
FISSIONE: A Scalable Constant Degree and Low
Congestion DHT Scheme Based on Kautz Graphs

Dongsheng Li, Xicheng Lu, and Jie Wu

Abstract— The distributed hash table (DHT) scheme has be-
come the core component of many large-scale peer-to-peer net-
works. Degree, diameter, and congestion are important measures
of DHT schemes. Many proposed DHT schemes are based on
traditional interconnection topologies, one being the Kautz graph,
which is a static topology with many good properties such as
optimal diameter, optimal fault-tolerance, and low congestion.
In this paper, we propose FISSIONE: the first effective DHT
scheme based on Kautz graphs. FISSIONE is constant degree,
O(log N) diameter, and (1 + o(1))-congestion-free. FISSIONE
shows that a DHT scheme with constant degree and constant
congestion can still achieveO(log N) diameter, which is better
than the lower bound Ω(N1/d) conjectured before. The average
degree of FISSIONE is 4, the diameter is less than2 log N ,
and the maintenance message cost is less than3 log N . The
average routing path length is aboutlog N and is shorter than
CAN or Koorde with the same degree when the peer-to-peer
network is large-scale. FISSIONE can achieve good load balance,
high performance, and low congestion and these properties are
carefully evaluated by formal proofs or simulations in the paper.

Index Terms— Peer-to-peer networks, distributed hash table
(DHT), Kautz graph, congestion-free.

I. I NTRODUCTION AND RELATED WORK

In recent years, peer-to-peer (P2P) computing has attracted
significant attention from both industry and academic re-
search [1], [2]. Applications of peer-to-peer networks vary
among file sharing, persistent data storage, cooperative web-
caching, DNS, and application level multicast. Many peer-to-
peer systems have been deployed on the Internet, and some of
them have become popular Internet applications.

The core component of many P2P systems is a distributed
hash table (DHT) scheme [3], [4] that uses a hash-table-
like interface to publish and look up data objects. In DHT
schemes, the objects are hashed into a namespace, and each
peer is assigned a small segment of the namespace. When
peers join or depart, the responsibility is reassigned among
the peers to maintain the hash table structure. DHT schemes
have attracted significant attention in academic research for
their desirable characteristics, such as scalability, robustness,
adaptability, self-management, and generality.

Dongsheng Li and Xicheng Lu are with School of Computer, National
University of Defense Technology, Changsha, Hu Nan, P. R. China 410073.
E-mail:{dsli,xclu}@nudt.edu.cn.

Jie Wu is with the Department of Computer Science & Engineering, Florida
Atlantic University, Boca Raton, FL 33431, USA. Email: jie@cse.fau.edu.

The work of Li and Lu was supported in part by the National Natural
Science Foundation of China under Grant No. 90412011, 90104001 and
90204005 and the National Basic Research Program of China under Grant
No. 2003CD314802. The work of Wu was supported in part by US NSF
Grants ANI 0073736, CCR 0329741, CNS 0422762, CNS 0445533, and EIA
0130806.

Two important measures of DHT schemes aredegree, the
size of routing table to be maintained on each peer, and
diameter, the number of hops a lookup needs to travel in the
worst case. Chord [5], Tapestry [6], Pastry [7], and CAN [8]
are well-known DHT schemes. The degree of Chord [5] is
log N and its diameter is alsolog N , whereN is the number
of peers in the P2P network. The average path length of Chord
is 1/2 log N . Tapestry and Pastry are similar DHT schemes
designed with the concept of prefix routing [9]. The degree of
either isO(d logd N) and the diameter isO(logd N) whered
is the base in which the peer identifiers are encoded. CAN uses
a d-dimensional Cartesian coordinate space (for some fixedd)
and its degree is2d. The diameter of CAN is1/2dN1/d, and
the average path length is1/4dN1/d. From these schemes, it
was observed in [4] that existing DHT schemes tend to achieve
either O(log N) degree andO(log N) diameter (e.g., Chord,
Tapestry, and Pastry) orO(d) degree andO(dN1/d) diameter
(e.g., CAN). Thus it was asked in [4] whether there exists a
DHT scheme withO(d) degree andO(log N) diameter.

Recent work [10]–[13] showed that there are DHT schemes
that achieveO(log N) diameter withO(d) degree, but these
schemes cause congestion. Xuet al. [13] systematically
studied the degree/diameter tradeoff of DHT schemes and
clarified the role thatc-congestion-free(which is defined as
the maximum traffic that nodes or edges deal with is no more
thanc times the average) plays in the degree/diameter tradeoff.
Their research showed thatΩ(log N

log log N) andΩ(log N) are the
asymptotic lower bounds for the diameter when the degree is
O(log N) and d respectively, and a conjecture posed in [13]
is that “when the network is required to bec-congestion-free
for some constantc, Ω(N1/d) is the asymptotic lower bound
for the diameter when the degree is no more thand”. In this
paper, we propose FISSIONE, a DHT scheme based on Kautz
graphs, that can achieve constant degree,O(log N) diameter,
and be(1+o(1))-congestion-free. The result from FISSIONE
shows that DHT schemes with constant degree and constant
congestion can still achieveO(log N) diameter, which is better
than the lower boundΩ(N1/d) conjectured before.

Many proposed DHT schemes are based on some traditional
interconnection topologies: Chord, Tapestry, and Pastry are
based on the hypercube topology, CAN is based on thed-torus
topology, Koorde [10], D2B [11] and ODRI [14] are based
on the de Bruijn graph, and Viceroy [12] and Ulysses [13]
are based on the Butterfly topology. Gummadiet al. [15]
studies how basic geometric approaches (i.e., interconnection
topologies) affect the resilience and proximity properties of
DHT schemes. Loguinovet al. [14] examined graph theoretic
properties of existing DHT schemes and proposed a new

DHT scheme, ODRI, based on de Bruijn graphs; however the
details of ODRI are still under investigation. Compared with
the hypercube, the de Bruijn graph, or the torus, the Kautz
graph [16], [17] has some better properties, but there were no
DHT schemes based on Kautz graphs. In this paper, we show
the optimal diameter and optimal fault tolerance properties
of the Kautz graph and demonstrate that the Kautz graph is
(1 + o(1))-congestion-freewhen using the long path routing
algorithm. Then we propose FISSIONE, the first effective
DHT scheme based on Kautz graphs.

FISSIONE is based on well-known Kautz graphs; however,
there are some challenges in building dynamic P2P networks
with good properties based on static Kautz graphs:

1) First, the identifiers of peers or objects in P2P networks
should be Kautz strings, but there is no existing hash
algorithm that can determinately generate Kautz strings
uniformly distributed in the Kautz namespace (as SHA-
1 algorithm used in Tapestry to generate GUID for
objects). We design aKautzhashalgorithm to achieve
that and prove its correctness and efficiency.

2) Second, the shortest path routing algorithm [17] gener-
ally used causes severe congestion in the Kautz graph.
We adopt the long path routing algorithm and demon-
strate its low congestion characteristic. Then we modify
it to fit the routing algorithm used in dynamic P2P
networks.

3) Third, the Kautz graph is a static topology and some
mechanisms are required to adapt the static Kautz graph
gracefully to dynamic P2P networks. In FISSIONE,
peers are organized to form an approximate Kautz graph
according to their identifiers, and the neighborhood
and identifiers are adapted dynamically to the changing
population of peers. FISSIONE keeps a topology rule
called neighborhood invariantat all times to acquire
good load balance and low diameter. Thesplit large and
merge smallself-stabilization mechanism is proposed
to deal with joining or departing of peers. Theatomic
updatemechanism is adopted to avoid temporary inac-
curate routing or other mistakes in P2P networks when
updating. Based on these mechanisms, FISSIONE can
be built as a scalable and high performance P2P network.

FISSIONE can achieve many good characteristics, such
as load balance, high performance, and low congestion.
FISSIONE is constant degree,O(log N) diameter and(1 +
o(1))-congestion-free. The degree of FISSIONE is between 3
and 6, and its average degree is 4. The diameter of FISSIONE
is less than2 log N , which matches the theoretical low bound
Ω(log N) of constant degree DHT schemes. The average
routing path length is aboutlog N and the maintenance cost
is O(log N). Similarly to CAN, D2B, Viceroy, and Ulysses,
each peer in FISSIONE owns a zone in virtual 2-dimensional
Cartesian space and repositions the space when peers join or
leave. However, the design of FISSIONE is very different from
them, and thus it can achieve different tradeoffs. The identifiers
of peers and data objects in FISSIONE are Kautz strings
with different lengths, and the neighborhood is represented
as an approximate Kautz graph. The topology rule and main-

tenance mechanism in FISSIONE are significantly different
from existing approaches. Compared with FISSIONE, Ulysses
is O(log N) degree and achieves a different tradeoff. D2B
and Viceroy are DHT schemes to achieve expected constant
degree and expectedO(log N) diameter. The expected de-
gree of D2B is constant, but its high probability bound is
O(log N), i.e., a few peers would be of degreeΩ(log N). The
expected diameter of Viceroy is about3 log N ; however its
O(log N) diameter is achieved not with certainty but “with
high probability”. Among the known DHT schemes, only
CAN, Koorde, and FISSIONE are definitely constant degree.
CAN is of 2d degree, but its diameter isO(dN1/d). Koorde is
constant degree andO(log N) diameter, but it is not(1+o(1))-
congestion-freeand its congestion is more severe than that of
FISSIONE. The average routing path length of FISSIONE is
shorter than that of CAN or Koorde with the same degree
when the P2P network is large-scale.

The remainder of the paper is organized as follows. Section
II introduces the Kautz graph and shows its good properties.
Section III describes the detailed design of FISSIONE. Section
IV evaluates the characteristics of FISSIONE. Conclusions and
future work are discussed in Section V.

II. K AUTZ GRAPH AND LOW CONGESTION

Many DHT schemes are based on traditional interconnec-
tion network topologies. Different from dynamic P2P net-
works, the traditional interconnection topology poses some
limits on the number of nodes it can support and does
not support the dynamic joining or departing of nodes. To
distinguish them, the traditional interconnection networks are
called static networks in the paper.

A. Static Kautz Graph

FISSIONE adopts the Kautz graph as its static network
topology. This section reviews the Kautz graph [16], [17] and
its properties.

Definition 1: The Kautz stringξ of lengthk and based is
defined as a stringu1u2 . . . uk whereui belongs to an alphabet
of d + 1 symbols{0, 1, 2, . . . , d} and ui 6= ui+1 (1 ≤ i ≤
k − 1).

Definition 2: The Kautz namespaceKautzSpace(d, k) is
defined as the set containing all Kautz strings of lengthk and
based, i.e., KautzSpace(d, k) = {u1u2 . . . uk|u1u2 . . . uk is
a Kautz string}.

The main feature of the Kautz string is that two consecutive
symbols in it are always different. It is easy to see that there
are N = dk + dk−1 strings inKautzSpace(d, k) since the
first symbol in the Kautz string hasd + 1 possibilities and all
subsequent symbols haved possibilities.

Definition 3: The Kautz graph K(d, k) [16], [17] is a
directed graph whose node set is given by all strings in
KautzSpace(d, k). There is an edge from nodeU to node
V (denoted byU → V) iff V is a left-shifted version ofU ,
i.e., there is an outgoing edge fromU = u1u2 . . . uk to V iff
V = u2u3 . . . ukx for any x 6= uk andx ∈ {0, 1, 2, . . . , d}.

Obviously, each node in the Kautz graphK(d, k) is of in-
degreed and out-degreed and there areN = dk +dk−1 nodes
in K(d, k). Figure 1 shows Kautz graphK(2, 3).

012

101 121

210

010 212

021102

201
020

120
202

Fig. 1. Kautz graphK(2, 3).

012

101 121

21

010
021102

201 120
2020202

0201

Fig. 2. Neighborhood of FISSIONE.

The Kautz graph is similar to the de Bruijn graph except
that its nodes’ labels are not normal strings (as in the de
Bruijn graph) but Kautz strings. However, the Kautz graph
can achieve some better properties, such as optimal diameter,
optimal fault tolerance, and good load balance.

Given degreed and diameterk, the upper bound on the num-
ber of nodesN in a graph is given by theMoore bound[18]
1+d+d2+. . .+dk. The Moore bound is not achievable except
in the trivial case whend = 1 or k = 1. The number of nodes
in Kautz graphK(d, k) is dk−1 +dk, very close to the Moore
bound. Furthermore, ifk = 2, the largest number of nodes in
a graph isd+d2 and then Kautz graphs are the densest graphs
when the diameter is 2 (since inK(d, 2), N = d + d2). From
the Moore bound, it is easy to find that the low bound of the
diameter of graphs withN nodes isdlogd(N(d− 1) + 1)e −
1 and the diameterk of Kautz graph K(d, k) reaches
the lower bound as:

⌈
logd((dk + dk−1)(d− 1) + 1)

⌉ − 1 =⌈
logd(dk+1− dk−1 +1)

⌉− 1 = k + 1− 1 = k.
Thus the Kautz graphK(d, k) has the optimal diameter.

Table I shows the degree/diameter tradeoff of relevant topolo-
gies.

Kautz graphs are also optimally fault-tolerant [19]. The
Kautz graphK(d, k) of degreed has connectivityd (i.e., there
ared node-disjoint paths between any two nodes) and failure
of any d − 1 components is tolerated. The corresponding de
Brujin graph has connectivityd − 1. In addition, the Kautz
graph can achieve better load balance and lower latency than
the de Bruijn graph [17]. Because the Kautz graph has these
good features, FISSIONE selects it as the underlying static
topology.

B. Low Congestion Routing

There are many routing algorithms for Kautz graphs, such
as theshortest path routingalgorithm and thelong path rout-
ing algorithm [17]. FISSIONE adopts thelong path routing
algorithm in Kautz graphs.

Definition 4: Long path routing algorithm. With the long
path routing algorithm, the routing path (calledlong path)
from nodeU = u1u2 . . . uk to nodeV = v1v2 . . . vk in the
Kautz graphK(d, k) is a path of lengthk shown as below:

U = u1u2 . . . uk → u2u3 . . . ukv1 → u3u4 . . . ukv1v2 →
. . . → ukv1v2 . . . vk−1 → v1v2 . . . vk = V (if uk 6= v1)

or a path of lengthk − 1 shown as below:
U = u1u2 . . . uk → u2u3 . . . ukv2 → u3u4 . . . ukv2v3 →

. . . → ukv2 . . . vk−1vk = v1v2 . . . vk = V (if uk = v1).

For example, the long path from node201 to node212 is
201 → 012 → 121 → 212, and the long path from201 to 102
is 201 → 010 → 102.

The long path may contain duplicate nodes and the algo-
rithm keeps it for symmetry and simplicity. Obviously, the
length of the long path between any two different nodes isk
or k−1, and the average path length ish = d

d+1 ∗k+ 1
d+1 ∗(k−

1) = k − 1
d+1 . The average routing path length of long path

routing algorithm is a little longer than that of the shortest path
routing algorithm (Table II shows the comparison between
them), while the long path routing algorithm can achieve better
load balance and other good characteristics and its average
routing delay may even be less under heavy loads [17] (the
severe congestion on some nodes in the shortest path leads to
extra queuing delay).

Now we consider the congestion characteristic of long path
routing in Kautz graphs. We use the concept “congestion-free”
from Xu et al [13].

Definition 5: A P2P network isc-congestion-free[13] (c is
a constant andc ≥ 1) if its static network is bothc-node-
congestion-freeandc-edge-congestion-freeunderuniform all-
to-all communication load. Being c-congestion-freeis also
referred to as havingc congestionor constant congestion.
A network is said to bec-node-congestion-freeif no node
is handling more thanc times the average traffic per node.
A network is said to bec-edge-congestion-freeif no edge is
handling more thanc times the average traffic per edge.

The uniform all-to-all communication loadis defined as:
for each pair of nodesU andV (U 6= V), there is a unit of
traffic from U to V . A static P2P network is defined as the
case in which all nodes in the identification space exist and
are alive, i.e., nodes in the P2P network form the complete
static topology.

Underuniform all-to-all communication load, there areN ∗
(N − 1) routings in the network. Assuming the average path
length of the network ish, then the average load on a node is
(N − 1) ∗ h and the average load of an edge isN ∗ (N − 1) ∗
h/|E| (where|E| is the number of edges in the network).

Theorem 1:With the long path routing algorithm, Kautz
graphK(d, k) is (1 + o(1))-congestion-free.

Proof: The detailed proof of Theorem 1 can be referred
to [20], here is just the sketch. Define

S1 = {u1u2 . . . uku1u2 . . . uk|u1u2 . . . uku1u2 . . . uk

∈ KautzSpace(d, 2k)},
S2 = {u1u2 . . . uku2 . . . uk|u1u2 . . . uku2 . . . uk

∈ KautzSpace(d, 2k − 1) andu1 = uk},
S3 = KautzSpace(d, 2k)− S1,
S4 = KautzSpace(d, 2k − 1)− S2,
S = S3 ∪ S4

The uniform all-to-all communication loadis represented
by the setM : M ={ long paths fromU to V | U andV are
different nodes inK(d, k) }

Define mappingf : ∀δ ∈ M , assumingδ is a routing path
of length n: b1b2 . . . bk → b2b3 . . . bk+1 → b3b4 . . . bk+2 →
. . . → bnbn+1 . . . bn+k, thenf(δ) = b1b2 . . . bk . . . bn+k.

It is easy to prove thatf is a bijection fromM to S. Thus
under theuniform all-to-all communication load, for any node
R = r1r2 . . . rk, its load is equal to the number of the Kautz

TABLE I

DEGREE/DIAMETER TRADEOFF OF DIFFERENT TOPOLOGIES.

Topology Degree Diameter Average path length

Hypercube topology (Chord) log N log N 1/2 log N

d-torus topology (CAN) 2d 1/2dN1/d 1/4dN1/d

Butterfly topology d 2 logd N(1− o(1)) [14] about3/2 logd N [14]
de Bruijn graph d logd N logd N − 1/(d− 1) [14]
Kautz graph (FISSIONE) d D = logd N − logd(1 + 1/d) D − 1/(d + 1)

TABLE II

AVERAGE ROUTING PATH LENGTH(LONG PATH ROUTING ALGORITHM VS. SHORTEST PATH ROUTING ALGORITHM).

Kautz graph K(2, 10) K(2, 11) K(3, 6) K(3, 7) K(4, 5) K(4, 6) K(5, 5) K(6, 4) K(6, 5)

Number of nodes 1536 3072 972 2916 1280 5120 3750 1512 9072
Shortest path routing algorithm [17] 8.7922 9.7865 5.4624 6.4567 4.6541 5.6505 4.7430 3.7983 4.7958
Long path routing algorithm 9.6667 10.6667 5.75 6.75 4.8 5.8 4.8333 3.8571 4.8571

stringr1r2 . . . rk appeared as a substring (except for the prefix)
of Kautz strings inS. It can be found that the loadLn of R
is:

Ln(R) =
{

k ∗ dk + (k − 1)dk−1 − k (r1 6= rk)
k ∗ dk + (k − 1)dk−1 − k + 1 (r1 = rk)

The average path lengthh in K(d, k) is h = k − 1
d + 1 .

Thus the average load of a node is :

Avg(Ln) = (N − 1) ∗ h

= (dk + dk−1 − 1) ∗ (k − 1
d + 1

)

= k ∗ dk + (k − 1) ∗ dk−1 − k +
1

d + 1

As Max(Ln)−Avg(Ln) = d
d + 1 ¿ Avg(Ln), and

Max(Ln)/Avg(Ln) < 1 +
1

(k − 1) ∗ (dk + dk−1)

= 1 +
1

(k − 1) ∗N

= 1 + O(
1

N ∗ logd N
)

= 1 + o(1)

ThusK(d, k) is (1+ o(1))-node-congestion-free. Similarly,
it can be proved thatK(d, k) is (1 + o(1))-edge-congestion-
free. Therefore Kautz graphK(d, k) is (1+o(1))-congestion-
free.

From Theorem 1, it can be derived that the Kautz graph
has constant congestion (e.g. it is 2-congestion-free). When
the number of nodesN is large, the Kautz graph is almost
congestion-free.

A Kautz graph has optimal diameter and optimal fault-
tolerance characteristics. In addition, it is(1 + o(1))-
congestion-freewhen using the long path routing. Thus the
Kautz graph is a good static topology to construct DHT
schemes. In this paper, we propose a novel constant-degree
and O(log N)-diameter DHT scheme, FISSIONE, which is
based on Kautz graphK(2, k) with long path routing. From
Definition 5 and Theorem 1, FISSIONE has constant conges-
tion.

III. FISSIONE DESIGN

A. Overview

FISSIONE uses a Kautz graphK(2, k) as its static topology.
Each peer in FISSIONE owns a zone in a virtual 2-dimensional
Cartesian coordinate space. Peer and zone are synonyms in
the paper and can be used interchangeably. The identifiers of
zones in FISSIONE are Kautz strings with base 2, and zones
are formed into an approximate Kautz graph according to their
identifiers.

Initially, zones have equal area and the lengths of their
identifiers are the same. Zones form a complete static Kautz
graph (e.g.K(2, 1)) at the beginning. When peers join or
depart, the entire coordinate space is dynamically partitioned
among all peers and the lengths of their identifiers may become
different. For example, if a new peerp joins, it first finds a
large zoneV that has no larger neighbors, and zoneV is split
into two new zones (“split large” policy): one is for the peer
that ownsV originally and another for peerp. The length of
new zone’s identifier is one more than that ofV and its area
is one half of zoneV . Then the neighborhoods related toV
is adapted to maintain the approximate Kautz graph. When
a peerp departs, two brother zonesY1 and Y2 which have
no smaller neighbors are found and merged (“merge small”
policy) to a new zoneZ. The identifier ofZ is one shorter
thanY1 and its area is twice of that ofY1. Afterward related
peers would update their routing tables.

To achieve good characteristics, FISSIONE keeps a topol-
ogy rule calledneighborhood invariantwhich requires that the
difference of identifier lengths between neighbors is no more
than one at all times. Such a rule can ensure that neighbor
zones have similar area size and that the neighborhood is
simple.

Each data object in FISSIONE is assigned a unique Ob-
jectID which is a Kautz string of fixed lengthm. The object
is published on the peer whose identifier is the prefix of its
ObjectID.

B. FISSIONE Neighborhood

The identifiers of zones in FISSIONE are Kautz strings with
base 2. Initially the identifiers of zones are labels of nodes in
a static Kautz graph (e.g.,K(2, 1)) and zones own the same

area in the Cartesian coordinate space. However, the lengths
of identifiers may be different due to the dynamic arrival and
departure of nodes, as explained in a later subsection.

FISSIONE keeps a topology rule calledneighborhood in-
variant at all times. Denoting the length of the identifier of
U as |U |, theneighborhood invariantis shown as Theorem 2
(its proof is in Section IV).

Theorem 2 (Neighborhood Invariant):If zone U andV in
FISSIONE are neighbors,||U | − |V || ≤ 1.

The neighborhoods of zones are based on zone identifiers.
Assuming the identifier of zoneU is u1u2 . . . uk (denote it as
U = u1u2 . . . uk), to form a approximate Kautz graph,U has
two kinds of neighbors:

Out-neighbors: neighbors whose identifiers are
u2u3 . . . ukq1 . . . qm with 0 ≤ m ≤ 2 (if m < 1, the
string in the styleq1 . . . qm represents the null string).

In-neighbors: neighbors whose identifiers areau1u2 . . . ui

(a 6= u1) with k − 2 ≤ i ≤ k.
The routing table ofU contains all the out-neighbors and

in-neighbors ofU . Notice that ifU is the out-neighbor ofV , V
also is the in-neighbor ofU . Figure 2 shows the neighborhood
of FISSIONE (pay special attention to nodes21, 0202, 0201
and their neighbors).

C. Universal Naming

In many DHT schemes, data objects are encoded by some
public hash algorithm (e.g., SHA-1, MD5), and the identifiers
of data objects are in a similar namespace related to the
nodes’ identifiers. For example, the data namespace in Chord
scheme is [0,2160 − 1], which is also the namespace of
nodes in Chord scheme. The identifiers of nodes in Fission
are Kautz strings with base 2 and theKautzhashalgorithm is
proposed to generate a destination Kautz stringξ for each data
object O. Similar to SHA-1 [21], theKautzhash algorithm
should be determinate and the Kautz string generated should
be uniformly distributed in the Kautz namespace.

The Kautzhashalgorithm uses four parameters:key, m, p
andn. For each data objectO, the Kautzhashalgorithm can
generate a Kautz string of lengthm based on its keywordkey.
The procedure ofKautzhash is shown below:

First Kautzhash appends0, 1, . . . , p to key and getskey0,
key1, . . ., keyp. Thenkey0, key1, . . ., keyp are respectively
hashed to 160-bit binary numbersD0, D1, . . . , Dp by the pub-
lic hash algorithm SHA-1, i.e.,D0 = SHA− 1(key0), D1 =
SHA−1(key1), . . ., Dp = SHA−1(keyp). D0, D1, . . . , Dp

are concatenated to acquire a binary numberD andD is then
converted to a ternary numberR

′
. The lown digits ofR

′
form

R. R is a ternary number; howeverR may not be a valid Kautz
string because there may exist certain sequencesbb . . . b with
b ∈ {0, 1, 2} in R. Thus R is further converted to a Kautz
stringQ by substituting a singleb for any sequencebb . . . b in
R. If the length ofQ is less thanm, thenKautzhashkeeps
the value ofD0, D1, . . . , Dp−1, appendsp + 1 to key, and
calculatesDp+1 by SHA-1, . . . , and the procedure above is
repeated again until a Kautz stringQ with length of no less
thanm is obtained. The desired destination Kautz stringξ is
then acquired from the lowm digits of Q. Figure 3 shows the
Kautzhashalgorithm.

Procedure Kautzhash (Keyword key, Len m, Merg p, Digit n)
// generate a Kautz string of lengthm based on keywordkey
// p andn are two adjustable parameters

1 D ← φ // φ is an empty string
2 for i = 0 to p− 1
3 do D ← D||(SHA− 1(key||i))

// || is the concatenation operation
4 i ← p
5 repeat
6 D ← D||(SHA− 1(key||i))
7 i ← i + 1

8 R
′ ← Convert binary ternary(D)

// convert binaryD to ternaryR
′

9 R ← Get low digit(R
′
, n)

// get the lown digits of R
′

to acquire stringR
10 Q ← Merge string(R)

// merge identical consecutive characters inR to
acquire Kautz stringQ

11 until |Q| ≥ m
12 ξ ← Get low digit(Q, m)
13 return ξ

Fig. 3. Kautzhashalgorithm.

The Kautzhash algorithm can adjust the parametersp, n
and m to acquire destination Kautz strings with different
characteristics. Whenm = 100, FISSIONE could support a
P2P system with more than1015 peers (refer to section IV
for details) that is large enough for general applications. Thus
we setm = 100. To acquire the uniformly distributed Kautz
strings, we setp = 2 andn = 280. The following Theorem 3
(its proof shown in Appendix A) shows that whenp = 2 and
n = 280, the Kautzhash algorithm can efficiently generate
a destination Kautz string of length 100 for each data object
and the Kautz string generated is uniformly distributed in the
Kautz namespace.

Theorem 3:With high probability, theKautzhash algo-
rithm (with parametersp = 2 and n = 280) can generate
the destination Kautz string of length 100 in one iteration,
and Kautz strings generated are uniformly distributed in the
Kautz namespaceKautzSpace(2, 100).

When the parameters are setp = 2 and n = 280, the
computing complexity ofKautzhashalgorithm is about three
times of SHA-1 algorithm; thus it is practical.

The procedure of publishing a data object is shown as
below: If peerp would like to publish a data objectO, it
should first get the destination Kautz stringS of O. Then
peer p invokes a routing to Kautz stringS and the routing
would arrive at a peerm whose identifier is the prefix ofS
(the routing algorithm is discussed in the next subsection).
Thus the data objectO is published on peerm. The lookup
of data objects is similar to the publication and omitted here.

D. Routing in FISSIONE

Routing in FISSIONE is similar to that in Kautz graphs.
Once a zoneU = u1u2 . . . uk receives a routing message
Routing(V, L, S) to destinationV = v1v2 . . . vm (U 6= V)
with left path lengthL, U sends a new routing message

Routing(V, L− 1, SX) to Q if the following conditions hold:
(a) U has one out-neighbor zoneQ = u2 . . . ukX where
X = x1 . . . xj (0 ≤ j ≤ 2) and (b)SX is a prefix ofV .

The initial values ofL andS are set as below: Assume there
is a routing from source zoneW = w1w2 . . . wk to destination
Kautz stringV = v1v2 . . . vm. If wk = v1, then setL = k−1,
S = v1; else setL = k, S = null. Figure 4 shows the routing
algorithm.

Procedure FISSIONERouting (SourceZoneW , DestStringV)
// routing from source zoneW = w1w2 . . . wk to

destination Kautz stringV = v1v2 . . . vm

1 if wk = v1

2 then return W.Routing(V, k − 1, v1)
3 else return W.Routing(V, k, null)

Procedure U.Routing(DestV , PathLenL, ComPrefixS)
// zoneU = u1u2 . . . uk deals with the routing message

to destination Kautz stringV = v1v2 . . . vm

1 if L = 0
2 then return U // reach destinationV
3 else if ∃Q ∈ outneighbors(U) andQ = u2 . . . ukX

andIs prefix(SX, V)
4 then S ← SX
5 Q.Routing(V, L− 1, S)

// the routing message is forwarded toQ

Fig. 4. Routing algorithm.

The routing to destination Kautz StringS will stop at a
unique peerp whose identifier is a prefix ofS (the proof is
shown in section IV).

E. Maintenance and Self-stabilization

1) Peer Joins:When a new peerp joins in FISSIONE, its
join procedure can be divided into two phases: at the first
phase, peerp routes to the peerW that is responsible for the
destination Kautz String ofp; at the second phase, the JOIN
message is propagated from peerW to a large zoneV which
has no larger neighbors. ThenV is split and the routing tables
should be updated. The details are shown below.

Split large zones. When peerp joins, it should know a
peern which is already in the P2P network. Peerp first gets
a unique destination Kautz stringU = u1u2 . . . u100 (e.g., by
performingKautzhashalgorithm on its IP address). Then peer
p invokes a routing from the gateway peern to U . The routing
will reach a unique zoneW whose identifier is the prefix of
U , andW invokes a JOIN message. Then starting from zone
W , if the current zone has a neighbor zone with larger area, it
forwards the JOIN message to the neighbor (if there is more
than one neighbors with larger area, select one randomly and
forward the JOIN message to it). This process will not stop
until the JOIN message reaches a zoneV which has no larger
neighbors and the JOIN message can not be forwarded any
more. Thus zoneV is split into two zonesV1 and V2. The
owner of zoneV1 is set to peerm that was originally the owner
of zoneV before the split, and the owner of zoneV2 is set to
peerp. Suppose the identifier of zoneV is v1v2 . . . vk, then

the identifier ofV1 is v1v2 . . . vkx0 and the identifier ofV2 is
v1v2...vkx̃0 (0 ≤ x0, x̃0 ≤ 2, x0 6= vk, x̃0 6= vk, x0 6= x̃0). V1

andV2 are brother zones. Figure 5 shows the case that peerp
joins into zone 01.

01

02

(a) Zones before peerp joins

0

1

2

0

1

0

02

(b) Zones after peerp joins

Fig. 5. Peerp joins in FISSIONE.

From the split procedure above, it is easy to know that the
area of a zone is in proportion to2−h when the length of
its identifier is h. The longer the identifier is, the less area
the zone occupies. Also, the number of data objects stored on
one peer is in proportion to2−h according to the publication
procedure. Thus the number of data objects stored on a peer
is in proportion to the area of its zone.

Update the routing tables.Once zoneV is split, the routing
tables of related zones should be updated. For out-neighbors
R = v2 . . . vkq1 . . . qm (0 ≤ m ≤ 2) of V , the JOIN message
stops at zoneV , thus|V | ≤ |R| and1 ≤ m ≤ 2. If q1 = x0, R
becomes an out-neighbor ofV1; elseq1 = x̃0 andR becomes
an out-neighbor ofV2. Also R should update its routing table
accordingly. For in-neighborsQ = av1v2 . . . vj (j ≤ k) of V ,
Q becomes an in-neighbor of bothV1 andV2. Figure 6 shows
the maintenance algorithm for peer joining.

Procedure PeerJoin(GatePeern, NewPeerp)
// new peerp join in the system through known peern

1 U ← Kautzhash(IP (p))
// U is the destination Kautz string ofp

2 W ← FISSIONE Routing(n, U)
// routing from peern to U and stops at zoneW

3 V ← W
4 while ∃Q ∈ neighbors(V) and |Q| < |V |
5 do V ← Q
6 Split(V, V1, V2)

// split zoneV to acquire zonesV1 andV2

7 Build routingtables(V1, V2)
// build the routing tables of zonesV1 andV2

8 Update routingtables(neighbors(V))
// update the routing tables ofV ’s neighbors

Fig. 6. Maintenance algorithm for peer joining.

2) Peer Departs:When a peerp departs from FISSIONE,
the zoneV it owns should be occupied by other peers. That
force zones to merge. FISSIONE tries to merge the small
brother zones which have no neighbors with smaller area.

Merge small zones. If peerp volunteers to depart from the
system, it produces a DEPART message. Starting from zoneV ,
if the current zone has a neighbor zone with smaller area, the
DEPART message should be forwarded to the neighbor. The
DEPART message is propagated until a zoneU = u1u2 . . . uk

is reached which has no neighbors with smaller area. Consider
U ’s neighborR = au1u2 . . . ui (k − 2 ≤ i ≤ k), obviously
k − 2 ≤ i ≤ k − 1 (for |R| ≤ |U |); (from Corollary 1 in
Section IV)R has a neighborW = u1u2 . . . uk−1ũkq1 . . . qm

(0 ≤ m ≤ 1). Then, (1) ifm = 0, W = u1u2 . . . uk−1ũk. If
W has a neighborT with a smaller area, the DEPART message
is forwarded toT and continues to propagate; else the two
brother zonesU and W which will be merged are acquired;
(2) if m = 1, (from Corollary 1 in Section IV)R has also
a neighborW

′
= u1u2 . . . uk−1ũk q̃1. If either W of W

′
has

a neighborT with a smaller area, the DEPART message is
forwarded toT and continues to propagate; else the brother
zonesW andW

′
which will be merged are acquired and the

DEPART message is stopped.
During the departure procedure, once the DEPART message

is forwarded one time, the identifier length of the zone passed
decreases by at least one. From Theorem 5 in Section IV, the
DEPART message can be forwarded less thanlog N hops.
Thus we can acquire the brother zonesY1 = y1y2 . . . yn−1yn

and Y2 = y1y2 . . . yn−1ỹn, and Y1 and Y2 have no smaller
neighbor zones. Assume the owners ofY1, Y2 are peerp1 and
peerp2 respectively:

(1) if Y1 or Y2 is V , without loss of generality we can
assumeY1 is V and in this case peerp1 and peerp are the
same peer. Merge zonesY1 and Y2 into a new zoneV

′
=

y1y2 . . . yn−1 and assign peerp2 as the owner of zoneV
′
.

(2) if neitherY1 nor Y2 is V , merge zoneY1 andY2 into a
new zoneV

′
= y1y2 . . . yn−1, then change the owner of the

zoneV to peerp1 and assign peerp2 as the owner of zone
V
′
.
Update the routing tables. After zone Y1 and zoneY2

are merged into zoneV
′
, the routing table ofV

′
maintains

all in-neighbors and out-neighbors of bothY1 and Y2. For
each in-neighborR of Y1 (or Y2), R substitutesV

′
for its

out-neighborY1 (or Y2). For each out-neighborW of Y1 (or
Y2), W substitutesV

′
for its in-neighborY1 (or Y2). Figure 7

shows the maintenance algorithm for peer departure.
Involuntary departure . To deal with involuntary failure,

each peer sendsKeepAlivemessages to all neighbors periodi-
cally. The deferred absence of aKeepAlivemessage from one
neighbor indicates its failure. Once the failure of a peerp is
detected by its neighborn, peern will generate one DEPART
message for peerp. And the remaining process is the same as
that in the case of voluntary departure.

3) Simultaneous Join or Departure:Many peers may join
in (or depart from) FISSIONE at the same time. That may
cause temporary inaccurate information in the routing tables
of peers, which in turn may cause errors in the routing, join,
or departure procedure. To avoid that, FISSIONE adopts an
atomic updatemechanism:

When a peer joins in (or departs from) FISSIONE, the
routing tables of related peers should be updated. Only when
all the updates are completed, is the new routing tables allowed
to be used. During the update period, the relevant routing
requests are forwarded according to the original routing table,
but the JOIN or DEPART messages are withheld. The peers
that are the sources of the JOIN or DEPART messages are
informed to resend these messages after the update is finished.

Procedure PeerDepart(DepartPeerp, DepartZoneV)
// peerp that owns zoneV departs from the system

1 U ← V
2 flag ← 1
3 repeat
4 while ∃Q ∈ neighbors(U) and |Q| > |U |
5 do U ← Q
6 get neighborR = au1 . . . ui (k − 2 ≤ i ≤ k − 1)

of peerU = u1 . . . uk−1uk

7 get neighborW = u1 . . . uk−1ũkq1 . . . qm (0 ≤ m ≤ 1)
of peerR;

8 if m = 0
9 then if ∃T ∈ neighbors(W) and |T | > |W |
10 then U ← T
11 elseY1 ← U
12 Y2 ← W
13 flag ← 0

14 elseget neighborW
′
= u1 . . . uk−1ũk q̃1 of R

15 if ∃T ∈ neighbors(W, W
′
) and |T | > |W |

16 then U ← T
17 elseY1 ← W

18 Y2 ← W
′

19 flag ← 0
20 until flag = 0

21 V
′ ← Merger zones(Y1, Y2)

// merge zonesY1 andY2 to get zoneV
′

22 Update routingtables(V
′
)

23 Update routingtables(neighbors(V
′
))

// update routing tables ofV
′

and its neighbors

Fig. 7. Maintenance algorithm for peer departure.

Because the average degree of FISSIONE is only 4 and
the average number of hops for a JOIN or DEPART message
is propagated is small (referred to Section IV), the overhead
caused by the atomic update mechanism is very small.

F. Fault-Tolerant Routing

When involuntary failures of peers occur and the related
routing tables have not been updated, the routing messages
may be forwarded to failed peers. To increase robustness,
FISSIONE can adopt three fault-tolerant mechanisms:

(1) DFTR [19] mechanism. FISSIONE can modify the
DFTR mechanism and its extension to choose other routing
paths when a failed peer occurs in the routing path.

(2) Fault-tolerant neighbor mechanism. For each peerU =
u1u2 . . . uk, peers ũ2u3 . . . ukq1 . . . qm (0 ≤ m ≤ 2) are
regarded asU ’s fault-tolerant neighbors. WhenU deals
with a routing messageRouting(V, L, S), if the neighbor
u2 . . . ukx1 . . . xj (0 ≤ j ≤ 2) that the routing message
should be forwarded to has failed,U can forward the routing
message to its fault-tolerant neighbor̃u2u3 . . . ukq1 . . . qm

whereSq1 . . . qm is a prefix ofV .
(3) Multiple out-edges mechanism. For each peerU =

u1u2 . . . uk, peersu3 . . . ukx1 . . . xj (0 ≤ j ≤ 4) are also
regarded asU ’s neighbors. WhenU deals with routing mes-
sageRouting(V, L, S), it first forwards the routing message to
neighborV = u3 . . . ukx1 . . . xj whereSx1 . . . xj is a prefix
of V . If V has failed,U can forward the routing message to

another peeru2 . . . ukq1 . . . qm whereSq1 . . . qm is a prefix of
V .

The DFTR mechanism is rather complex, but it does not
affect the degree characteristics of FISSIONE. The fault-
tolerant neighbor mechanism is simple, but it would cause
an increase in the degree of FISSIONE (the fault-tolerant
degree is 2). Multiple out-edge mechanisms can decrease the
routing path length of FISSIONE while increasing its degree.
The detailed comparison of three fault-tolerant mechanisms is
omitted here, and this paper focuses on the basic FISSIONE
scheme.

IV. A NALYSIS AND EVALUATION

In this section, We will show and prove three theorems about
the properties of the basic FISSIONE scheme. Due to space
limitations, we only present the proof sketches.

Theorem 3 (Neighborhood Invariant):If zone U and zone
V are neighbors,||U | − |V || ≤ 1.

Theorem 4 (Correctness of FISSIONE):In FISSIONE, the
routing to Kautz stringV = v1v2 . . . vm (m is a big enough
integer) will arrive at a unique zoneV

′
whose identifier is a

prefix of V .
Theorem 5 (Performance Characteristics):In an N -peer

FISSIONE system,
(1) The in-degree of each peer is 2 and the out-degree is

between 1 and 4. The average out-degree is 2.
(2) The diameter of FISSIONE systems is less than2 log N .
(3) The messages caused by peer joining are propagated less

than 3 log N hops (and the JOIN message is propagated less
thanlog N), and the DEPART message is propagated less than
log N hops. Only constant peers need to update their routing
tables when a peer joins or departs.

A. Neighborhood Invariant

To prove these theorems, we first give some lemmas.
Lemma 1:For each zoneU = u1u2 . . . uk in FISSIONE,

if zone V = v1v2 . . . vm is an out-neighbor of zoneU , then
||U | − |V || ≤ 1, i.e., |k −m| ≤ 1.

Proof: Lemma 1 holds initially. We will show that if
Lemma 1 holds at a certain time, Lemma 1 will also hold
after a split or merge.

In the case of a split, the large zone is divided into two
zones. Assume after a split there are two zonesU andV with
||U | − |V || ≥ 2 andV is one out-neighbor ofU . Recall that
before the split for any zoneP and zoneW in FISSIONE,
||P |−|W || ≤ 1; thus||U |−|V || ≤ 2. Therefore||U |−|V || = 2
and either zoneU or zoneV is newly produced by the split.

(1) If U is derived fromU
′

in the split, then||U ′ |−|V || ≤ 1
and |U | = |U ′ | + 1. Obviously, to achieve||U | − |V || = 2,
|U ′ |− |V | must be 1 before the split. Recall thatV is the out-
neighbor ofU after the split, thusV must be the out-neighbor
of U

′
before the split. But if|U ′ |− |V | = 1 (which means the

area of zoneV is larger than that of zoneU
′
) andU

′
, V are

neighbors, then the JOIN message would be forwarded from
U
′

to V and the zoneU
′

would not have been split. Thus a
contradiction occurs.

(2) If V is derived fromV
′

in the split,|V ′ | − |U | must be
1 before the split. Then zoneU

′
is larger than zoneV

′
, and

the zoneV
′

wouldn’t be split. Thus a contradiction occurs.
Therefore, after a split Lemma 1 remains true.

For a merge, the proof is similar and omitted here.
Theorem 1 can be easily derived from Lemma 1.

B. Correctness of FISSIONE

Lemma 2:For each zoneU = u1u2 . . . uk in FISSIONE,
there are no zonesV = u1u2 . . . ukx1 . . . xj with j ≥ 1 and
U 6= V .

The proof of Lemma 2 is shown in Appendix B.
Lemma 3:For each zoneU = u1u2 . . . uk and any Kautz

string S = s1 . . . sm(s1 6= uk andm ≥ 2) with base 2,U has
an out-neighboru2 . . . ukx1 . . . xj (0 ≤ j ≤ 2) with x1 . . . xj

as a prefix ofS.
Proof: From lemma 1, if zoneQ is an out-neighbor of

U , then |U | − 1 ≤ |Q| ≤ |U | + 1. Thus Q is u2 . . . uk or
u2 . . . ukx1 or u2 . . . ukx1x2. Lemma 3 holds for the initial
static Kautz graph. After a split or merge, it is easy to
demonstrate that lemma 3 still holds. Thus lemma 3 is always
true.

The following two corollaries are direct conclusions from
Lemma 3.

Corollary 1: For any zoneU = u1u2 . . . uk, if U has a
neighbor u2 . . . ukx1 . . . xj (1 ≤ j ≤ 2), U has another
neighboru2 . . . ukx̃1q1 . . . qm (0 ≤ m ≤ 1).

Corollary 2: The out-degree of FISSIONE is between 1 and
4.

Lemma 3 and Corollary 1 show that the routing algorithm in
Section III could go on until the destination zoneV is reached.

Lemma 4:Consider the routing from source zoneW =
w1w2 . . . wk to any destination Kautz stringV = v1v2 . . . vm

(W 6= V andm is an integer big enough),s is an integer: if
v1 = wk, let s = 1, else lets = 0. Let the routing path from
W to V beU1(= W), U2, U3, . . . , Uq(= V), thenUi is of the
form wi . . . wk−sS and the routing message thatUi deals with
is in the form ofRouting(V, k − s − i + 1, S) whereS is a
prefix of V .

Proof: If v1 = wk, let string S0 = wk, else letS0 be
null. ThenU1 = W = w1w2 . . . wk−sS0, V = v1v2 . . . vm =
S0vs+1 . . . vm. The routing message that W deals with is
Routing(V, k − s, S0). Thus initially Lemma 4 holds forU1.

Suppose current zoneUi (1 ≤ p ≤ k − s) is wi . . . wk−pS
and the routing message thatUi deals with isRouting(V, k −
s − i + 1, S) where S is a prefix of V . From Lemma 3,
Ui has an out-neighborwi+1 . . . wk−sSx1 . . . xj (0 ≤ j ≤
2) with S

′
= Sx1 . . . xj as a prefix ofV , then Ui+1 =

wi+1 . . . wk−sSx1 . . . xj = wi+1 . . . wk−sS
′

and the routing
message thatUi+1 deals with isRouting(V, k − s − i, S

′
).

Thus Lemma 4 holds forUi+1. Therefore Lemma 4 holds.
From Lemma 4, wheni = k − s + 1 (L = 0), the routing

message reaches a zoneUi and the routing stops and there is
a certainS that is a prefix ofV andUi = S. Thus the routing
from any source zone to destinationV will arrive and stop at
a zoneV

′
whose identifier is the prefix ofU . From Lemma

2, zoneV
′

is unique. Therefore, Theorem 4 is true.

The path length of routing fromW to V is k−s hops. Thus
we get the following corollary.

Corollary 3: The path length of routing initiated by any
source zoneU = u1u2 . . . uk is no more thank hops.

C. Performance Characteristics

Lemma 5:The in-degree of any zone is always 2.
Proof: Initially there are three zones 0, 1, 2 and each

zone has two in-edges. So initially Lemma 4 holds. After a
split or merge, lemma 4 still holds. Thus Lemma 4 is always
true.

Lemma 6: In anN -peer FISSIONE system, the largest zone
U satisfies that|U | < log N .

Proof: Let |U | = k, then k is the smallest among
the lengths of identifiers of zones in FISSIONE. Peers in
FISSIONE form an approximate Kautz topology, thus2k +
2k−1 ≤ N . Thenk ≤ log N − log 3 + 1 < log N .

Lemma 7: In an N -peer FISSIONE system, the smallest
zoneV satisfies that|V | < 2 log N .

Proof: SupposeU is the largest zone in FISSIONE
system, and consider the routing path fromU to V . From
Corollary 3, we know that the path length is no more than
|U |. Thus from Lemma 1, we can infer that||V |− |U || ≤ |U |.
Because|V | ≥ |U |, thus |V | − |U | ≤ |U | and |V | ≤ 2|U | <
2 log N .

The following corollaries can be derived from Lemma 7 and
Corollary 3 directly.

Corollary 4: In anN -peer FISSIONE system, letU andV
be the smallest and largest zones in the system respectively.
Then |U | − |V | ≤ |V | < log N .

Corollary 5: In an N -peer FISSIONE system, the path
length of routing is less than2 log N hops.

Lemma 8:When a peer joins in or departs from anN -peer
FISSIONE system, the messages caused are totally propagated
at most3 log N andlog N hops respectively (and the JOIN or
DEPART message is propagated at mostlog N hops), and only
constant peers need to update their routing tables.

Proof: Take the split procedure as an example: the
message is first routed to the destination Kautz string. From
Corollary 5, in this phase the message is propagated less
than 2 log N hops. Then the JOIN message is forwarded to
neighbors whose identifiers are at least one shorter than that of
the current zone. From Corollary 4, in that phase the message
is propagated at mostlog N hops. Therefore, the message
caused by peer joining is propagated at most3 log N hops.
From Corollary 2 and Lemma 5, the number of neighbors that
should update their routing tables due to the split is constant.

Theorem 5 can be directly got from Corollary 2, Corollary
5, Lemma 5, and Lemma 8.

D. Performance Evaluation

We implement FISSIONE in the simulator and evaluate
the following characteristics of FISSIONE: degree distribu-
tion, load balance, diameter, average path length, and fault-
tolerance.

First we evaluate the degree distribution of FISSIONE. We
calculate the degree of peers in FISSIONE when the number of
peers is 6,000 and 50,000, and the simulation result is shown
in Figure 8. Figure 8 shows that the degree distribution of
peers in FISSIONE with different scales is slightly different,
but most peers are of degree 4.

21.38

63.53

9.85

5.2

0

10

20

30

40

50

60

70

3
 4
 5
 6

Degree of peers

Pe
rc

en
t o

f
pe

er
s

(%
)

6,000peers

50,000peers

Fig. 8. Degree distribution.

7.9

11

81.1

0

10

20

30

40

50

60

70

80

90

S
 2S
 4S

 Area of zones

Pe
rc

en
t o

f
pe

er
s

(%
)

6,000peers

50,000peers

Fig. 9. Area distribution of zones.

We observe the load balance characteristic of FISSIONE
and simulate FISSIONE with 6,000 and 50,000 peers. In each
experiment, we calculate the area of each zone and letS be the
smallest area among all zones. Figure 9 shows the percentage
of peers that own a particular area. From Figure 9, it can be
inferred that more than 80% of peers own the same area2S
and the percentage of peers whose area is more than4S is
zero. The number of objects stored on each peer is in direct
proportion to its zone’s area; thus the distribution of objects
over peers is almost uniform. Therefore, FISSIONE has a good
load balance.

Then we evaluate the average path length of FISSIONE in
different scales (from 256 peers up to 64K peers) and compare
it with CAN (with degree 4(d = 2) or degree 6(d = 3)) and
Koorde (with degree 4). In each experiment, we select two
random zones and invoke a routing from one to the other,
and then get the average path length over 10,000 routings.
Figure 10 shows the simulation results. Figure 10 also shows
the diameter of FISSIONE (denoted as FISSIONE(max)).
From Figure 10, we can infer that the average path length of
FISSIONE is less thanlog N and the diameter of FISSIONE
is only a little more thanlog N . When the number of peers is
large, the average routing path length of FISSIONE is shorter
than that of CAN or Koorde.

We also evaluate the distribution of routing path length in
FISSIONE. Figure 11 shows the distribution of routing path
length of 10,000 random routings in FISSIONE when the
number of peers is 50,000. From Figure 11, we can infer that
more than 50% of routing paths are of the same length.

We evaluate the self-stabilization cost when a peer joins or
departs. In the experiment, the number of peers in FISSIONE
is 50,000. The experiment is repeated 100 times and each time
a peer joins through a random peer (or a random peer departs).
Figure 13 shows the average hops the update messages are
propagated and Figure 14 shows the distribution of hops that
the JOIN message and DEPART message are propagated.
From Figure 13 and Figure 14, it can be inferred that the
average hops that the JOIN message or DEPART message is

4

9

14

19

24

29

34

39

256
 512
 1024
 2k
 4k
 8k
 16k
 32k
 64k

Number of peers

H
op

s

CAN(d=2)
 CAN(d=3)
 Koorde

FISSIONE(max)
 logN
 FISSIONE(avg)

Fig. 10. Average path length.

0

10

20

30

40

50

60

70

13
 14
 15
 16

Routing path length

Pe
rc

en
t o

f
ro

ut
in

gs
 (

%
)

Fig. 11. Path length distribution.

0

5

10

15

20

25

30

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

Number of failed peers (x 500)

Pe
rc

en
t o

f
fa

ile
d

ro
ut

in
gs

 (
%

)

Fig. 12. Fault-tolerance property.

propagated is very small, and they are propagated at most two
hops. The message cost of peer joining is larger than that of
peer departing because a routing to the destination Kautz string
is invoked first.

15.52

0.56
 0.66

0

2

4

6

8

10

12

14

16

18

H
op

s

peer joins

JOIN message

peer departs

Fig. 13. Average update cost.

1 hop

0 hop

2 hops

0

10

20

30

40

50

60

Pe
rc

en
t (

%
)

JOIN message

DEPART message

Fig. 14. Hop distribution of messages.

We evaluate the fault-tolerance of FISSIONE and test
the fault-tolerant neighbor mechanism. We simulated the
failure ratio for 10,000 random routings in FISSIONE
with 50,000 peers when the number of failed peers is
500, 1, 000, . . . , 7, 500 respectively. Figure 12 shows the simu-
lation result. From Figure 12, it can be inferred that FISSIONE
has some fault-tolerant characteristics.

V. CONCLUSIONS

FISSIONE is the first effective DHT scheme based on Kautz
graphs and it isO(log N) diameter with onlyO(1) degree

and (1 + o(1))-congestion-free. FISSIONE can achieve good
load balance, high performance and low congestion. Our future
work will focus on two directions. First, the current design of
FISSIONE is based on the Kautz graphK(2, k) and needs
to be extended to generalK(d, k) for flexibility. Second,
the physical topological information should be exploited in
FISSIONE to reduce latency.

REFERENCES

[1] D. Clark. Face-to-face with peer-to-peer networking.IEEE Computer,
34(1):18–21, 2001.

[2] D. Schoder and K. Fischbach. Peer-to-peer prospects.Communications
of the ACM, 46(2):27–29, 2003.

[3] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Looking up data in P2P systems.Communications of the ACM,
46(2):43–48, 2003.

[4] S. Ratnasamy, S. Shenker, and I. Stoica. Routing algorithms for DHTs:
Some open questions. InProc. of 1st Workshop on peer-to-peer Systems
(IPTPs’02), 2002.

[5] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balalrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications.
In Proc. of ACM SIGCOMM 2001, pages 160–177. ACM Press, 2001.

[6] B. Y. Zhao, L. Huang, and J. Stribling. Tapestry: A resilient global-
scale overlay for service deployment.IEEE Journal on Selected Areas
in Communications(JSAC), 22(1), 2004.

[7] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. InProc. of
IFIP/ACM Middleware2001, Heidelberg, Germany, 2001.

[8] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scal-
able content-addressable network. InProc. of ACM SIGCOMM’2001.
ACM Press, 2001.

[9] J. Wu and L. Sheng. Deadlock-free routing in irregular networks using
prefix routing. InProc. of the ISCA 12th International Conference on
Parallel and Distributed Computing Systems, pages 424–430, 1999.

[10] F. Kaashoek and D. R. Karger. Koorde: A simple degree-optimal
hash table. InProc. of 2nd Intl. Workshop on Peer-to-Peer Systems
(IPTPS’2003), 2003.

[11] P. Fraigniaud and P. Gauron. The content-addressable network D2B.
Tech rept. 1349, CNRS University de paris-Sud,France, 2003.

[12] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable and dynamic
lookup network. InProc. of 21st ACM Symp on Principles of Distributed
Computing (PODC), Monterey, CA, 2002.

[13] J. Xu, A. Kumar, and X. X. Yu. On the fundamental tradeoffs between
routing table size and network diameter in peer-to-peer networks.IEEE
Journal on Selected Areas in Communications(JSAC), 22(1), 2004.

[14] D. Loguinov, A. Kumar, V. Rai, and S. Ganesh. Graph-theoretic
analysis of structured peer-to-peer systems: Routing distances and fault
resilience. InProc. of ACM SIGCOMM’ 2003, pages 395–406, Karl-
sruhe, Germany, 2003. ACM Press.

[15] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker,
and I. Stoica. The impact of dht routing geometry on resilience and
proximity. In Proc. of SIGCOMM’2003, 2003.

[16] W. H. Kautz. The design of optimum interconnection networks for
multiprocessors.Architecture and Design of Digital Computer, NATO
advances summer Institute, pages 249–277, 1969.

[17] G. Panchapakesan and A. Sengupta. On a lightwave network topology
using kautz digraphs.IEEE Transaction on Computers, 48(10):1131–
1138, 1999.

[18] W. G. Bridges and S. Toueg. On the impossibility of directed moore
graphs.Journal of Combinatorial theory, series B, 29:330–341, 1980.

[19] W. K. Chiang and R. J. Chen. Distributed fault-tolerant routing in kautz
networks. Journal of Parallel and Distributed Computing, 20:99–106,
1994.

[20] D. S. Li, X. C. Lu, and J. S. Su. Graph-theoretic analysis of kautz
topology and DHT schemes. InProc. of IFIP International Conference
on Network and Parallel Computing 2004, 2004.

[21] D. Eastlake and P. Jones.RFC3174: US Secure Hash Algorithm 1
(SHA1). Available at http://www.faqs.org/rfcs/rfc3174.html, 2001.

APPENDIX

APPENDIX A: PROOF OFTHEOREM 3

Theorem 3:With high probability, theKautzhashalgorithm
(with parametersp = 2 and n = 280) can generate the

destination Kautz string of length 100 in one iteration, and
Kautz strings generated are uniformly distributed in the Kautz
namespaceKautzSpace(2, 100).

When parametersp = 2 and n = 280, the work that
Kautzhashalgorithm finished in the first iteration is shown as
below: First, concatenate three binary stringsD0, D1 andD2

into D (according to the characteristics of SHA-1 algorithm,
D0, D1, D2 are all 160-bit binary strings, and as a result,D
is a 480-bit binary string). Following that,D is converted into
ternary stringR

′
(R

′
is a ternary string that is no longer than

303 bits, for2480 < 3303). Taking the lown (n = 280) bits
of R

′
, we get a 280-bit ternary stringR. Then we merge

identical consecutive characters inR and get a new Kautz
string Q with base 2. We will first prove that there is a less
than 10−23 probability that the length of stringQ less than
100, and then we will prove that the destination Kautz strings
acquired from the lower 100 bits ofQ is uniformly distributed
in KautzSpace(2, 100).

To prove Theorem 3, we first introduce some lemmas.

Lemma A.1:After merging identical consecutive characters,
we can obtain a Kautz stringQ with base 2 from ann-bit
ternary stringR. The probability of length ofQ beingm (1 ≤
m ≤ n) is as follows:P (m) = 1.5 ∗ 2m ∗ (

n−1
m−1

)
/3n .

Proof: For eachm-bit Kautz stringQ = b1b2 . . . bm

obtained after merging, letbi be the result originated from the
mergence ofxi consecutivebi (i.e. the mergence ofbi...bi︸ ︷︷ ︸

xi

) in

ternary stringR, then we may get:

m∑

i=1

xi = n (1)

Based on theories of combinatorics, Equation (1) (with
variablexi) has

(
n−1
m−1

)
positive roots, i.e., after merging iden-

tical consecutive characters;
(

n−1
m−1

)
different ternary strings

will be converted into the same Kautz stringQ. There are
1.5 ∗ 2m Kautz strings inKautzSpace(2,m), and any of
two different Kautz stringsQ1 and Q2 (Q1 6= Q2) are
converted from different ternary stringsR1 and R2. Thus
1.5 ∗ 2m ∗ (

n−1
m−1

)
ternary strings would be converted to Kautz

strings in KautzSpace(2,m) after merging, and the total
number of n-bit ternary strings is3n. From this we can
know that the probability of acquiring Kautz strings with
length m after merging identical consecutive characters is
1.5 ∗ 2m ∗ (

n−1
m−1

)
/3n.

According to Lemma A.1, letn = 280 and m = 100, we
get:

P (100) = 1.5 ∗ 2m ∗
(

n− 1
m− 1

)
/3n

= 1.5 ∗ 2100 ∗
(

279
99

)
/3280

= 1.5 ∗ 200 ∗ 279!
99! ∗ 180!

/3280

Thus

lg P (100) = lg 1.5 + 100 ∗ lg 2 + lg 279!− lg 99!
− lg 180!− 280 ∗ lg 3

= −25.81043

For any0 < m < 100,
(

279
m−1

)
<

(
279

100−1

)
, therefore

P (m) < P (100) = 10−25.81043

Thus in one iteration ofKautzhashalgorithm, after merging
identical consecutive characters of the 280-bit ternary string
R, the probability of generating a Kautz stringQ with length
less than 100 is less than100∗10−25.81043 < 10−23. Thus we
get Lemma A.2.

Lemma A.2: With high probability, one iteration of
Kautzhashalgorithm (with parametersp = 2 and n = 280)
can generate a destination Kautz stringξ of length 100.

Lemma A.3:With high probability, the 280-bit ternary string
R generated inKautzhashalgorithm (with parametersp = 2
andn = 280) is uniformly distributed in interval[0, 3280− 1].

Proof: Based on the characteristics of SHA-1 algorithm,
with high probabilityD0, D1, D2 generated by SHA-1 algo-
rithm is distributed evenly in interval[0, 2160−1], therefore,D
that is generated fromD0, D1 andD2 is uniformly distributed
in the interval[0, 2480 − 1] (i.e., ∀i ∈ [0, 2480 − 1], P (D =
i) = 2−480 ∆= P0). Thus the ternary stringR

′
converted from

D is also uniformly distributed in the interval[0, 2480 − 1].
Divide interval [0, 2480 − 1] into segments with length3280,
and let 2480 = r ∗ 3280 + d (0 ≤ d < 3280), thereafter
r =

⌊
2480/3280

⌋
= 79514548487 (around7.95 ∗ 1010). Thus

the interval [0, 2480 − 1] has r complete segments, together
with an interval left with lengthd, as shown in Figure 15.
As a result, for any pointR

′
within interval [0, 2480 − 1], let

R
′
= r

′ ∗ 3280 + d
′

(0 ≤ d
′
< 3280), thenR (the lowest 280

bits of R
′
) is d

′
.

…
3280 3280 3280

2480
0 d

Fig. 15. Interval division.

Therefore,∀i ∈ [0, 3280 − 1], the probabilityP (R = i) can
be calculated as follows:

P (R = i) =
{

(r + 1) ∗ p0 (0 ≤ i < d)
r ∗ p0 (d ≤ i < 3280)

It can be validated that
3280−1∑

i=0

P (R = i) = 1. Here, r >

7.95∗1010 À 1, sor+1 ≈ r; thereafter with high probability
the ternary stringR is uniformly distributed in[0, 3280 − 1].

Lemma A.4:With high probability, the destination Kautz
string ξ obtained fromKautzhash algorithm (with param-
eters p = 2, n = 280) is uniformly distributed in
KautzSpace(2, 100).

Proof: In Kautzhash algorithm, it is obvious that
any Kautz stringξ can be generated via merging identical
consecutive characters of a certain 280-bit ternary stringR
in [0, 3280 − 1] and then truncating the lowest 100 bits.
Identical Rs can only be mapped to the same Kautz string
in KautzSpace(2, 100).

For any destination Kautz stringξ = b1b2 . . . b100 acquired
from Kautzhash algorithm, let bi in ξ stand for xi (1 ≤
xi ≤ 280) consecutivebi (i.e., bi...bi︸ ︷︷ ︸

xi

) in R before merging,

thereafter

100∑

i=1

xi ≤ 280 (2)

Let the number of positive roots of Equation (2) (withxi

as the variables) bet, then t is a number that is independent
of ξ. Each Kautz stringξ is converted fromt different
ternary strings in[0, 3280 − 1]. From Lemma A.3, with high
probability the ternary stringR is uniformly distributed in
[0, 3280− 1], and as a consequence,ξ is uniformly distributed
in KautzSpace(2, 100).

Theorem 3 can be directly got from Lemma A.2 and Lemma
A.4.

APPENDIX

APPENDIX B: PROOF OFLEMMA 2

Lemma 2:For each zoneU = u1u2 . . . uk in FISSIONE,
there are no zonesV = u1u2 . . . ukx1 . . . xj with j ≥ 1 and
U 6= V .

Proof: Lemma 2 holds initially for static Kautz graphs.
We would show that if Lemma 2 holds at some time, Lemma
2 will also hold after a split or merge.

(1) In the case of a split, assume the large zoneV =
v1v2...vk is divided into two zonesV1 = v1v2...vkx0 and
V2 = v1v2...vkx1 (0 ≤ x0 < x1 ≤ 2, x0 6= vk, x1 6= vk).
Obviously, eitherv1v2 . . . vkx0 or v1v2...vkx1 is not a prefix
of the other. Becausev1v2 . . . vk is not a prefix of any zones’
identifiers before the split,v1v2 . . . vkx0 and v1v2 . . . vkx1

would not be a prefix of any zones’ identifiers. If there was
a zoneY whose identifier is a prefix ofv1v2 . . . vkx0 or
v1v2 . . . vkx1 (without loss of generality we assumeY is a
prefix of v1v2 . . . vkx0), as Y is not a prefix ofv1v2 . . . vk

before the split, thereforeY equals v1v2 . . . vkx0. Then a
contradiction occurs forv1v2 . . . vk is a prefix of Y before
the split. Therefore, Lemma 2 holds after the split.

(2) In the case of a merge, the proof is similar to that in (1)
and omitted here.

Therefore, Lemma 2 holds.

