

TileSR: Accelerate On-Device Super-Resolution with Parallel Offloading in Tile Granularity

Ning Chen, Sheng Zhang, Yu Liang, Jie Wu, Yu Chen, Yuting Yan, Zhuzhong Qian and Sanglu Lu

Outline

- Problem Background
 - Edge Collaborative SR with Parallel Offloading
 - Key steps: image dividing, tile-based offloading
 - Challenges
 - SR difficulty, device priori information
- Related Works
- Motivations
- System Model
 - TileSR: Parallel Offloading Tiles to Accelerate Inference
- Experiments

Background: Single-Device SR

- On-device video super-resolution
 - Unreliable network leads to low-quality video
 - Local SR to enhance the video quality

Background: Single-Device SR

- On-device video super-resolution
- Challenges: local resource constrained
 - Computation \rightarrow long inference delay
 - Memory \rightarrow hard to store intermediate data
 - Energy \rightarrow hard to support long-term inference

SR model	270p (s)	360p (s)	540p (s)	720p (s)
MSRN X2	0.075	0.167	0.302	0.922
MSRN X3	0.083	0.182	0.321	1.003
MSRN X4	0.091	0.237	0.404	1.118
RCAN X2	0.269	0.595	1.057	3.191
RCAN X3	0.277	0.610	1.085	3.261
RCAN X4	0.287	0.632	1.149	3.356

Multi-device inference for image/video SR
 Model downloading from cloud

- Multi-device inference for image/video SR
 - Model downloading from cloud
 - Image dividing \rightarrow multiple tiles

- Multi-device collaboration for image/video SR
 - Model downloading from cloud
 - Image dividing \rightarrow multiple tiles
 - Parallel offloading \rightarrow tile inference

- Multi-device collaboration for image/video SR
- Challenges
 - How to divide? even or uneven?
 - How to offload? without prior offload reward

Related Works

- Supremo *TMC 2022*
 - Layer: edge-cloud collaboration
 - Methods: based on the "edge" feature

Related Works

- MobiSR MobiCom 2019
 - Methods: dispatch images to diverse processors

Motivation: Difficulty Analysis

• Visual structural complexity

(a) Structured image

(b) Unstructured image

– Utilize two methods, interpolation and CNN-based

- Higher structure, higher upscale quality (PSNR)
- Higher structure, it benefits less from CNN inference

How to measure the structure information?

• Pixel Variant Matrix PV_f for image f,

 $PV_{f}[i,j] = \sum_{w=\max\{1,i-1\}}^{\min\{i+1,W\}} \sum_{h=\max\{1,j-1\}}^{\min\{j+1,H\}} |p_{i,j}-p_{w,h}|,$

- Mean Pixel Variant $mPV_f = \sum_{i=1}^{W} \sum_{j=1}^{H} PV_f[i,j]/(WH)$
 - This definition applies to **tile** as well

- Mean Pixel Variant $mPV_f = \sum_{i=1}^{W} \sum_{j=1}^{H} PV_f[i,j]/(WH)$
- Motivative insights
 - Tiles with low-mPV achieve high and similar PSNR using CNN-based and interpolation-based methods;
 - Tiles with high-mPV get significant higher PSNR using CNN-based method than interpolation.

Dataset	DIV2K	60		•	AREA	_x2
Interpolatio n method	AREA_x2	(gp) ^{50 -} ^{40 -}	2.7	* dB	CARN	_x2
CNN model	CARN_x2	0 al-	-*-			
Dividing	20 x 20	20			9.7	d₿
method		20(0 250	500 mPV valu	750	1000

Tiles Generation

- Mean Pixel Variant $mPV_f = \sum_{i=1}^{W} \sum_{j=1}^{H} PV_f[i,j]/(WH)$
- Key Idea: only offload high-mPV tiles
 - Calculate the upscaling difficulties for each tile;
 - Select the Top-K tiles with highest mPV;
 - Parallel offload the selected tiles to involved devices for CNN-based inference;
 - Locally upscale other tiles via interpolation.

Next we consider the parallel offloading policy!

Parallel Offloading: System Model

• Multi-device parallel offloading problem

- Decision:
$$x_t = (x_{1,t}, \cdots, x_{K,t})$$

- Maximize the overall offload reward
- Subject to the resource and latency constraints

$$\mathbb{P}: \max_{\{x_t | t \in \mathcal{T}\}} \sum_{t \in \mathcal{T}} \sum_{k \in \mathcal{K}} \mathbb{E} \left[\tilde{u}_{n, x_{k, t}}(t) \right]$$
No System-side info.
i.i.d random reward
s.t. $\sum_{k \in \mathcal{K}_{d, t}} c_{k, d} \leq C_d, \forall d \in \mathcal{D}, \forall t \in \mathcal{T},$ Resource constraint
 $\max \left\{ L_{k, x_{k, t}} | k \in \mathcal{K} \right\} \leq L_{max}, \forall t \in \mathcal{T}.$ Latency constraint

Parallel Offloading: System Model

• Multi-device parallel offloading problem

- Decision:
$$x_t = (x_{1,t}, \cdots, x_{K,t})$$

- Proportional fairness maximization

$$\mathbb{P}_{1}: \max_{\{x_{t}|t\in\mathcal{T}\}} \sum_{t\in\mathcal{T}} \sum_{k\in\mathcal{K}} \mathbb{E}\left[\tilde{r}_{k,x_{k,t}}(t)\right]$$
No System-side information i.i.d random reward s.t. $\tilde{r}_{k,x_{k,t}}(t) = \ln\left(1+\eta\tilde{u}_{k,x_{k,t}}(t)\right)$, Fair reward distribution $\sum_{k\in\mathcal{K}_{d,t}} c_{k,d} \leq C_{d}, \forall d\in\mathcal{D}, \forall t\in\mathcal{T},$ Resource constraint $\max\left\{L_{k,x_{k,t}}|k\in\mathcal{K}\right\} \leq L_{max}, \forall t\in\mathcal{T}.$ Latency constraint

- Reward $\tilde{r}_{n,x_{k,t}}(t)$ is uncertain but bounded
 - Decentralized multi-agent multi-armed bandit
 - **Exploration**: obtain the offloading reward mapping
 - Packing: get the final tile offloading scheme
 - **Exploitation**: utilize the packing result

Algorithm 1 Decentralized Online Tile Offloading Input: $\mathcal{K}, \mathcal{D}, \mathcal{T}, T_{explore}, T_{exploit}$ 1: $R^{(\pi)} \leftarrow \{\tilde{r}_{k,d}^{(\pi)} = 0, \forall k \in \mathcal{K}, \forall d \in \mathcal{D}\}, \forall \pi \in \Pi;$ 2: $\Xi^{(\pi)} \leftarrow \{\chi_k^{(\pi)} = 0, \forall k \in \mathcal{K}\}, \forall \pi \in \Pi;$ 3: for epoch $\pi = 1$ to π_T do 4: Invoke Alg. 2: $\tilde{R}^{(\pi)} = \text{Exploring}(R^{(\pi)}, T_{explore});$ 5: Invoke Alg. 3: $\tilde{\Xi}^{(\pi)} = \text{Packing}(\tilde{R}^{(\pi)}, \Xi^{(\pi)});$ 6: for each of the remaining $T_{exploit}$ time slots do 7: Offloading tiles to device by Exploiting $\tilde{\Xi}^{(\pi)};$

- Reward Exploration and Exploitation
 - Group-based offloading in a round-robin fashion
 - Target device $x_{k,t} = \lfloor ((k+t)\%(\underline{K}D))/\underline{K} \rfloor + 1$,
 - Reward update $\tilde{r}_{k,d}^{\pi} \leftarrow \tilde{r}_{k,d}^{\pi-1} + \left(\tilde{r}_{k,d} \tilde{r}_{k,d}^{\pi-1}\right) / \pi$

Algorithm 2 Reward Exploring with Multi-Agent Bandit Input: $R^{(\pi)}$, $T_{explore}$, K, \underline{K} , D1: for time slot t = 1 to $T_{explore}$ do 2: for group g to $\left[\frac{K}{\underline{K}D}\right]$ do 3: Each tile k in group g is offloaded to target 4: device $d = \lfloor ((k+t)\% (\underline{K}D)) / \underline{K} \rfloor + 1;$ 5: Update $\tilde{r}_{k,d}^{\pi} \leftarrow \tilde{r}_{k,d}^{\pi-1} + (\tilde{r}_{k,d} - \tilde{r}_{k,d}^{\pi-1}) / \pi;$ Output: $\tilde{R}^{(\pi)} = \left\{ \tilde{r}_{k,d}^{(\pi)}, \forall k \in \mathcal{K}, \forall d \in \mathcal{D} \right\}$

Tile packing based on reward map – For each slot *t*, it can be modeled as

$$\mathbb{P}_{2}: \max_{\boldsymbol{x}_{t}} \sum_{k \in \mathcal{K}} \tilde{r}_{k, \boldsymbol{x}_{k, t}} \quad \text{Value}$$

s.t. $\sum_{k \in \mathcal{K}_{d, t}} c_{k, d} \leq C_{d}, \forall d \in \mathcal{D}, \quad \text{Volume}$
 $\max \{L_{k, \boldsymbol{x}_{k, t}} | k \in \mathcal{K}\} \leq L_{max},$

Multi-Knapsack Problem (MKP)

- Tile packing upon MKP
 - Iteratively update the tiles for each device

Algorithm 3 Tile Packing upon Multi-Knapsack Problem Input: $\tilde{R}^{(\pi)}, \tilde{\Xi}^{(\pi)}, K, D, C$ 1: $R_1 \leftarrow \tilde{R}^{(\pi)}, \ \hat{S} \leftarrow \varnothing, \ d \leftarrow 1;$ 2: while d < D do **Slove single-knapsack** Run algorithm $\Pi(R_d, C_d)$ and return S_d ; 3: problem for device d for tile $i \in S_d$ do 4: if $\exists d', 1 \leq d' < d$ s.t. $i \in S_{d'}$ then Update $S_{d'} \leftarrow S_{d'} \setminus \{i\};$ Update decision $\widehat{S} \leftarrow \widehat{S} \bigcup \{S_d\};$ 5: Update the decision set 6: for tile k to K do k to K do device j to D do $R_d^1[k, j] = \begin{cases} R_d[k, j], & \text{if } k \in S_d \text{ or } j = d, \\ 0, & \text{otherwise,} \end{cases}$ Update the profit matrix 7: for device j to D do 8: 9: Set $R_d^2 \leftarrow R_d - R_d^1$, $R_{d+1} \leftarrow R_d^2$, $d \leftarrow d+1$; 10: Output: \widehat{S} 21 May 2024 20

- Tile packing upon MKP
 - Example: 4 tiles, 3 devices

- Experimental setup
 - Edge device and CNN models

DEVICE DESCRIPTION IN TILESR IMPLEMENTATION.

Device	Description	SR Model
Dell Desktop	Intel Core i5-11500, 2.70GHz	AREA
Raspberry Pi 4B	500 MHz VideoCore VI	CARN [5]
Jetson NANO	128-core NVDIA Maxwell	RCAN [9]
Jetson TX2	256-core NVDIA Pascal	MSRN [8]
Jetson Xavier NX	385-core Volta +48 Tensor Cores	EDSR [7]

- Datasets: DIV2K/Set5/Set13/YouTube-NBA

- Experimental setup
 - Edge device and CNN models
 - Datasets: DIV2K/Set5/Set13/YouTube-NBA
 - Comparing schemes
 - Supremo: offloads tiles to cloud
 - MobiSR: utilizes local multiple diverse processor
 - Strawman: utilizes CARN for local SR
 - **RAScheduler**: offloads tiles based the computation

- Tradeoff between latency and quality
 - Latency: 17.77%, 57.63%, 69.66%, and 82.2%
 - **SR quality**: 2.38%, 9%, 3.2%, and 10.57%

- Processing Rate (fps)
 - -0.22x, 1.36x, 2.3x, and 4.62x

Energy efficiency
-7.6%, 40%, 28%

• Tile settings

- Tile quantity: 20; Tile size: 15x15

Conclusion

- Multi-device inference for image SR
 - SR difficulty analysis
 - Method: Top-K tiles are offloaded for CNN inference, others are executed locally.
 - Tile parallel offloading
 - Decentralized multi-agent multi-armed bandit
 - Exploration: obtain the offloading reward map
 - Packing (MKP): iteratively solve a single-knapsack problem for each device

Thank You !

Q & A Ning Chen Nanjing University