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Abstract

An important problem in wireless networks, such as wireless ad hoc and sensor networks, is to select
a few nodes to form a virtual backbone that supports routing and other tasks such as area monitoring.
Previous work in this area has focused on selecting a small virtual backbone for high efficiency. We
propose to construct &-connectedi-dominating set{-CDS) as a backbone to balance efficiency and
fault tolerance. Three localizeldtCDS construction protocols are proposed. The first protocol randomly
selects virtual backbone nodes with a given probabjity wherep, depends on network condition
and the value ok. The second protocol, a deterministic approach, extends Wu and Dai’'s coverage
condition, which is originally designed for 1-CDS construction, to ensure the formatioh-6i@S. The
last protocol, a hybrid of probabilistic and deterministic approaches, provides a generic framework that
can convert many existing CDS algorithms int€DS algorithms. These protocols are evaluated via
simulation study.
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1 Introduction

In wireless ad hoc and sensor networks, autonomous nodes form self-organized networks without
centralized control or infrastructure. These networks can be modelled as unit disk graphs [9], where
two nodes are neighbors if they are within each other’s transmission range. To support various network
functions such as multi-hop communication and area monitoring, some wireless nodes are selected to
form avirtual backbone In many existing schemes [1, 2, 4, 8, 11, 16, 26, 29, 30], virtual backbone
nodes form a connected dominating set (CDS) of the wireless network. A set of nodes is a dominating
set if all nodes in the network are either in this set or have a neighbor in this set. A dominating set
is a CDS if the subgraph induced from this dominating set is connected. For example, both node sets
{8} in Figure 1 (a) and 5, 6, 7,8} in Figure 1 (b) are connected dominating sets in their corresponding
networks. Applications of a CDS in wireless networks include:

¢ Reducing routing overheg@0]. By removing all links between non-virtual backbone nodes, the
size and maintenance cost of routing tables can be reduced. By using only backbone nodes to
forward broadcast packets, the excessive broadcast redundancy can be avoided.

e Energy efficient routingg8]. By putting non-backbone nodes into periodical sleep mode, the energy
consumption is greatly reduced while network connectivity is still maintained by backbone nodes.

e Area coveragd7]. In densely deployed sensor networks, the node coverage of a CDS is a good
approximation of area coverage. That is, the deployment area is within the sensing range of
backbone nodes with high probability.

Previous study in this area has focused on finding a minimal CDS for higher efficiency. However,
recent study [3, 5, 17, 21, 22] suggested that it is equally important to maintain a certain degree of
redundancy in the virtual backbone construction for fault tolerance and routing flexibility. In wireless
ad hoc networks, a node may fail due to accidental damage or energy depletion, and a wireless link may
fade away during node movement. In a wireless sensor network, it is desirable to have several sensors
monitor the same target, and let each sensor report the sensed data via different routes to avoid loss of
an important event.

We propose to constructiaconnected:-dominating set (or simpli-CDS) as a backbone of wireless
networks. A node set is-dominating if every node is either in the set or aseighbors in the set. A-
dominating set is &-CDS if its induced subgraph isvertex connected. A graph isvertex connected
if removing anyk — 1 nodes from it does not cause a partition. For example, backbone nodes 5, 6, 7,
and 8 in Figure 1 (b) form a 2-CDS. Every non-backbone node has at least two neighboring backbone
nodes, and the subgraph consisting of all backbone nodes is 2-vertex connected. Similarly, node set
{2,4,5,6,7,8} in Figure 1 (c) is a 3-CDS. Removing aiy— 1 nodes from &-CDS, the remaining
nodes still form a CDS (i.e., 1-CDS). Thereforek-&DS as a virtual backbone can survive failures of
at leastt — 1 nodes.

Threek-CDS construction protocols are proposed in this paper. All those protocdiscaitized al-
gorithmsthat rely on only neighborhood information. The first protocol, calke@ossip, is a simple
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(a) 1-CDS (b) 2-CDS (c) 3-CDS

Figure 1. k-connected k-dominating sets constructed by applying k-coverage conditions with &k =
1,2, and 3. Virtual backbone nodes are represented by double circles.

extension of an exiting probabilistic algorithm [16], where each node becomes a backbone node with
a given probabilityp,. This algorithm has very low overhead, but the implementation paramgter

that maintains &-CDS with high probability depends on network size and density. In addition, the
randomized backbone node selection process usually produces a large backbone. The second protocol
extends our early deterministic CDS algorithm [29], where each node has a backbone status by default
and becomes a non-backbone node ¢baerage conditioms satisfied. The proposéddcoverage con-

dition guarantees all backbone nodes form+@DS but has relatively high computation overhead. We
further introduce a hybrid paradigm to extend many existing CDS algorithms-@DS formation. In

this scheme, a wireless network is randomly partitioned insoibgraphs consisting of nodes with dif-
ferent colors (the probabilistic part). A colored virtual backbone is constructed for each subgraph using
a traditional CDS algorithm (the deterministic part). We prove that in dense wireless networks, the union
of all colored backbones is/aCDS with high probability. Simulation study is conducted to compare
performances of these protocols.

The remainder of this paper is organized as follows. Section 2 reviews existing virtual backbone con-
struction protocols, including both probabilistic and deterministic schemes, and introduces the concept
of k-CDS. In Section 3, we propose extensions of two virtual backbone protocotsG@S construc-
tion. Section 4 presents the color-bage@DS formation paradigm. Section 5 gives simulation results,
and Section 6 concludes this paper.

2 Background and Related Work

In this section, we first introduce two existing localized virtual backbone formation algorithms, one
probabilistic and another deterministic, that will be extended@DS construction in the next section.
Then we review concepts @fconnectivity andk-CDS, and algorithms that verify-connectivity and
form ak-CDS.



2.1 Virtual backbone construction

A wireless network is usually modelled as a unit disk graphd9% (V, E), whereV is the set of
wireless nodes anf the set of wireless links. Each nodelins associated with a coordination in 2-D or
3-D Euclidean space, and a wireless liakv) € F if and only if the Euclidean distance between nodes
u andwv is smaller than a uniform transmission range In real wireless networks, the transmission
range of each node may not be a perfect disk. In this case, the network is a quasi-unit disk graph [19],
where a bidirectional linKu, v) definitely exists if the distance betweerandv is less than a certain
valued < R, and may or may not exist when the distance is larger thiaut smaller thark.

Many schemes have been proposed to construct a connected dominating set (CDS) as a virtual back-
bone to support routing activities in wireless networks. AlgetC 1 is a CDS of networkG, if all
nodes inl” — V' are neighbors of (i.e., dominated by) a nodé/inand, in addition, the subgragh{V']
induced fromV" is connected. The problem of finding a minimum CDS is NP-complete. Centralized
[11] and cluster-based [2, 4] CDS algorithms provide hard performance guarantees (i.e., upper bounds
on CDS size) in wireless networks. However, those schemes require either global information or global
coordination, which limit their applications to static or almost static networks. In dynamic networks,
most existing CDS formation algorithms aaxalized that is, the status of each node, backbone or
non-backbone, depends ondthop neighborhood information only with a small

Localized CDS algorithms are eithprobabilisticor deterministic A typical probabilistic scheme is
the gossip-based algorithm [14, 16].

Gossip[16]: Each node has a backbone status with probabijity

The selection of backbone nodes in Gossip is purely random without using any neighborhood infor-
mation. Simulation results show that whens larger than a threshold, these backbone nodes form a
CDS with very high probability. This threshold depends on network size and density and is determined
based on experimental data. To maintain high success ratio (i.e, the probability of constructing a CDS)
under unpredictable network situation, the selectiopisfusually conservative, which produces a large
backbone. In wireless networks with a non-uniform node distribution, grid-based [6, 24] algorithms can
be used to control backbone node density. These schemes are originally proposed as topology control
schemes, but can be modified for virtual backbone construction. The basic idea is that if every node has
B backbone nodes, then these backbone nodes form a CDS with high probability. The Valiseatdo
determined based on experimental data.

Deterministic algorithms [1, 8, 26, 30] guarantee a CDS in connected networks. They usually select
fewer backbone nodes than probabilistic schemes, because their selections are “smarter” using 2-hop
neighborhood information (or simply 2-hop information). For each ngdes 2-hop information con-
sists of its neighbor seV(v) and neighbor setd (u) of all neighborsu € N(v), and is collected via 2
rounds of “Hello” exchanges among neighbors. Thaplete 2-hop informatioof v is a subgraph ofr,
includingv’s entire 2-hop neighbor set, and all adjacent links'efl-hop neighbors. Some algorithms
usev’s restricted 2-hop informatiorwhich is the subgrapt'([N (v)] induced fromw’s 1-hop neighbor
set. One reason to use restricted 2-hop information is that, in quasi-unit disk graphs, a bidirectional link
(u, w) between a 1-hop neighbarand a 2-hop neighbar cannot be confirmed via 2 rounds of “Hello”
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(a) 1-coverage condition (b) k—coverage condition

Figure 2. Replacement paths between two neighbors u and w of node v. Gray nodes have higher
priorities than that of .

exchanges. Another reason is that applying a localized algorithm on a smaller subgraph can reduce the
computation cost.

In [30], Wu and Li proposed a deterministic CDS algorithm called marking process and two backbone
node pruning rules called Rules 1 and 2, which were later replaced by an enhanced rule called Rule
k [10]. Chen et al [8] designed a backbone formation protocol called Span, which is similar to the
combination of the marking process and Rules 1 and 2. Qayyum et al [26] provided another backbone
formation scheme called MPR, and Adjih et al [1] enhanced this scheme to construct a smaller CDS. In
[29], Wu and Dai showed that all above algorithms are special cases of the following coverage condition.

Coverage Condition[29]: Node v has a non-backbone status if for any two neighbo@mnd w, a
replacement patlexists that connects andw via several intermediate nodes (if any) with higher id’s
thano.

When applying the coverage condition, each node tries to find a replacement path between every pair
of its neighbors. Figure 2 (a) shows a sample replacement(path, z-, . .., x,,, w) that connects two
neighbors of the current node Since noder knows only its 2-hop information, all intermediate nodes
x1, T, ..., T, are within 2 hops of. In addition, all intermediate nodes must have a higher priority than
nodew. A priority is a unique attribute of each node, such as node id or the combination of node degree
(i.e.,|N(v)|) and node id. Node priorities establish a total order among nodes to avoid simultaneous
withdrawals that may cause a partition in the virtual backbone. If every node pes péighbors are
connected via high priority nodes, theran be safely removed from the backbone while the remaining
nodes still form a CDS.

In Figure 1 (a), node 1 is a non-backbone node based on the coverage condition, because its neighbors
2, 5, and 8 are directly connected. Node 2 has two neighbors 1 and 6 that are not directly connected.
However, nodes 1 and 6 are connected via a replacement hdtl6). Here we assume node id is
used as priority, and node 5 has a higher priority than 2. Therefore, node 2 has a non-backbone node.
Similarly, nodes 3, 4, 5, 6, and 7 are also non-backbone nodes. The resultant backbone, consisting of
node 8 only, is a CDS of the network.



2.2 k-connectivity

Many existing works [3, 5, 17, 21, 22] suggested to maintawertex connectivity (or simply:-
connectivity) in wireless networks for fault tolerance and/or high throughput.

Definition 1 (k-Vertex Connectivity) A networkG is k-vertex connected if it is connected and remov-
ing anyl1,2, ... k — 1 nodes fromG will not cause partition inG.

An equivalent definition is that a network ksvertex connected if any two nodes in the network are
connected viag node disjoint paths (Menger’'s theorem [25]) . The network in Figure 1 is 3-connected,
where any two nodes are connected via three node disjoint paths. For example, nodes 1 and 3 are
connected via node disjoint paths, 8, 3), (1,5,7,3), and(1,2,6,4,3). Maximal flow (minimal cut)
algorithms [13] are usually employed to discover all node disjoint paths between a pair of source/sink
nodes. A general purpose maximum flow algorithm has a computation complexity 6f|£|). But
a variation of the Edmonds and Karp’s algorithm [12] using flow augmentation can verify if two nodes
are connected via node disjoint paths withi® (k|E|) time. That is because each augmentation (i.e.,
the process of finding a new path) is a breadth-first search iwhich takesO(|E|) time, and it takes
no more thark augmentations to find (or verify the non-existencetofjode disjoint paths.

Definition 2 (k-Connectedk-Dominating Set) A node sel’’ C V is a k-dominating set (or simply
k-DS) of G if every node not i/’ has at least: neighboring nodes iv’'. A k-DS is ak-connected
k-dominating set (or simply-CDS) ofG if the subgraphG[V'] induced froml/" is k-vertex connected.

The previous definition of CDS (also called 1-CDS) is a special cageGDS withk = 1. Several
schemes [3, 21, 22] have been proposed to maintai-t@nnectivity in topology control. Basu and
Redi [5] designed a centralized algorithm for achieving 2-connectivity in wireless networks using mobile
nodes. Jorgic, Nayak, and Stojmenovic [17] suggested to useldamainectivity to approximate global
k-connectivity based on neighborhood information. The problem of constructing double dominating set
andk-dominating set in general graph has been studied in [15, 23]. In [18], three heuristic algorithms
are provided to construct a double dominating set. The problem of localized constructidn@D8&
has not been discussed.

3 k-Extensions of Existing CDS Algorithms

In this section, we extend both probabilistic and deterministic localized CDS algorithms (Gossip and
the Wu and Dai’s coverage condition) to constri#e€DS in wireless networks, and show limits of
these extensions. In the next section, we will introduce a new approach, color-based coverage condition
(CBCC), to overcome those limits. These three localize@DS algorithms are compared in Table 1.



Table 1. k-CDS algorithms.

Guarantees Backbone Comm. Message Computation
Algorithm k-CDS Size (expected) Rounds Size Cost
k-gossip No npg 0 N/A O(1)
k-coverage Yes unknown 2 O(A) O(kA*)
CBCC No O(1)OPT 2 o(A) O(A3)
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Figure 3. Success ratio of k-CDS construction under different gossip probability Dk
3.1 Probabilistic approach

The gossip-based algorithm can be easily extended to constii€E with high probability. The
extended rule for selecting backbone nodes is as follows:

k-Gossip: Each node has a backbone status with probabiligy

Note that the above rule is almost identical to its 1-CDS version. The difference is that the probability
pr. that any node becomes a backbone node is now a functibnlofk-Gossip, the perfect value of,
which constructs a small virtual backbone while maintainidg@DS with high probability, depends not
only onk, but also on total node number deploy aread, and transmission range. Some analytical
study has provided an upper boundspgfthat almost always achievecoverage in various networks
[20]. However, these upper bounds are conservative estimations of the perfedtich usually need
to be refined based on experimental data. Figure 3 shows our experiment results in a sample network,
where 200 nodes with transmission rargém are randomly deployed in#00 x 1000m? region. For
eachk, there exists @, that almost always (i.e., with a probability very close to 1) seleétsCDS. For
example, whert: = 2, usingp, = 50% constructs a 2-CDS with probabili§g.2%. Whenk = 3, using
pr = 60% achieves a success ratio.4%.

As in its 1-CDS counterpark-Gossip incurs very low overhead at each node. It requires no infor-
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mation exchange among neighbors and very lawl1() computation cost. Therefore, the backbone
construction process completes almost instantaneously. The major drawback is that it requires some
global information, such as network size and density, to be effective. The expected number of back-
bone nodes i-Gossip isnpy. If different values ofp, are used under different circumstances, global
network information, such as node numieand deployment ared, must be collected and broadcast

to each node. If the above global information is unknown and a smgig used for different network
situations, the selection @f, must be very conservative to maintair-#€DS in the worst case scenario,
which yields a larger backbone size®@ftn).

3.2 Deterministic approach

The original coverage condition [29] that constructs a 1-CDS can be extended as follows to construct
ak-CDS.

k-Coverage Condition: Nodewv has a non-backbone status if for any two neighbhoendw, k£ node
disjoint replacement pathexist that conneat andw via several intermediate nodes (if any) with higher
id’s thanv.

In the original coverage condition, a node can be removed from a CDS if all its neighbors are inter-
connected via a replacement path. In theoverage condition, the criterion is more strict: if a node is
to be removed from &-CDS, all its neighbors must Beconnected with each other via higher priority
nodes. This criterion is shown by Figure 2 (b), where two neighbasdw of the current node are
connected via node disjoint path%, P, . . ., P, consisting of high priority (gray) nodes. The following
theorem shows that-coverage condition guarantees-&£DS in originallyk-connected networks.

Lemma 1l A node sefl” is a k-CDS of networkG if after removing anyk — 1 nodes fromG, the
remaining part ofi”’ is a CDS of the remaining part @f.

Proof: First, V" is ak-dominating set ofy. Because otherwise, there exists a node G with less than
k neighbors inV". After removing all those neighbors frolfY, nodewv is no longer dominated by,
which contradicts the assumption that the remaindéf' afominates the remainder 6f. Second}” is
still connected after removing aty— 1 nodes; that isy”’ is k-connected. O

Theorem 1 If the k-coverage condition is applied tolaconnected network, then the resultant virtual
backbond’’ forms ak-CDS ofG.

Proof: LetV be the set of all nodes ard be the set of any — 1 nodes from/". SinceG is k-connected,
its subgraphG’ induced froml” — X is also connected. Let be any non-backbone nodein— V',
Based on th&:-coverage condition, any two neighbarandw of v are connected via node disjoint
replacement paths. After removikg— 1 nodes fromG, v andw are still connected via at least one
replacement path i6'. Since all non-backbone nodes(h satisfy the original coverage condition, the
remaining nodes ifY — V' form a CDS ofG’ [29]. From Lemma 1} is ak-CDS ofG. O



Whenk = 1, the k-coverage condition is equivalent to the original coverage condition. Figure 1 (b)
shows a 2-CDS constructed by theoverage condition with = 2. Here node 5 becomes a backbone
node, because two of its neighbors, nodes 1 and 6, are connected by only one replacement path. On the
other hand, nodes 1, 2, 3, and 4 are non-backbone nodes, because all their neighbors are connected via
2 node disjoint replacement paths. The resultant virtual backbone, containing nodes 5, 6, 7, and 8, is
a 2-CDS of the network. Similarly, nodes 2, 4, 5, 6, 7, and 8 in Figure 1 (c) are selected as backbone
nodes whert = 3. Here we assume each node uses complete 2-hop information; otherwise, both nodes
1 and 3 will be backbone nodes. When node 1 uses restricted 2-hop information, it can only find two
replacement paths between neighbors 2 an@&) and(2, 5, 8). The third node disjoint pat(2, 6, 8)
is invisible in restricted 2-hop information.

It has been proved in [10] that expected size of the resultant CDS derived from the original coverage
condition isO(1) times the size of a minimal CDS in an optimal solution. Unfortunately, we cannot
prove a similar bound fok-CDS with k£ > 2. Another extension of the coverage condition that holds
this bound will be discussed in the next section.

The k-coverage condition depends on local information only. No global information such as network
size is required. The size of the resultant virtual backbone is barely affected by the network density.
Thek-coverage condition has the same message size and rounds of information exchange as the original
coverage condition. When 2-hop information is collected, each node sends two messages with size
O(A), whereA is the maximal node degree. Howevkrcoverage condition is more complex than the
original condition. Each node needs to compute the vertex connectivity afhakt) pairs of neighbors
using the maximal flow algorithm with time complexiy(k|E|) discussed in Section 3.1. When the
algorithm uses restricted 2-hop informatiof,| = O(A?) and it takesO(kA?) time to verify whether
two neighbors aré-connected. The overall computation cost at each nodkAg\*), which is much
higher than that of the original coverage condition {\%)). Although some density reduction methods
[28] can be employed to reducein very dense networks, these methods also introduce extra overhead
and slower convergency.

4 Color-Basedk-CDS Construction

This section introduces a hybrid paradigm that can easily convert an existing 1-CDS algorithm to
construct ak-CDS with high probability in relatively dense networks. Unlike probabilistic schemes,
this new approach does not depend on any network specific parameter. This approach is also easier to
implement and has lower overhead than the deterministic algorithm discussed in the previous section.
We use Wu and Dai’s coverage condition [29] as an example to show how to convert a CDS algorithm
using this paradigm.

4.1 A hybrid paradigm

As shown in the last section, when extending an existing CDS algorithm to conkt@iosS, the
original algorithm needs to be re-calibrated or modified, and usually becomes more complex in concepts



and implementation techniques. In this section, we propose a hybrid paradigm, called colok-based
CDS construction (CBKC), to make the migration process smoother and effortless. The basic idea is to
randomly partition the network into several subnetworks with different colors, and apply a tradition CDS
algorithm within each subnetwork. The first step is probabilistic; when the network is sufficiently dense,
colored nodes in each partition almost always form a CDS of the original network. The second step is
deterministic; eacholored backboneonstructed within a subnetwork by a CDS algorithmis stilla CDS

of the entire network. Togethek, colored backbones form/aCDS. Since any CDS algorithtd can

be used in constructions of colored backbones, our color-based scheme provides a general framework
for extending a wide range of existing CDS algorithms to constrt€DS in relatively dense wireless
networks.

Color-Basedk-CDS Construction (CBKC)

1. Each nodev selects a random colat, (1 < ¢, < k) for itself. As a result, the node sét is

divided intok disjoint subsetd$/, V5, ..., Vi, with each subsét, containing nodes with colar.

2. For each color, a localized CDS algorithmt is applied to construct a virtual backbolig C V,
that covers the original network.

3. The finalk-CDS is the unionJ*_, V', of all colored virtual backbones.

Figure 4 illustrates the color-basédCDS construction process. In Figure 4 (a), all nodes are ran-
domly assigned color (1) gray and (2) white. In Figure 4 (b), two gray nodes 5 and 7 are selected to
form a CDS of the entire network. In Figure 4 (c), a single node 8 is selected from white nodes to form
a CDS. The set of all backbone nodés7, 8} forms a 2-CDS of the network, as shown by Figure 4 (d).
The following theorem shows that the above generic scheme almost always congt@Bt&in dense
networks.

Theorem 2 If all nodes in the network are randomly placed in a finite square region, then CBKC almost
always constructs &-CDS when the node number exceeds a constant

Proof: We first show that each node skt formed at step 1 is a CDS of the netwaotkwith high
probability when node number is sufficiently large. It has been proved in [20] that given a probability
p and a radiug, there exists a(p,r) such that whem > n(p,r) nodes are randomly deployed in

a unit square, and each node is marked a colaith probability p, then the entire region is almost
always covered by those marked nodes (i.e., every point in this region is within distaheemarked
node). Suppose both the actual square aread the actual transmission ranBeare fixed. Letn, =

n(%, %). It is easy to see that when > n;, nodes are randomly and uniformly divided intcsets

Vi, Va, ..., Vi, each set set,. almost always covers the region under transmission rdtyge It has

been proved in [27] that a set achieving area coverage with covering r&diss connected under
transmission rang&. Therefore, eachy. is a CDS ofG.
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(@) Color assignment  (b) VB of color 1 (c) VB of color 2 (d) Final 2-CDS (e) Failure of CBCC-II

Figure 4. Color-based coverage condition. (a) Nodes with odd id humbers are of color 1 (gray), and
nodes with even id’s are of color 2 (white). (b-c) Two colored virtual backbones (represented by
double circles) are constructed using the coverage condition. Nodes with different colors and their
adjacent links (represented by dotted circles and lines) are not considered by CBCC-II (d) The final
2-CDS consists of all backbone nodes. (e) CBCC-II fails when a colored backbone does not form a
CDS of the entire network.

When each set, is a CDS ofG, the virtual backboné&”’. selected by algorithrd in step 2 is also
a CDS ofG. Let V' = [J*_, V', be the union of: node disjoint CDS's of5. After removingk — 1
from V', there is at least onE. untouched. Therefore, the remaining node irstill form a CDS of
G. From Lemma 1} is ak-CDS of G. O

4.2 Color-based coverage condition

We use the coverage condition as an example to illustrate the effectiveness of the color-based paradigm.
When the original coverage condition is extended using the CBKC framework, only one modification is
needed in the following revised rule:

Color-Based Coverage Condition (CBCC)Nodew has a non-backbone status if for any two neighbors
v andw, a replacement path exists that connecésdw via several intermediate nodes (if anyith the
same colorand higher priorities than that of

Figure 4 (a-d) shows an example of CBCC. Note that in color-based coverage condition, the search
for a replacement path is now restricted to nodes with the same color. This modification actually reduces
the average computation cost, but the worst case computation complexity is still the Gafg)(
Color-based coverage condition also inherits the constant probabilistic bound of the original coverage
condition [10].

Theorem 3 The expected number of backbone nodes selected by color-based coverage cortdftion is
times the optimal value.

Proof: It was shown in [10] that the expected number of backbone nodes selected by the original cov-
erage condition igD(A/R?), where A is the area of a rectangular deployment region @i the
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transmission range. Since the virtual backbone constructed by color-based coverage condition consists
of k colored backbones, the total number of backbone nod@sgtisl / R?). Note that any:-dominating

set needs at leas)(kA/R?) nodes to maintaik-coverage. Therefore, the expected backbone size of
CBCC isO(1) times the minimak-dominating set, which is no larger than a mininkaCDS. O

To further reduce the message and computation cost, we consider a more aggressive variation of
CBCC. The original color based coverage condition (called CBCC-I) covers all neighbors regardless of
their colors; that is, any two neighbors of a non-backbone node must be connected via a replacement
place. For example, node 3 in Figure 4 (e) is a backbone node in CBCC-I, because it has two neighbors
2 and 7 that are not connected via a gray replacement path. In the more aggressive variation (called
CBCC-II), only neighbors with the same color are considered. As shown in Figure 4 (b), when a gray
node is applying CBCC-ll, all white nodes are excluded from its 2-hop information. The same rule also
applies in white backbone construction, as shown in Figure 4 (c).

Compared to CBCC-I, CBCC-Il uses smaller “Hello” messages to collect 2-hop information, has
lower computation cost, and constructs a smaller backbone. However, the worst case performance and
overhead of both variations are the same. Since CBCC-Il is more aggressive than CBCC-l, its probability
of constructing &-CDS is lower than CBCC-I. As shown in Figure 4 (e), when node 3 uses CBCC-

Il to determine its status, it becomes a non-backbone node because it has only one visible neighbor
7. However, the resultant gray backbofie 7} is not a CDS of the entire network, and union of all
backbone node§s, 7,8} is not 2-dominating. The failure of node 8 will leave node 2 uncovered. Note
that, however, when the network is very dense and node coverage is a good approximation of area
coverage, the probability is high that CBCC-Il selects a CDS of the entire network for each color, and
the final backbone is &CDS.

5 Simulation

We conduct simulation study to evaluate the performance of three propeSB& construction algo-
rithms. Simulation results show that a smalCDS can be formed with high probability and relatively
low overhead in those schemes.

5.1 Implementation

All proposed protocols have been implemented on a custom simalgtoAll simulations are con-
ducted in randomly generated static networks. To generate a netwaddes are randomly placed in
a1000 x 1000m? region. The transmission randgis 250m. Any two nodes with distance less tha&n
are considered neighbors. Each simulation is repeated 500 times, and uses the average data as the final
result. Bothk-coverage condition and color based schemes use restricted 2-hop information to reduce
computation overhead.

All k-CDS protocolsk-Gossip,k-coverage conditionktCoverage), and two variations of the color-
based coverage condition (CBCC-I and CBCC-ll), are evaluatedt® and 3, where the following
performance metrics are compared:

1The simulation code is downloadable from http://sourceforge.net/projects/wrss/
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Figure 5. Sample virtual backbones constructed by different protocols with k = 2. The network
consists of 200 nodes randomly and uniformly placed in a 1000 x 1000m? region. The transmission

range is 250m. Black nodes are backbone nodes and white nodes are non-backbone nodes. In color-
based schemes (c,d), nodes in different colors are represented by circles and triangles, respectively.

12



k=2 k=3

100

100 3-5-5-8-5-8-58-0-F- B0 E GR ol
v

v
v v

80 80 .7,

60 60 r

40 L¥ 40 |

Success Ratio (%)
Success Ratio (%)

k-Gossip —<—

k-Gossip —>—

20 + k-Coverage --&- 4 20 1, k-Coverage ---&-- 1
CBCC-| v . CBCC-| v
o ‘ ‘ CBCC-Il 0 ~ ‘ ‘ CBCC-Il =
100 150 200 250 300 100 150 200 250 300
Number of Nodes Number of Nodes

Figure 6. Success ratio.

e Success Ratjaefined as5/T", whereT' is total number of networks that akeconnected, and'is

the count number that a protocol successfully fornis@DS of the network. High success ratio
is essential for the reliability of &-CDS protocol.

e Backbone siza.e., average number of backbone nodes selected by a protocol. A smaller backbone
size means lower bandwidth and energy consumption needed to maiat&iD§.

Figure 5 shows sample virtual backbones constructed by four protocol& within a network with
200 nodes. We selected = 50% in k-Gossip for high success ratio. The resultant virtual backbone
consists of 101 nodes and a 2-CDS of the network (as shown in Figure 5 (a)}-ddwerage condition
selects 53 nodes and also forms a 2-CDS (as shown in Figure 5 (b)). Both color based schemes divide the
network into two equal partitions with different colors (represented by different node shapes). CBCC-I
selects 68 backbone nodes and forms a 3-CDS (as shown in Figure 5 (c)). CBCC-I selects 58 backbone
nodes and forms a 2-CDS (as shown in Figure 5 (d)). Overaihverage condition has the smallest
backbone size, and CBCC-I achieves the highest connectivity in this specific network.

5.2 Simulation results

Success ratio Figure 6 compares the success ratio of four algorithms in constructing 2-CDS (the left
graph) and 3-CDS (the right graph), when the node numbarries from 100 to 300. The probabilipy,
in k-Gossip is determined based on our previous experiment data in networks with 200 nodes (as shown
in Figure 3). We assume that each node has no access to global information such as thenadne of
uses a fixeg, in all networks. Here we chose = 50% for k = 2 andp,, = 69% for k& = 3.

As shown in Figure 6k-Coverage ha$00% success ratio in all circumstances, which confirms our
claim in Theorem 1. That ig;-Coverage guarantees:aCDS in all k.-connected networks. CBCC-I has
very high success ratio in relatively dense networks. #ef 2, it has99% success ratio in networks
with more than 150 nodes. Fér= 3, its success ratio is larger than% whenn > 200. Again, these

results confirm our conclusion in Theorem 2: the original color-based scheme almost always forms a
k-CDS in dense networks.
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Figure 7. Backbone size.

The success ratio df-Gossip is low in sparse networks. When= 100, its success ratio i22.0%
whenk = 2 and12.9% whenk = 3. However, its success ratio improves as the network density
increases, and excee@l$; aftern > 200. CBCC-II has the lowest success ratio, except when 2
andn < 150. Its best performance 1% for k = 2 and73%. The assumption behind CBCC-Il is
that node coverage is a good approximation of area coverage in very dense networks. Obviously, the
simulated networks are not sufficiently dense to make this scenario really happen.

Backbone size Figure 7 compares virtual backbone size in 2-CDS (the left graph) and 3-CDS (the right
graph) constructionk-Gossip usually produces the largest backbone. This is because we useya fixed

in the simulation, which selectgp, nodes on average. That is, the backbone size increases in the same
speed of,. Using a variabley, in k-Gossip is possible, but requires global information and experiment
data to determine a perfect valuesppffor each network situation. The first requirement incurs extra
runtime overhead, and the second increases the preparation cost.

The other three algorithms have a relatively small backbone size, which increases very slawly as
increases. Among ther;Coverage has the best performance in dense networks, CBCC-Il produces the
smallest backbone in sparse networks, and CBCC-I has the worst performance in all scenarios. Since
CBCC-II can merely maintain &-CDS in sparse network#-Coverage is actually the best choice in
terms of virtual backbone size. Our explanations to this phenomenon are: First, all coverage condition-
based schemes seems to have probabilistic upper bound in dense networks (even though we cannot
prove it for k-Coverage). Therefore, we will not see a proportional increase of the backbone size as in
k-Gossip. Second, maintainirigseparate 1-CDS’s incurs higher redundancy than preserving a single
k-CDS, which results in more backbone nodes in the color-based schemes.

Simulation results can be summarized as follows

1. k-Gossip has the lowest overhead and high success ratio in dense networks, but it also has serious
problems. When a fixeg, is used, it has a low success ratio in sparse networks and a large
backbone size in dense networks.

2. k-Coverage guarante@80% success ratio and selects a smallest backbone in most scenarios. Its

14



only weakness is the relatively complicated algorithm and high computation cost.

3. CBCC-I has lower overhead th@nCoverage, and almost always construcks@DS in relatively

dense networks. The resultant backbone size is larger thaiCoverage, but much smaller than
k-Gossip.

4. CBCC-Il has lower overhead than CBCC-II, but does not show a satisfactory success ratio in our

simulation. However, high success ratio may still be observed in very dense networks.

6 Conclusion

This paper proposes three localized protocols that constriuciomnected-dominating set{-CDS)
as a virtual backbone of wireless networks. Two protocols are extensions of existing CDS algorithms.
The third scheme is a generic paradigm, which enables many existing virtual backbone formation al-
gorithms to produces &CDS with high probability. Our simulation results show that these protocols
can select a smakl-CDS with relatively low overhead. As future work, we plan to conduct extensive
simulation study on the performance/eCDS in carrying out important tasks such as routing and area
monitoring. We will also try to find a probabilistic approximation ratio of theoverage condition (if
one exists).
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