbors, rather than depending on safe/unsafe status of
its neighborsas in the definition either by Boura and Das
[1] or by Su and Shin [6].

Definition 3 (Wu): All faulty nodes are markeddisabled.
All safe nodes are markedenabled. An unsafe node is ini-
tially markeddisabled, but it is changed to the enabled sta-
tus if it has two or more enabled neighbors.

A disabled regionconsists of connected disabled nodes.
Clearly, disabled regions are disjoint and the distance be-
tween any two disabled regions is at least 2.

Based on the two sets of definitions for node status: one
for safe/unsafe nodes based on either Definition 2a or Def-
inition 2b and the other for enabled/disabled nodes based
on Definition 3, a faulty node must be unsafe and disabled.
For a nonfaulty node, there are three possible cases: (1) safe

and enabled, (2) unsafe and enabled, and (3) unsafe and dis-
abled. Figures 1 (c) and (d) show the results of applying the
enabled/disabled rule to the examples of Figures 1 (a) and
(b), respectively.

To ensure that all boundary nodes in a mesh are treated
the same as interior nodes, four additional lines are added
which are adjacent to the boundaries lines of the mesh1.
These additional lines become the new boundaries of the
mesh. Nodes along these additional lines are calledghost
nodeswhich are safe but they do not participate in any ac-
tivities, such as in a routing process. Among nodes in the
given mesh, only enabled nodes will participate in routing
activities.

The enabled/disabled node definition in Definition 3
involves one subtle issue and deserves more discussion.
Unlike the “recursive” definition of safe/unsafe status, all
nodes are initially marked as disabled or enabled. Node sta-
tus can be changed later from disabled to enabled following
the rule in Definition 3. This is to ensure that the concept
of disabled/enabled node iswell-defined, i.e., each node has
one and only one possible assignment of enabled/disabled
status. Suppose the enabled/disabled rule is defined recur-
sively as follows:All faulty nodes are marked disabled. All
safe nodes are marked enabled. An unsafe node is enabled
if it has two or more enabled neighbors; otherwise, it is
marked disabled.For a given system configuration, unsafe
nodes may have “double status”, i.e., two or more different
enabled/disabled assignments are possible that both satisfy
this definition.

Figure 2 (a) shows an example of a faulty block with its
upper right block containing only nonfaulty nodes and with
the remaining nodes in the faulty block being faulty. Based
on the recursive definition of enabled/disabled status, the
upper right corner node should be marked enabled. Itera-
tively we enable all the nonfaulty nodes in the upper right
block. Figure 2 (b) shows a similar example, however, the
block that contains only nonfaulty nodes is located at the
upper center of the faulty block. In this case, we can either
enable all the nonfaulty nodes in the block or disable them.
Therefore, these nonfaulty nodes have double status. Based
on Definition3c, all the nodes in the faulty block of Figure
2 (b) have the disabled status. Similar problems exist in all
safe/unsafe definitions (Definition 2a and Definition 2b). In
fact, each nonfaulty node should be assigned the safe status
initially.

Two distributed algorithms are given: one for deciding
safe/unsafe status and another one for enabled/disabled sta-
tus. The first algorithm generates a set of faulty blocks and
the second one produces a set of disabled regions that are
orthogonal convex polygons. Both algorithms follow the
same structure where each node exchanges its status with

1The boundary problem does not exist in a 2-D tori with wraparound
connections.



faulty block faulty block

(a) (b)

Figure 2. Two sample faulty blocks.

Safe/unsafe status:
all faulty nodes are initialized to unsafe;
all nonfaulty nodes are initialized to safe;
repeat

doall
(1) nonfaulty nodeu exchanges its status with its neighbors;
(2) changeu’s status to unsafe if it has an unsafe neighbor

in both dimensions
odall

until there is no status change

Enabled/disabled status:
all unsafe nodes are initialized to disabled;
all safe nodes are initialized to enabled;
repeat

doall
(1) nonfaulty but unsafe nodeu exchanges its status

with its neighbors;
(2) changeu’s status to enabled if it has two or more

enabled neighbors.
odall

until there is no status change

its neighbors and changes its status based on the collected
neighbors’ status. To simplify our discussion, each itera-
tive algorithm is assumed to be synchronous and each round
of exchange and update is done in a lock-step mode. The
algorithm for safe/unsafe status is based on Definition 2b.
The enabled/disabled status is based on the proposed en-
abled/disabled rule (Definition3).

Consider an example of a 2-D mesh with three faulty
nodes: (1,3), (2,1), and (3,2). Using the safe/unsafe rule,
one faulty blockf(i; j)ji; j 2 f1; 2; 3gg is constructed. Us-
ing the enabled/disabled rule, the faulty block is split into
two disabled regions:f(1; 3)g andf(2; 1); (3; 2)g. All the
nonfaulty nodes in the faulty block are enabled.

4. Properties

In this section, we first show that after removing all the
enabled nodes (based on Definition3) in a faulty block,
a disabled region containing adjacent faulty and disabled
nodes is an orthogonal convex polygon.

v1 u v2

ER2

ER1

(b)

opening

faulty block

disabled region

v1 v2

ER2

ER1

(c)

opening

w2

w1

u

faulty block

disabled region

v1 u v2

ER2

ER1

(a)

faulty block

disabled region

Figure 3. Three cases of disabled regions.

Theorem 1: A disabled region is an orthogonal convex
polygon.

Proof: Assume that the disabled region is concave. We can find a
horizontal (or vertical) line [v1; v2] with two nodesv1 andv2 on
the line both being inside the region, but some nodeu on the line
within these two nodes is outside the region. Consider anenabled
regionER that includes connected enabled nodes (including node
u) in the original faulty block. Line[v1; v2] partitionsER into
two disjoint enabled regionsER1 andER2. An enabled region is
said to have anopeningif it includes a nodew that has a neighbor
outside the original faulty block and nodew is called anopening
point.

The following two cases are considered: (1) If eitherER1

or ER2 does not have an opening, sayER1, based on the en-
abled/disabled rule, nodes inER1, as well as nodes inER that
are on line[v1; v2], should all be marked disabled. This brings a
contradiction to the assumption thatu is marked enabled. In Fig-
ure 3 (a) bothER1 andER2 do not have an opening and in Figure
3 (b)ER1 does not have an opening andER2 has an opening. (2)
If bothER1 andER2 have an opening (see Figure 3 (c)), assume
thatw1 andw2 are two opening points inER1 andER2, respec-
tively; then a path inER connecting fromw1 to u and fromu to
w2 disconnects the disabled region into at least two components,
with one containing nodev1 and the other containing nodev2.
This contradicts the assumption that the disabled region is con-
nected.

Next we show that each disabled region is the small-
est orthogonal convex polygon that contains all the faults
within its region. First, we introduce a special node called
corner nodeand three relevant lemmas.

Definition 4: A corner nodein a disabled region is a node
that has at least one neighbor, along each dimension, that



is outside the disabled region.

Lemma 1: In a disabled region, each corner node is a faulty
node.

Proof: If a corner node of a disabled region is a nonfaulty node,
based on Definition 4, it has two enabled neighbors, one along
each dimension, that are outside the disabled region. Based on the
enabled/disabled rule of Definition 3, this corner node is marked
enabled and should be excluded from the fault region. This brings
a contradiction.

Lemma 2: For any nodeu in a disabled region, if the 2-D
space is divided into four quadrants induced by horizontal
and vertical lines through nodeu, each quadrant, which
includes part of thex andy axes and the origin, contains at
least one corner node.

Proof: For any nodeu in a disabled region, we divide the space
into four quadrants induced by horizontal and vertical line through
nodeu. More specifically, the four regions are defined as follows:
quadrant(+;+) with x � 0 andy � 0, quadrant(+;�) with
x � 0 andy � 0, quadrant(�;+) with x � 0 andy � 0, and
quadrant(�;�) with x � 0 andy � 0.

Without loss of generality, we only examine one quadrant, say
quadrant(+;+). Independent of the selection of nodeu, each
quadrant contains at least one node in the disabled region which is
nodeu itself (the origin). Among nodes in the disabled region that
are in quadrant(+;+), we first select nodes that have the max-
imum y value and these nodes are denoted as(+; ymax). Then,
among(+; ymax) we select one node that has the maximumx
value and this node is denoted as(xmax; ymax). Clearly, node
(xmax; ymax) is a corner node because it has one neighbor out-
side the polygon (which may be a ghost node on the boundary of
the 2-D mesh) along each dimension. Note that it is possible that
more than one corner node exists in quadrant(+;+).

Note that four quadrants overlap with each other either
along the adjacentx (or y) axis or at the origin or both.
One special case occurs when each quadrant contains only
one faulty node which is the origin. In this case, all four
quadrants are the same and contain the origin node only.

Lemma 3: Let u be a node and letB denote a disabled
region. Ifu is not contained inB then at least one quadrant,
as defined in Lemma 2, does not contain any nodes inB.

Proof: When a quadrant contains nodes inB, at least one node in
B is on thex or y axis; otherwise, we prove Lemma 3, since all
the other three quadrants do not contain any nodes inB. (Because
B is connected and covers two quadrants, it must include one node
on either thex or y axis.) Without loss of generality, assume that
there is a node inB on thex axis and it is on the positive side
of it, i.e., it is in both quadrants (+;+) and (+;�). If there is
another node inB on the negative side of thex axis, i.e., it is in
both (�;+) and (�;�), then the line segment that contains both
nodes violates the definition of the orthogonal convex polygon,
because the originu is also on this segment but it is outsideB.
Therefore, there is at least one node inB along the positive side of

corner node

B1

B2

u

y

x

(-,+) (+,+)

(-,-) (+,-)

Figure 4. Two convex polygons that cover all
the faults within the region.

they axis and one node inB along the negative side of they axis
to ensure that both quadrants (�;+) and (�;�) contain at least
one node inB and that nodes inB that are in (�;+) and (�;�)
are connected without including any nodes on the negative side of
thex axis. Then they axis as a line segment violates the definition
of the orthogonal convex polygon (originu is outsideB).

Theorem 2: Each disabled region is the smallest orthogo-
nal convex polygon that covers all the faulty nodes within
the region.

Proof: Assume thatB1 is the disabled region under consideration
andB2 is another disabled region that contains all the faulty nodes
within the region. IfB2 is smaller thanB1, there is at least one
node, sayu, that is insideB1 but outsideB2. Use nodeu as the
origin and draw one horizontal line (called thex axis) and one
vertical line (called they axis). By doing so, the whole space
is divided into four quadrants based on the values ofx andy in
(x; y): (+;+), (+;�), (�;+), (�;�), and each quadrant includes
part of thex andy axes and the originu. SinceB2 is a convex
polygon and nodeu is outsideB2, based on Lemma 3, there is
at least one quadrant that does not contain any nodes inB2, say
quadrant (�;+) as shown in Figure 4 without loss of generality.
Because nodeu is insideB1 and there is at least one corner node
in quadrant (�;+) based on Lemma 2, each corner node must
be a faulty node based on Lemma 1. This result contradicts the
assumption thatB2 contains all the faulty nodes within the region.

Corollary : Given a faulty block, the number of nonfaulty
nodes covered in disabled regions, generated by applying
the proposed enabled/disabled rule on the faulty block, is no
more than the one in the smallest orthogonal convex poly-
gon that contains all the faulty nodes in the faulty block.

Note that our result is optimal under the assumption that
each disabled region cannot be further partitioned. For cer-
tain cases, such as the ones in Figures 1 (c) and (d), a dis-
abled region can still be partitioned into several disjoint or-
thogonal convex polygons. This brings the following open
problem: For a given faulty block, find a set of orthogonal



1

1.5

2

2.5

3

3.5

4

4.5

5

50 100 150 200 250 300 350

N
um

be
r 

of
 r

ou
nd

s

Number of faulty nodes(f)

faulty block
disabled region

20

40

60

80

100

120

140

400 500 600 700 800 900 1000 1100

N
um

be
r 

of
 r

ou
nd

s

Number of faulty nodes(f)

faulty block
disabled region

(a) (b)

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

50 100 150 200 250 300 350en
ab

le
d 

no
de

/u
ns

af
e 

bu
t n

on
fa

ul
ty

 n
od

e

Number of faulty nodes

ratio

0

0.2

0.4

0.6

0.8

1

400 500 600 700 800 900 1000 1100en
ab

le
d 

no
de

/u
ns

af
e 

bu
t n

on
fa

ul
ty

 n
od

e

Number of faulty nodes

ratio

(c) (d)

Figure 5. Simulation results.

convex polygons that cover all the faults in the faulty block
with a minimum number of nonfaulty nodes inside these
polygons. This problem is conjectured to be NP-complete
[3].

5. Simulation

The following simulation study has been conducted: (1)
For a givenn � n mesh (withn = 100 in the simulation)
and a given number of faultsf (with 10 � f � 1100 in
the simulation), the averages of the maximum numbers of
rounds needed to determine faulty blocks and disabled re-
gions (after the formation of faulty blocks) are calculated
(see Figures 5 (a) and (b)). (2) For each faulty block that
can be reduced to a set of orthogonal convex polygons, the
average percentage of enabled nodes among unsafe but non-
faulty nodes in the faulty block is calculated (see Figures 5
(c) and (d)).

In our simulation study, faults (f in all) are randomly
selected among100 � 100 nodes in the mesh. The simu-
lation results show that the averages of the maximum num-
bers of rounds needed to construct faulty blocks and then
disabled regions are both relatively row, much lower than
the diameter of the mesh. The average number for disabled
regions (after the formation of faulty blocks) is lower than
the number for faulty blocks, because disabled regions are
generated out of faulty blocks. The average percentage of
enabled nodes among unsafe but nonfaulty nodes in faulty
blocks stays very high, especially when the number of faults
is relatively low. This high percentage is in part due to
the fact that a random distribution tends to generate a set
of small faulty blocks and the fact that nonfaulty nodes in
small faulty blocks are easy to be enabled. In summary, the

simulation results confirm the effectiveness (high percent-
age of enabled nodes) of our approach with a relatively low
cost (small number of rounds).

6 Conclusions

In this paper, we have proposed a simple and efficient
distributed algorithm that can quickly construct a set of or-
thogonal convex polygons containing all the faulty nodes
in a given rectangular faulty block. We have shown that
the number of nonfaulty nodes covered in these orthogonal
convex polygons is no more than the one in the smallest or-
thogonal convex polygon that includes all the faulty nodes
in the faulty block. Moreover, each orthogonal convex poly-
gon is the smallest one that contains all the faults it covers.
The simulation results confirm the cost-effectiveness of the
approach, i.e., orthogonal convex polygons can be gener-
ated quickly from a given set of faulty blocks. The con-
vexity of a fault region facilitates efficient fault-tolerant and
deadlock-free routing. Based on the results of this paper, we
can provide a refined fault model to efficiently support sev-
eral routing objectives, including optimality and freedom of
deadlock.

References

[1] Y. M. Boura and C. R. Das. Fault-tolerant routing in mesh
networks.Proc. of 1995 International Conference on Parallel
Processing. August 1995, I 106- I 109.

[2] S. Chalasani and R. V. Boppana. Communication in mul-
ticomputers with nonconvex faults.IEEE Transactions on
Computers. 46, (5), May 1997, 616-622.

[3] D. Z. Chen. private communication.

[4] F. P. Preparata and M. I. Shamos.Computational Geometry:
An Introduction. Springer-Verlag, 1985.

[5] J. D. Shih. Adaptive fault-tolerant wormhole routing al-
gorithms for hypercube and mesh interconnection networks.
Proc. of the 11th International Parallel Processing Sympo-
sium. April 1997, 333-340.

[6] C. C. Su and K. G. Shin. Adpative fault-tolerant deadlock-
free routing in meshes and hypercubes.IEEE Transactions on
Computers. 45, (6), June 1996, 672-683.

[7] P. H. Sui and S. D. Wang. An improved algorithm for fault-
tolerant wormhole routing in meshes.IEEE Transactions on
Computers. 46, (9), September 1997, 1040-1042.

[8] Y. C. Tseng, M. H. Yang, and T. Y. Juang. An Euler-path-
based multicasting model for wormhole-routed networks with
multi-destination capability.Proc. of the 1998 International
Conference on Parallel Processing. August 1998, 366-373.

[9] J. Wu. Fault-tolerant adaptive and minimal routing in mesh-
connected multicomputers using extended safety levels.IEEE
Trans. on Parallel and Distributed Systems. 11, (2), Feb. 2000,
149-159.


