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Abstract—Mobile CrowdSensing (MCS) is a crowdsourcing-
based paradigm that leverages mobile users to collect data from
Points of Interest (PoIs) using their smart devices. As data
freshness has become a crucial concern, Age of Information
(AoI) is employed to measure data freshness for MCS systems.
Existing AoI-aware MCS works mainly focus on direct data
collection scenarios, where data in PoIs is always available. Unlike
these works, this paper explores the AoI-aware MCS system for
uncertain event capture applications, where events may occur
frequently yet with uncertainty, making the AoI update hard
to be estimated. First, we model this uncertain event capture
problem as a constrained episodic restless bandit problem with
unknown transition probability. Next, we propose a belief-DPP
bandit policy by extending the Drift-Plus-Penalty (DPP) policy.
By combining belief-DPP and the Thompson Sampling (TS)
technique, we further propose the TS-DPP algorithm, so as to
minimize the cumulative weighted AoI values of all events under a
given budget constraint. We analyze the theoretical performance
of the TS-DPP algorithm, and derive a sublinear Bayesian regret
bound O(

√
T log T ), where T is the size of the time horizon.

Additionally, we conduct extensive simulations to demonstrate
the significant performance of the TS-DPP algorithm.

Index Terms—Crowdsensing, event capture, age of informa-
tion, restless bandit.

I. INTRODUCTION

A. Background and Motivation

Mobile CrowdSensing (MCS) is a crowdsourcing-based
sensing paradigm that a platform can recruit a crowd of mobile
users (a.k.a., workers) to collect data from some Points of
Interest (PoIs) with carried smart devices [1]–[7]. By leverag-
ing the mobility of users, MCS enables efficient acquisition
of large-scale data, whose applications span various domains
including traffic monitoring [4], environmental monitoring [1],
and so on. Recently, in order to provide more valuable data
for machine learning model training, the freshness of data
has become a highly concerned issue. Age of Information
(AoI), defined as the elapsed time since the latest update or
generation of the data collected or transmitted from some PoI,
is proposed to measure the freshness of data [8], [9], having
gained significant attention in a variety of studies [10]–[15].

In this paper, we focus on the AoI-aware event capture issue
in MCS, where the platform needs to schedule suitable workers
to capture uncertain PoI-related events. Although much effort
has been devoted to data collection [16], [17], most of them

Fig. 1. Illustration of the crowdsensing for event capture.

assume that data at each PoI is always available and can be
collected when a worker arrives. However, these assumptions
are unrealistic in practical applications. As illustrated in Fig. 1,
some PoI-related events might occur within a large-scale sens-
ing area frequently and uncertainly, such as traffic congestion
events at P1, exhaust emissions events at P2, and so on. The
platform aims to collect all event information with minimal
AoI. On one hand, the platform does not know whether an
event has occurred at a particular location or when it will
happen. If the platform rashly recruits workers to a PoI (e.g.,
P3) where no event has occurred, it would lead to fruitless
efforts and stale information. On the other hand, the total
budget of the platform (e.g., recruitment salary) is limited. If
the platform spends too much of its budget recruiting workers
to capture events at distant PoIs (e.g., P2), it will deprive other
PoIs of adequate exploration and updates, ultimately failing
to minimize the average AoI values across the system. Hence,
it is highly significant to explore efficient AoI-aware event
capture strategies for the platform at each time step while
facing an unknown environment and budget constraints.

B. Challenges
There are two major challenges that need to be overcome

in addressing the AoI-aware event capture issue. The first
challenge is that both the generation and capture of events are
often probabilistic, which introduces a dual uncertainty that
makes it difficult for the platform to make efficient decisions.
Specifically, the platform not only lacks knowledge of whether
each PoI has generated a new event, but also faces uncertainty
about the exact occurrence time of an event. For example, as
shown in Fig. 2, a PoI generates three events when t=0, 6, 18,



and the platform recruits five workers for the event capture.
Unlike the traditional AoI model, the 3rd and 4th event
captures (i.e., t=12, 15) in our AoI model cannot encounter an
event and thus do not reset the AoI. Additionally, even when
the 1st, 2nd, and 5th (i.e., t=3, 9, 21) captures are successful,
the AoI is not reset to zero, but rather to the age of the captured
event. Therefore, the dual uncertainty of event occurrence
complicates the decision-making process, as the platform must
continuously adapt its strategies to balance exploration and
exploitation while minimizing AoI under uncertain conditions.

The second challenge stems from the temporal coupling in-
troduced by both AoI dynamics and the long-term budget con-
straint, which together significantly complicate the planning
and optimization of future decisions. Specifically, each event
capture decision affects not only the current AoI reduction but
also the future evolution of AoI and the remaining budget. This
is due to the fact that capturing events at some PoIs resets their
AoI, whereas the AoI values of the remaining PoIs continue
to accumulate. Moreover, the presence of a long-term budget
constraint introduces an additional dimension of complexity,
since the platform must strategically manage budget consump-
tion over time to maximize long-term freshness by balancing
short-term AoI reduction and the ability to respond to future
events. These temporal dependencies—in both AoI evolution
and budget consumption—invalidate standard online learning
approaches that assume static reward structures or independent
decision rounds, thus requiring more sophisticated strategies
that account for long-term trade-offs under uncertainty.

Several works leverage Lyapunov optimization (e.g., Drift-
Plus-Penalty algorithm [18], [19]) to tackle the long-term
constrained optimization problem [20], [21]. Although these
methods are effective in many stochastic settings, they are
generally designed for ideal scenarios where random events
are observable before making decisions. On the other hand, a
few studies adopt restless bandit models [22], [23] or Whittle
index-based methods [24], [25] to address decision-making
problems under uncertainty. However, these methods usually
rely on the prior knowledge of state transition dynamics. Con-
sequently, none of the previous research has comprehensively
addressed the aforementioned challenges.

C. Solution and Contribution

To circumvent the above challenges, we model the event
capture decision problem as an online constrained restless
bandit problem with unknown states and transitions. In this
model, the platform acts as the learner, each PoI represents
an arm, the AoI value of each event corresponds to the state
of the associated arm, and pulling an arm signifies capturing
the corresponding event. Unlike existing constrained restless
bandit issues, our model lacks knowledge of the state transition
probability due to the dual uncertainty in event capture. To this
end, we propose a TS-DPP algorithm by skillfully combining
the Thompson Sampling (TS) and Drift-Plus-Penalty (DPP)
techniques. Specifically, we first employ the TS technique to
estimate the occurrence frequencies of events. Next, we extend
the DPP algorithm to solve stochastic optimization problems,

Fig. 2. Illustration of the deviation between two AoI models.

and design a belief-DPP bandit policy for allocating the budget
and selecting PoIs. The TS-DPP algorithm dynamically adjusts
event capture strategies to accommodate dual uncertainty and
limited budget constraints, and continuously optimizes system
performance via online learning. Overall, our main results and
key contributions are as follows:

• We introduce AoI-aware MCS to event capture applica-
tions, involving a long-term stochastic optimization prob-
lem with unknown Markovian transition. To the best of
our knowledge, this is the first AoI-aware MCS study that
addresses uncertain event capture while simultaneously
tackling dual uncertainty and temporal coupling.

• We propose a TS-DPP algorithm to solve the constrained
restless bandit problem with unknown transition proba-
bility, in which a belief-DPP bandit policy is designed to
make efficient AoI-aware event capture strategies.

• We analyze the theoretical performance of the TS-DPP al-
gorithm, compared with a widely-used offline oracle, and
derive a sublinear Bayesian regret bound O(

√
T log T ),

where T is the size of the time horizon.
• We conduct extensive simulations to verify the theoretical

analysis results and demonstrate the significant perfor-
mance of the TS-DPP algorithm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Overview and AoI Models
We consider an MCS system for uncertain event capture

scenarios. Specifically, there are N PoIs, denoted by the set
N = {1, . . . , N}, each of which might produce a PoI-related
event in a certain probability. Time is divided into T equal-
length time slots, represented by the set T = {1, 2, . . . , T}.
Moreover, we consider an episodic setting [16], wherein each
episode runs over a finite time horizon L. We assume that
there are m episodes in total, implying T = mL. At the end
of each episode, the system resets to its initial state, which
aligns with practical scheduling cycles in MCS systems.

In each time slot, the i-th PoI might produce an event
ei with an unknown probability, denoted by θi. The prob-
abilities across all PoIs are represented as the vector θ =
(θ1, θ2, . . . , θN ). Meanwhile, the platform maintains a local
copy of each PoI-related event. At the beginning of each time
slot, it will make the event capture decision, i.e., selecting
a PoI and recruiting workers to capture the related event. If
the event happens during this time slot, it will be captured
by the workers and transmitted to the platform. Consequently,
the platform will update its local copy with the fresh event.
Otherwise, if no event is captured, the local copies remain



TABLE I
DESCRIPTION OF KEY NOTATIONS

Variable Description
N , N the set of PoIs and the number of PoIs.

T , T the set of time slots and the number of time slots.

m,L the number and the length of episodes.

l, t the index of episodes and the index of rounds.

θi, θ the probability of event ei.

θ∗, θl the true and the estimation of probability.

Xi(t), X
b
i (t) the AoI of event ei in PoI i and its estimation.

At, Z(t) the arm chosen at time t and the virtual queue.

Yi(t; θ, π) the AoI of event copy in PoI i at time t.

Ỹi(t; θ, π) the approximation of Yi(t; θ, π).

ci, B the cost to capture the event ei and the budget.

ωo(t), ωu(t) the observed (unobserved) AoI state vector.

unchanged. For ease of presentation, we assume the platform
selects only one PoI for event capture in each time slot, which
can be readily extended to the case of multiple PoIs. Here, both
the event at each PoI and the event copy in the platform have
the AoI metric, which can be modeled as follows.
Definition 1 (AoI of Event). The AoI of an event is defined as
the elapsed time since the time when the event occurs in the
corresponding PoI. Let Xi(t; θ) denote the AoI of the event in
the i-th PoI at time t. Then, it is formulated as

Xi(t; θ) ≜ t− ui(t; θ), (1)

where ui(t; θ) denotes the latest occurrence time up to time t.

According to its definition, the AoI of an event is reset to
zero when the event occurs; otherwise, it increases over time.
In other words, the update of AoI for each event ei can be
formalized as a Markov chain over time t, where the state
is denoted by Xi(t; θ) and the corresponding state transition
probabilities are given by the following equations:

Pr[Xi(t+ 1; θ) = 0] = θi, (2)
Pr[Xi(t+ 1; θ) = Xi(t; θ) + 1] = 1− θi, (3)

with initial state Xi(0; θ)=0. This AoI update model indicates
that the AoI state Xi(t; θ) can be viewed as a function of the
event probability parameter θ. Moreover, we define the set
ωu(t; θ) = (X1(t; θ), . . . , XN (t; θ)) as the AoI state vector,
representing the AoI states of all events, which can also be
regarded as a function of θ. For simplicity, we will use Xi(t)
and ωu(t) hereafter, omitting the parameter θ when no ambi-
guity arises. Note that since the event probability parameter θ
is unknown, the AoI state vector ωu(t) is unobservable. Before
introducing the AoI model of each event copy maintained in
the platform, we define the event capture decision strategy.

Definition 2 (Event Capture Strategy). We denote the event
capture strategy decided by the platform at time t as a vector
π(t)=(π1(t), . . . , πN (t)) ∈ {0, 1}N , where πi(t) (1≤ i≤N )
is an indicator, i.e., πi(t)=1 means that the platform decides
to capture the event ei in the i-th PoI at time t; otherwise,
πi(t)=0. Additionally, let π={π(1), . . . , π(T )}.

Having defined the event capture strategy, we now introduce

the AoI model of the event copies maintained in the platform.
Specifically, the AoI of each event copy depends not only
on the occurrence of the corresponding event but also on the
platform’s capture decisions governed by the strategy.

Definition 3 (AoI of Event Copy). The AoI of an event copy in
the platform is defined as the elapsed time since the occurrence
time of its source event up to the current time t, including the
time required for capturing and transmitting the event to the
platform. Let Yi(t; θ, π) denote the AoI of the copy of event
ei in the platform. It is then formulated as:

Yi(t; θ, π) =

{
Xi(t−1; θ) + 1 if πi(t) = 1

Yi(t−1; θ, π) + 1 if πi(t) = 0
(4)

Here, we assume that once an event is captured, its copy can
be transmitted to the platform within one time slot. Actually,
if the transmission of the i-th event copy takes more than one
time slot, e.g., τ time slots, we only need to set Yi(t+τ ; θ, π)=
Xi(t;π)+τ for πi(t) = 1. Our solution can still accommodate
this scenario with a simple extension. Additionally, we use
a vector ωo(t; θ, π) = (Y1(t; θ, π), . . . , YN (t; θ, π)) to denote
the AoI states of all event copies. For simplicity, we directly
use Yi(t) and ωo(t) hereafter, omitting the parameters θ and π
when no ambiguity arises. Note that since all event copies are
maintained by the platform, the vector ωo(t) is observable.
B. Problem Formulation

In the above MCS system, at the beginning of each time slot,
the platform will make the event capture decision according to
the strategy π and recruits workers to capture the event at the
selected PoI. Let ci denote the cost incurred by the platform
for capturing event ei, and let B denote the average budget of
the platform across all time slots. Our goal is to determine
an event capture strategy π that minimizes the cumulative
weighted average AoI value under the budget constraint B.
Then, our problem can be formulated as follows:

P1: minπ
1

T

∑m

l=1

∑L

t=1
E
(∑N

i=1
γiYi(t)

)
, (5)

s.t.
∑N

i=1
πi(t) = 1, for any t ∈ T , (6)

1

T

∑T

t=1

∑N

i=1
πi(t)ci ≤ B, (7)

Eq. (2) ∼ Eq. (4). (8)

Here, Eq. (5) is the cumulative weighted average AoI value
of the whole system, where γi denotes the weight assigned to
event ei, satisfying γi ≥ 0 and

∑N
i=1 γi = 1. The expectation

is taken over the potential randomness in the AoI updating
processes (Eq. (8)). Eq. (6) means that only one PoI will
be selected in each time slot. Eq. (7) represents a long-term
average cost constraint on event capture, following traditional
stochastic optimization formulations [20]. The key notations
are summarized in Table I for reference.

Problem P1 is a long-term stochastic optimization problem
with an unknown Markovian transition. Existing studies on
stochastic optimization, such as [20], [21], have primarily fo-
cused on applying Lyapunov optimization methods. Although
these methods are effective in many stochastic settings, they
are generally designed for scenarios where random events (i.e.,



states) are observable before decision-making. However, since
this assumption does not hold in our problem, these methods
cannot be directly applied without significant modification.

To tackle this limitation, we reformulate the problem as a
constrained restless bandit problem to model the uncertainty
in event capture under resource constraints. However, classical
solutions for restless bandits, such as the Whittle index pol-
icy [24], [26], further rely on the prior knowledge of state
transition dynamics, which are also unknown in our case.
Consequently, both traditional Lyapunov and Whittle-based
methods face inherent challenges when applied to our problem.
This motivates the development of an online solution that can
jointly learn the unknown dynamics and make near-optimal
event capture decisions under uncertainty.

III. ALGORITHM DESIGN

In this section, we propose the TS-DPP algorithm to tackle
the uncertain event capture problem (i.e., P1). Firstly, we trans-
form the problem into a constrained restless bandit problem
with unknown transition probabilities. Next, we extend the
classic DPP policy, which addresses stochastic optimization
problems, and propose a belief-DPP bandit policy to handle
the challenge of unknown Markovian states in P1. Finally,
we develop the TS-DPP algorithm to solve this problem.
Specifically, we integrate the Thompson sampling technique to
estimate the frequency of events, which enhances the belief-
DPP policy’s capacity to handle unknown transition dynamics
by incorporating real-time probabilistic inferences.

A. Problem Transformation

Since the uncertain event capture process involves an online
learning issue, we transform Problem P1 into a budget-
constrained restless bandit problem, where the platform is
treated as the learner, each PoI is seen as an arm, and pulling
an arm means capturing the corresponding event. In particular,
the AoI state of each PoI is the state of the related arm. The
learner can only pull one arm at a time. We denote the arm
chosen by the learner at time t as At. Then, pulling the arm
At brings a penalty, which is defined as the weighted average
AoI value of all events, denoted by:

r(t)=

N∑
i=1

γiYi(t)=

N∑
i=1

γiYi(t−1)+1+γAt(XAt(t)−YAt(t−1)−1). (9)

At the same time, it causes a cost:

c(t) =
∑N

i=1
πi(t)ci. (10)

Therefore, the objective becomes to minimize the time-
averaged penalty, subject to a time-averaged budget constraint.

B. Belief-DPP Bandit Policy

After transforming Problem P1, we propose a belief-DPP
bandit policy to minimize the penalty under the budget con-
straint. First, we denote ωb(t; θ) = (Xb

1(t), . . . , X
b
N (t)) as the

belief state with respect to the transition probability θ, where
Xb

i (t) represents the estimate of state Xi(t). Based on the
belief state, we get the expected penalty

∑N
i=1 γiỸi(t), where

we use Ỹi(t) as an approximation of Yi(t), i.e.,

Ỹi(t) = πi(t)X
b
i (t) + (1− πi(t))(Yi(t− 1) + 1). (11)

To decompose the long-term budget constraint into per-slot
decisions, we construct a virtual queue Z(t) to track the
deviation between the cumulative cost and the budget:

Z(t) = max{0, Z(t− 1) +
∑N

i=1
πi(t− 1)ci −B}. (12)

Here, the initial value is Z(0) = 0. Then, the belief-DPP
bandit policy is designed as follows:

Belief-DPP Bandit Policy. At the start of each time slot t,
the platform observes the AoI states of event copies ωo(t) and
virtual queue Z(t). After computing the belief state ωb(t; θ), it
performs the action π∗(t) by solving the following problems:

π∗(t) = argminV
∑N

i=1
γiỸi(t)+Z(t)(

∑N

i=1
πi(t)ci−B), (13)

where V is a positive tuning parameter so that we can balance
the penalty and the virtual queue length. We emphasize that
the belief-DPP bandit policy is a deterministic policy mapping
from the transition probability θ to the decision policy π.
Therefore, having an accurate parameter estimation is crucial
for the effectiveness of the belief-DPP bandit policy. In the
following subsection, we present the estimation of transition
parameters and belief states using Thompson sampling.

C. Thompson Sampling

Before introducing the detailed TS-DPP algorithm, we need
to learn transition parameters and obtain belief states based on
the Thompson sampling technique.

(1) Learning Transition Parameters: At the beginning of the
l-th episode, the platform obtains a parameter estimation of the
transition probability θ, denoted by θl, which is drawn from
a posterior distribution Ql. Specifically, θli and Ql

i represent
the i-th arm’s parameter estimation and posterior distribution,
respectively. As the episode progresses, the platform observes
the history of actions and states, which is denoted by Ht =
(A1, XA1

(1), . . . , At, XAt
(t)), where 1 ≤ t ≤ L.

At the end of the episode, based on the observed history
HL, the posterior distribution is updated accordingly. Since the
arms are independent of each other, we slice the history HL

to get the historical data of each arm. Let Γi = {t : At = i}
represent the set of times when the i-th arm is selected. For
a specific arm i, we denote the time of j-th arm selection by
tij ∈ Γi, and combine it with the corresponding state sij =

Xi(t
i
j) to form a sequence of feedback Si = {(tij , sij)}

|Γi|
j=0,

with initial value ti0=0 and si0=0. Afterwards, we can learn
the transition parameters by updating the posterior distribution
according to the following theorem.

Theorem 1. (Posterior Update) Given a prior distribution
Ql

i(θi) = Beta(αl
i, β

l
i) and a sequence of feedback Si =

{(tij , sij)}
|Γi|
j=0. Then, the posterior distribution is given by

Ql+1
i (θi|Si) = Beta(αl+1

i , βl+1
i ), where

αl+1
i =αl

i+
∑|Γi|

j=1
Ij , βl+1

i =βl
i+

∑|Γi|

j=1
sij−(1−Ij)s

i
j−1. (14)

Here, Ij is an indicator of whether new data is obtained in
the j-th selection, formally, Ij = I(sij < tij − tij−1).

Proof. The detailed proof is provided in Appendix.



Algorithm 1: TS-DPP for Uncertain Event Capture

input : prior Q0, episode length L;
1 Initialize: posterior Q1 = Q0;
2 for episodes l = 1, . . . ,m do
3 Initialize: H0 = ∅;
4 for i = 1, . . . , N do
5 Draw a parameter θli ∼ Ql

i;

6 for t = 1, . . . , L do
7 Observe ωo(t);Z(t);
8 for i = 1, . . . , N do
9 Calculate belief stateXb

i(t)according toEq. (16);

10 Select arm At according to Eq. (13);
11 Observe feedback (At, XAt(t));
12 Update virtual queue Z(t+1) according to Eq. (12);
13 Update record Mt+1;
14 Update history Ht = Ht−1 ∪ (At, Xt,At

);

15 for i = 1, . . . , N do
16 Update posterior Ql+1

i according to Eq. (14);

Remark 1. This theorem indicates that the beta distribution
serves as a conjugate prior in our scenario. This property al-
lows for straightforward closed-form solutions to the posterior
distribution, thereby streamlining the update process.

(2) Obtaining the Belief State: Due to the Markov property,
in order to estimate the current state at time t (i.e. Xi(t)),
we only need to consider the state information obtained from
the most recent play. The platform stored the information of
each arm in the record, denoted by Mt = {λi, τi, δi}Ni=1. This
indicates that for arm i, its most recent play occurred at time
τi, and the corresponding state information is λi = Xi(τi).
Moreover, δi = t− τi represents the time interval between the
current time t and τi. Utilizing the information stored in the
record Mt, we compute the distribution of arm i’s state with
respect to λi and δi, denoted as Fi(θ;λi, δi). That is, we have

P θi
x =Pr(Xi(t)=x)=

{
θi(1− θi)

x if x=0, 1, ..., δi−1,
(1− θi)

δi if x=λi + δi.
(15)

Then, we calculate the belief state Xb
i (t) as the mean of this

distribution, which is exhibited as follows:

Xb
i (t) =

1− θi
θi

+ (1− θi)
δi(λi −

1− θi
θi

). (16)

D. The Detailed TS-DPP Algorithm

Building on the above designs, we propose the TS-DPP
algorithm, which integrates the belief-DPP bandit policy with
the Thompson sampling technique, as summarized in Alg.
1. It consists of two time-related loops, the outer loop is
composed of m inner loops, and the inner loop is formed
of L rounds. The algorithm takes the prior distribution Q0 of
all transition parameters and the episodic length L as input
and outputs the decision of each time slot. First, we initialize
the posterior as Q1 = Q0. At the beginning of episode l, we
start by initializing H0 = ∅ and draw a parameter estimation

θli from posterior Ql
i for each arm i (Lines 4-5). Then the

algorithm turns to the inner loop (Lines 4-14), where we fix
the parameter estimation as θli. At the round t, we observe the
AoI state of event copies ωo(t) and the virtual queue Z(t).
After computing the belief state Xb

i (t) for each arm i (Lines
8-9), we select the arm according to belief-DPP policy (Line
10). Based on the feedback, we update virtual queue Z(t+1),
record Mt+1, and history Ht (Lines 12-14). To end up this
episode, the algorithm updates the posterior distribution of
each arm based on the history we get (Line 16). Since the
belief-DPP bandit policy operates each arm independently, the
time complexity of TS-DPP is O(N).
Discussion. While our main algorithm focuses on the single-
PoI setting without delay, TS-DPP can be naturally extended to
more general scenarios. (i) Multiple PoIs: We adopt a greedy
selection strategy that iteratively selects PoIs one at a time.
After each selection, the virtual queue is updated to reflect its
impact on the budget and AoI dynamics, and the next PoI
is chosen based on the updated system state. (ii) Delayed
feedback: As discussed in Section II, our AoI model can
accommodate transmission delays by setting Yi(t+ τ ; θ, π)=
Xi(t;π)+τ for a delay of τ time slots if πi(t) = 1. However,
during the intermediate delay period (i.e., t+1 to t+τ−1),
Yi continues to increase, potentially causing the algorithm to
re-select the same PoI before the previous event is delivered.
To address this, we introduce a temporary freezing mechanism
that marks PoI i as unavailable for selection before the event
ei is captured. This extension may lead to a slight degradation
in performance due to the restricted action space, we will
theoretically quantify the impact in future work.

IV. THEORETICAL ANALYSIS

In this section, we analyze the theoretical performance of
the TS-DPP algorithm. In restless bandit problems, if an oracle
has full knowledge of both transition parameters and states, the
problem becomes trivial. This is because the strategy can be
directly derived from the known states [27]. Benchmarking
a learning policy against such an oracle would result in
regret that scales linearly with time T , since the oracle can
always observe the states, while the learning policy cannot
predict the transition based on the history, no matter how
accurate the estimates of the transition probabilities are. Each
transition introduces a non-vanishing regret, and the number
of transitions grows linearly with T , leading to a linear regret.

Since comparing to an oracle with state knowledge provides
limited insight, we consider a weaker oracle that knows the
transition parameters but not the states. This provides a more
informative comparison by introducing uncertainty, while still
providing useful guidance for the theoretical analysis. In this
case, we use the belief-DPP bandit policy as the oracle,
following the approach in previous studies [28].

Within the TS-DPP algorithm, we denote the policy adopted
in the l-th episode as πl, which incorporates the parame-
ter estimation θl sampled from the posterior distribution at
the episode’s onset. Similarly, we denote π∗ as our oracle,



(a) L = 20, V = 0.2 (b) L = 30, V = 0.2 (c) L = 20, V = 0.5 (d) L = 30, V = 0.5

Fig. 3. Episodic penalty trends for each algorithm under parameter settings: N = 4, L = {20, 30}, V = {0.2, 0.5}.

(a) L = 20, V = 0.2 (b) L = 30, V = 0.2 (c) L = 20, V = 0.5 (d) L = 30, V = 0.5

Fig. 4. Episodic penalty trends for each algorithm under parameter settings: N = 8, L = {20, 30}, V = {0.2, 0.5}.

equipped with full knowledge of the transition probability θ∗.
Before defining the regret, we introduce a value function:

Jθ
π,t(H) = Eθ,π

[∑L

j=t
r(j)|H

]
. (17)

In essence, the value function represents the expected
penalty obtained by executing policy π from round t to L,
given the transition probability θ and the initial history H.
Thus, we can define the Bayesian regret as

BR(T ) = Eθ∗∼Q

[∑m

l=1
Eθl∼QlJ

θ∗

πl,1(∅)−mJθ∗
π∗,1(∅)

]
. (18)

The above expectation is with respect to the prior distribution
about θ∗, and we assume the prior is known to the learner.
The following theorem is our main result on regret bound.

Theorem 2. (Bayesian Regret Bound) The Bayesian regret
of TS-DPP algorithm satisfies the following bound:

BR(T ) = O
(√

L3T log T
)
. (19)

Proof. The detailed proof is provided in Appendix.

Remark 2. As regret represents the cumulative gap between
the value function of our algorithm and the oracle solution, the
sublinear regret implies that our algorithm rapidly approaches
the oracle solution. Recall that previous studies (e.g., [29])
have shown that the regret lower bound on the performance
of Thompson sampling for the multi-armed bandit problem is
Ω(

√
T log T ), suggesting that the regret bound for TS-DPP in

the online restless bandit problem is sufficiently tight.
Remark 3. Previous works (e.g. [18]) have shown that the
gap between the solution obtained by the DPP algorithm
and the optimal solution is O( LV ), where V is the hyper-
parameter in the DPP algorithm. In our episodic setting, if
the hyperparameter V varies with the episode l, specifically
Vl =

√
l, the gap becomes O(

√
LT ). Combining this with

the result from Theorem 1, we conclude that the Bayesian
regret of the TS-DPP algorithm relative to the optimal oracle
is O(

√
L3T log T+

√
LT ), which is competitive with previous

algorithms in the online restless bandit problem, such as [30]
(with Õ(T 2/3) regret) and [28] (with O(

√
T log T ) regret).

V. SIMULATION RESULTS

In this section, we conduct extensive simulations on real-
world and synthetic datasets to evaluate the performance
of our proposed TS-DPP algorithm. First, we present our
experimental settings. Then we display the evaluation results.
A. Experimental Setup

1) Simulation: We evaluate our approach using both real-
world and synthetic datasets. For the real-world setting, we
adopt an eCommerce event history dataset [31]. Due to varying
event frequencies, not all events are suitable for evaluation. We
exclude one type of infrequent event and retain the three event
types, totaling 1,654,771 occurrences. Each event’s timestamp
is mapped to a uniform 1-second time slots, which serve as
its actual occurrence time. We run m = 100 episodes for this
setting. For the synthetic setting, we consider N = 4, 8 PoIs
and run m=50 episodes. For each arm i, event occurrences
in each round follow a Bernoulli distribution with success
probability θi, where θi is uniformly sampled from [0, 1] (i.e.,
θi ∼ Beta(1, 1)). All simulations adopt the following shared
configurations: the weights of AoI value γi for each arm are
drawn from a Dirichlet distribution such that

∑N
i=1 γi = 1.

The observed cost ci is uniformly sampled from [0.2, 0.5].
The budget is fixed at B = 0.35, which equals the expected
cost of uniformly random arm selection.

2) Baselines: In order to highlight the approximate opti-
mality of the TS-DPP algorithm, we compare its performance
against the offline oracle policy (i.e., the belief-DPP bandit
policy). This offline oracle policy provides an upper bound on
the performance that can be achieved under ideal conditions
with perfect knowledge of the environment. In addition, we
also evaluate the TS-DPP algorithm against several baselines:
i) the Lyapunov index method as described in [20], and ii) the
Whittle index approach detailed in [24].

B. Performance Results
1) Comparing to baselines: We evaluate TS-DPP on both

synthetic and real-world datasets to comprehensively assess



(a) L = 20, V = 0.04 (b) L = 20, V = 0.06 (c) L = 20, V = 0.08 (d) L = 20, V = 0.1

Fig. 5. Episodic penalty trends for each algorithm under parameter settings: N = 3, L = 20, V = {0.04, 0.06, 0.08, 0.1}.

Fig. 6. Time-averaged regret.
(a) θ = 0.239 (b) θ = 0.489 (c) θ = 0.839

Fig. 7. The parameter estimates trend plots of three categories of probabilities.

its effectiveness. In the synthetic experiments, we display
the episodic penalty trends for each algorithm under various
parameter settings, as illustrated in Fig. 3 and Fig. 4. Specif-
ically, we choose the hyperparameters V = 0.2, 0.5, and the
episode length L=20, 30 for two experiments with N =4, 8
PoIs. The results show that the TS-DPP algorithm consistently
outperforms the Lyapunov index and Whittle index algorithms
in all experiments. Moreover, TS-DPP shows a remarkable
ability to closely approximate the performance of the oracle
policy after a few episodes. This indicates that TS-DPP not
only performs well compared to other baselines but also
demonstrates a strong capability to approach the theoretical
optimum provided by the oracle policy. To further demonstrate
the practicality of TS-DPP, we evaluate its performance on a
real-world dataset under varying values of the hyperparameter
V ∈{0.04, 0.06, 0.08, 0.10}. As illustrated in Fig. 5, TS-DPP
consistently achieves the lowest episodic penalties among all
algorithms. Moreover, TS-DPP exhibits strong robustness to
different hyperparameters, maintaining a clear performance
advantage over the baselines. In contrast, the performance of
the Lyapunov and Whittle index methods is more sensitive to
hyperparameters and shows greater variability.

2) Bayesian regret: We analyze the Bayesian regret of the
TS-DPP algorithm with different settings. For this analysis,
we fix the episode length at L = 20 and the number of
episodes at m=100. To approximate the expectation, we use
a Monte Carlo simulation with a sample size of 1000. The
time-averaged regret of the TS-DPP algorithm with different
hyperparameters is shown in Fig. 6. The results indicate that
the time-averaged regret of the TS-DPP algorithm converges
to zero faster than the upper bound we established. This is an
encouraging outcome, as it shows that the TS-DPP algorithm
not only performs well in practice but also adheres closely
to theoretical performance guarantees. The rapid convergence
to zero regret signifies that the TS-DPP algorithm is effec-
tively learning and adapting, minimizing the performance gap
between itself and the optimal policy over time.

3) The efficiency of Thompson sampling: We validate the
effectiveness of Thompson sampling by examining parameter
estimation plots. For this analysis, we randomly select several
PoIs from the previous simulations and evaluate their historical
parameter estimations θl alongside the historical parameters
of the beta distribution, i.e., αl and βl. These results are
illustrated in Fig. 7. In the figures, the red lines represent the
true parameter values, while the blue dots and lines depict
the trends of the parameter estimations over time. The shaded
regions indicate the 95% confidence intervals of the beta dis-
tribution at specific rounds. To provide a comprehensive anal-
ysis, we categorize the probabilities into three representative
groups: large, medium, and small values. As shown in Fig. 7,
during the initial episodes, the Thompson sampling framework
is predominantly in the exploration phase. Consequently, the
estimations of the transition probability are not yet close to
the true values. However, as more episodes are completed,
the parameter estimations begin to stabilize and approximate
the true values. This phenomenon aligns with the observations
in Fig. 3 and Fig. 4, where all algorithms initially incur high
penalties. These penalties gradually decrease and stabilize after
a few episodes, reflecting the transition from exploration to
exploitation as the Thompson sampling framework refines its
estimations and improves its performance over time.

VI. RELATED WORK

We review the related works from the following aspects:
Mobile Crowdsensing. Recently, MCS has been widely

investigated in many fields, like urban crowdsensing with for-
hire vehicles and sparse crowdsensing [5], [7], [32]. Efforts to
minimize AoI and improve data freshness in MCS have been
relatively limited. Dai et al. in [16] considered an MCS system
where mobile agents are scheduled to collect data, aiming
to minimize the AoI of all sensor nodes while considering
energy consumption. Xu et al. in [3] proposed a Stackelberg-
game-based incentive mechanism for MCS accounting for AoI
values of collected data and social benefits.



Age of Information. AoI has been widely studied across
various applications, including wireless networks [33], mobile
networks [34], and federated learning [19], [35]. The AoI
models are typically categorized into push and pull paradigms
[36]. The push model (e.g., queueing systems [10]–[12])
focuses on determining when and how to push (i.e., generate
and transmit) updates, while the pull model (e.g., channel
systems [37] and status update systems [13]) determines when
and how to request updates. However, our model deviates
from both paradigms, as it integrates event capture (a form
of pull operation) into the decision-making process, while
explicitly considering the timing of data generation. Prior
works have applied the restless bandit framework for AoI
minimization [22]–[25], [35] and developed Whittle index
policies under the assumption of known transition dynamics.
Additionally, Kadota et al. in [33] developed a DPP policy but
their approach also assumes known transition dynamics. More
recent studies have explored unknown state transitions in AoI
modeling, yet they mainly concentrate on simplified settings
and lack time-averaged cost constraints [38]. In contrast,
our work develops a learning-based policy under unknown
transition dynamics, providing a more general and practical
approach for event-driven AoI minimization.

Restless Bandit. Restless bandit [26] is a variant of the
multi-armed bandit [39] problem and addresses scenarios
where arms have non-stationary reward distributions. A widely
studied approach to solving restless bandit problems is the
Whittle index [40], which provides an index-based heuristic
for making provably asymptotically optimal decisions. The
learning perspective of restless bandit problems, named online
restless bandits, has also gained attention. Jung et al. in
[28] proposed a TS-based method in episodic restless bandits
under binary states, achieving a Bayesian regret bound of
O(

√
T log T ). Wang et al. in [30] designed Restless-UCB

and achieved frequentist regret O(T 2/3). Jiang et al. in [41]
proposed TSEETC and established the Bayesian regret bound
Õ(

√
T ). In a constrained restless bandit area, Wei et al.

in [20] proposed a Lyapunov indexing approach to solve
the restless bandit problem with time-averaged constraints,
assuming known states. In contrast to the above works, our
method tackles the online constrained restless bandit problem
under unknown and unobservable states and transitions, and
we propose a novel learning-based scheduling strategy.

Event Capture. Several studies focus on event capture
across different domains, e.g., data stream [42], transportation
[43], and healthcare [44], etc. Lamprier et al. [42] proposed a
contextual bandit approach that utilizes users’ current activities
to predict future behavior. Noursalehi et al. [43] developed
a deep learning-based framework for real-time prediction of
transit passenger demand considering the spatial and temporal
dependencies between transit stations and the influence of
special events. Duan et al. [44] employed graph convolutional
networks and pose estimation to facilitate real-time motion
capture for athlete performance analysis. These studies neglect
the freshness of the captured information. In contrast, our
work is the first to address AoI-aware MCS in the context

of uncertain event capture.

VII. CONCLUSION

In this paper, we explore the AoI-aware MCS system for
uncertain event capture applications, where events may occur
frequently but uncertainly, making the AoI update hard to
be estimated. First, we model this uncertain event capture
problem as a constrained episodic restless bandit problem
with unknown transition probability. Next, we propose a
belief-DPP bandit policy by extending the DPP policy. By
combining belief-DPP and the Thompson sampling technique,
we further propose the TS-DPP algorithm, so as to minimize
the cumulative weighted AoI values of all events under a given
budget constraint. We analyze the theoretical performance of
the TS-DPP algorithm, and derive a sublinear Bayesian regret
bound O(

√
T log T ), where T is the size of time horizon.

Additionally, we conduct extensive simulations to demonstrate
the significant performance of the TS-DPP algorithm.
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APPENDIX

Proof of Theorem 1: We define the time interval between the
j-th and the (j − 1)-th selection as nj = tij − tij−1. Then, we
compute the conditional distribution of sij given sij−1 and nj :

Pr(sij |sij−1, nj ; θi) =

{
θi(1− θi)

sij if sij = 0, 1, ..., nj − 1,
(1− θi)

nj if sij = nj + sij−1.
(20)

Using the indicator Ij , we get a more general formula:

Pr(sij |sij−1, nj ; θi) = θ
Ij
i (1− θi)

sij−(1−Ij)s
i
j−1 . (21)

Based on Bayesian theory, we get:

Ql+1
i (θi|Si) ∝ Ql

i(θi) ·Π
|Γi|
j=1Pr(sij |sij−1, nj ; θi)

∝ θ
αl
i−1

i · (1−θi)
βl
i−1 · θ

∑|Γi|
j=1 Ij

i · (1−θi)
∑|Γi|

j=1 sij−(1−Ij)s
i
j−1

∝ θ
αl
i−1+

∑|Γi|
j=1 Ij

i · (1− θi)
βl
i−1+

∑|Γi|
j=1 sij−(1−Ij)s

i
j−1

∝ Beta(αl+1
i , βl+1

i ). (22)

The proof of Theorem 1 is completed.
Proof of Theorem 2: A key idea in our proof centers around
two aspects. First, we measure the distance between the true
parameter θ∗ and the parameter estimation θl. Due to the
Thompson sampling technique, the distribution of θ∗ and θl

is identical given the same history [39]. As the historical
data is used to update the posterior distribution, the variance
decreases, indicating a concentration of θ∗ and θl. We can
utilize concentration inequalities to quantify their proximity.

Then, we evaluate the difference in penalties obtained by
executing the same strategy under these two parameters. We
decompose the Bayesian regret into individual rounds by



leveraging the conclusion from [28], which are presented in
Lemma 3 and Lemma 4. It is worth noting that this conclusion
is established in the case of deterministic policy.

Definition 4 (deterministic policy [28]). A deterministic policy
π takes time index and history (t,Ht−1) as an input and
outputs a fixed action At = π(t,Ht−1). A deterministic policy
mapping µ takes a transition probability θ as an input and
outputs a deterministic policy π = µ(θ).

Lemma 1. The belief-DPP bandit policy is a deterministic
policy mapping.

Lemma 2. Given history Ht−1, then record Mt is determinis-
tic. Therefore, for any arm i, the distance between distribution
Fi(θ;λi, δi) and Fi(θ

′;λi, δi) can be represented as follows:∑
x |P

θi
x − P

θ′i
x | ≤ 2δi|θi − θ′i|, (23)∑

x x|P
θi
x − P

θ′i
x | ≤ ( δi(δi−1)

2
+ δi(λi + δi))|θi − θ′i|. (24)

Proof. If x ∈ {0, 1, . . . , ni − 1}, let f(θ) = θ(1− θ)x. Then,
by applying the mean value theorem, there exists ξ between
θ and θ′ such that the following equation holds:

|P θi
x − P

θ′i
x | = |f(θi)− f(θ′i)| = |f ′(ξ)| · |θi − θ′i|

= |(1− ξ)x−1(1− (x+ 1)ξ)| · |θi − θ′i| ≤ |θi − θ′i|. (25)

If x = si + ni, let f(θ) = θ(1− θ)ni . Likewise, we obtain:

|P θi
x − P

θ′i
x | = |f(θi)− f(θ′i)| = |f ′(ξ)| · |θi − θ′i|

= |δi(1− ξ)δi−1| · |θi − θ′i| ≤ δi|θi − θ′i|. (26)

When summing up for all x, we complete the proof.

Lemma 3 (Regret Decomposition [28]). The Bayesian regret
of the TS-DPP algorithm can be decomposed as

BR(T ) = Eθ∗∼Q

∑m
l=1 Eθl∼Ql

[
Jθ∗

πl,1(∅)− Jθ∗
π∗,1(∅)

]
(27)

= Eθ∗∼Q

∑m
l=1 Eθl∼Ql

[
Jθ∗

πl,1(∅)− Jθl

πl,1(∅)
]
. (28)

Eq. (27) describes the difference caused by adopting policies
πl and π∗ under the same transition probability θ∗. However,
Eq. (28) describes the difference resulting from applying the
same policy πl on different systems with parameters θ∗ and
θl. This transformation in the proof provides significant conve-
nience. Subsequently, we aim to further decompose the regret
of each episode into individual rounds. Before presenting the
next lemma, we first define the Bellman operator:

T θ
π J(Ht−1) = Eθ,π

[
r(t) + J(Ht)|Ht−1

]
. (29)

Lemma 4 (Per-episode Regret Decomposition [28]). Fix θ∗

and θl, and let H0 = ∅. Then we have

Jθ∗

πl,1(H0)−Jθl

πl,1(H0)=Eθ∗,πl

∑L

t=1
(T θ∗

πl −T θl

πl)J
θl

πl,t+1(Ht−1). (30)

Lemma 5 (Concentration Inequality [45]). If X has a beta
distribution Beta(α, β) and Y is an independent copy of X ,
then, for all 0 ≤ r ≤ 1, we have

Pr(|X − Y | ≥ rE(X)) ≤ 2e−αr2/8. (31)

We fix transition probability θ∗ and θl and try to analyze
the regret in the episode l. It is worth noting that according to
the key principle of the Thompson sampling technique, θ∗i and

θli are drawn from the same distribution Ql
i = Beta(αl

i, β
l
i)

[39]. Define parameter space as

Θi =
{
(θ∗i , θ

l
i)|θ∗i ∼ Ql

i, θ
l
i ∼ Ql

i

}
. (32)

Then, we define an event εi for arm i as

εi =
{
(θ∗i , θ

l
i) ∈ Θi||θ∗i − θli| < rli ·

αl
i

αl
i + βl

i

}
, (33)

where rli = max
{
1,
√

8 log T
αl

i

}
. Using the concentration in-

equality in Lemma 5, we get Pr(εci ) ≤ 2e−αl
ir

l
i
2
/8. Now, we

pay attention to the Bellman operator:

T θ
πlJ

θl

πl,t+1(Ht−1) = Eθ,πl

[
r(t) + Jθl

πl,t(Ht)|Ht−1

]
= Eθ,πl

[
r(t)|Ht−1

]
+

∑
x P

θAt
x Jθl

πl,t

(
Ht−1 ∪ (At, x)

)
. (34)

We then get the difference between different parameters.

Eθ∗,πl

[
r(t)|Ht−1

]
− Eθl,πl

[
r(t)|Ht−1

]
= γAt

(
Eθ∗[XAt(t)−YAt(t−1)−1]−Eθl[XAt(t)−YAt(t−1)−1]

)
= γAt

(
Eθ∗ [XAt(t)]− Eθl [XAt(t)]

)
= γAt

(∑
x
x · P

θ∗At
x −

∑
x
x · P

θlAt
x

)
. (35)

The above equations are based on the fact that the same deci-
sion At is generated, even though the transition probabilities
may differ. This is because the policy πl is a deterministic
policy under the same history Ht−1.

Lemma 6. For any ϵ > 0, with probability at least 1 − ϵ,
it holds that Xi(t) ≤ ⌈ log ϵ

log(1−θi)
⌉. Therefore, for analytical

simplicity, we consider the state space of Xi(t) to be finite,
i.e., Xi(t) ≤ D, for any arm i. Furthermore, we assume that
the time intervals for selecting the same arm are finite, i.e.,
δi ≤ C. Then, we conclude the event is captured within C+D
rounds, which implies that Yi(t) ≤ C +D holds for any arm,
and we get rt ≤ C +D.

Corollary 1. In an episode, for any arm, its new data can
be obtained at least η = ⌊ L

C+D ⌋ times, moreover, αl
i ≥ ηl.

In the subsequent analysis, we assume that L is sufficiently
large, ensuring that η > 0.

Therefore, using Lemma 2, we get:∣∣Eθ∗,πl [r(t)|Ht−1]−Eθl,πl [r(t)|Ht−1]
∣∣≤( 1

2
C2+LC)|θ∗At

−θlAt
|, (36)∣∣∑

x(P
θ∗At
x −P

θlAt
x )Jθl

πl,t(Ht−1∪(At, x))
∣∣≤2C(C+D)L|θ∗At

−θlAt
|.(37)

When the event εAt
happens, we have |θ∗At

−θlAt
|<
√

8 log T
αl
At

. So,

Eθ∗,πl

∑L
t=1

∣∣θ∗At
− θlAt

∣∣≤∑L
t=1

(√
8 log T

αl
At

Pr[εAt ]+1 · Pr[εcAt
]
)

≤
L∑

t=1

(√
8 log T

αl
At

+2e−αl
At

rlAt

2
/8
)
≤L

√
8 log T

ηl
+

L∑
t=1

2e−αl
At

rlAt

2
/8.

Combined with Eq. (36) and Eq. (37), we use the regret
decomposition in Lemma 3 and Lemma 4, and then get

BR(T ) ≤
(
1
2
C2+(2C2+2CD+C)L

)(∑m
l=1L

√
8 log T

ηl
+
∑m

l=1

∑L
t=1 2e

−αl
At

rlAt

2
/8
)
. (38)

The first term is bounded by∑m
l=1 L

√
8 log T

ηl
≤ L

√
8 log T

η
· 2

√
m. (39)



Regarding the second term, it is necessary to discuss the case
when rli equals 1. Since for any arm i, we have αl

i ⩾ ηl, it can
be deduced that rli is less than 1 after n= ⌈ 8 log T

η ⌉ episodes.
So, we conclude that there exists∑m

l=1

∑L
t=12e

−αl
At

rlAt

2
/8 ≤

∑n
l=1

∑L
t=12e

−αl
At

/8+ 2m
T

≤
∑n

l=1 L · 2e−ηl/8+ 2m
T

≤ 1− 16
η
e−η/8 1

T
+ 2m

T
. (40)

By summing Eq. (39) and Eq. (40), we get

BR(T ) ≤
(
1
2
C2+(2C2+2CD+C)L

)(
L
√

32mlog T
η

+1− 16
η
e−η/8 1

T
+ 2m

T

)
= O

(√
L3T log T

)
.

Now, we complete the proof of Theorem 2.
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