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Abstract—The distributed hash table (DHT) scheme has be-  Two important measures of DHT schemes degree the
come the core component of many large-scale peer-to-peer net-size of routing table to be maintained on each peer, and
works. Degree, diameter, and congestion are important measures diameter the number of hops a lookup needs to travel in the
of DHT schemes. Many proposed DHT schemes are based on
traditional interconnection topologies, one being the Kautz graph, worst case. Chord [5], Tapestry [6], Pastry [7], and CAN [8,]
which is a static topology with many good properties such as are Well-known DHT schemes. The degree of Chord [5] is
optimal diameter, optimal fault-tolerance, and low congestion. log N and its diameter is alstoag N, where N is the number
In this paper, we propose FISSIONE: the first effective DHT of peers in the P2P network. The average path length of Chord
scheme based on Kautz graphs. FISSIONE is constant degree,iS 1/21og N. Tapestry and Pastry are similar DHT schemes

O(log N) diameter, and (1 + o(1))-congestion-free FISSIONE : ; . .
sh(ows t?\at a DHT scher(ne wit(h )():onstant degree and constant d€Signed with the concept of prefix routing [9]. The degree of

congestion can still achieveO(log N) diameter, which is better €ither isO(dlog, N) and the diameter i®)(log, ') whered

than the lower bound Q(N'/?) conjectured before. The average is the base in which the peer identifiers are encoded. CAN uses
degree of FISSIONE is 4, the diameter is less tharzlog N, ad-dimensional Cartesian coordinate space (for some fifyed
e e s o s st T4 an s ceee 1 The dameter of CAN 1 211 ang

?‘,AGN %r Koord% pwith theg same degrgg when the peer-to-peer the average pffnh length 13{44N1/d' From these schemes, _'t
network is large-scale. FISSIONE can achieve good load balance, Was observed in [4] that existing DHT schemes tend to achieve
high performance, and low congestion and these properties are either O(log V) degree and)(log N) diameter (e.g., Chord,
carefully evaluated by formal proofs or simulations in the paper. Tapestry, and Pastry) @(d) degree anaD(le/d) diameter

Index Terms— Peer-to-peer networks, distributed hash table (€.9., CAN). Thus it was asked in [4] whether there exists a
(DHT), Kautz graph, congestion-free. DHT scheme withO(d) degree and)(log N) diameter.

Recent work [10]-[13] showed that there are DHT schemes
that achieveO(log N) diameter withO(d) degree, but these
schemes cause congestion. X al. [13] systematically

In recent years, peer-to-peer (P2P) computing has attracigGdied the degree/diameter tradeoff of DHT schemes and
significant attention from both industry and academic rejarified the role that-congestion-fregwhich is defined as
search [1], [2]. Applications of peer-to-peer networks varhe maximum traffic that nodes or edges deal with is no more
among file sharing, persistent data storage, cooperative Wetanc times the average) plays in the degree/diameter tradeoff.
caching, DNS, and application level multicast. Many peer-tqheir research showed the( 10101goNN) andQ(log N) are the
peer systems have been deployed on the Internet, and somgsginptotic lower bounds for the diameter when the degree is
them have become popular Internet applications. O(log N) and d respectively, and a conjecture posed in [13]

The core component of many P2P systems is a distributgtthat “when the network is required to kecongestion-free
hash table (DHT) scheme [3], [4] that uses a hash-tabley some constant, Q(N'/?) is the asymptotic lower bound
like interface to publish and look up data objects. In DHYor the diameter when the degree is no more thanin this
schemes, the objects are hashed into a namespace, and gagbr, we propose FISSIONE, a DHT scheme based on Kautz
peer is assigned a small segment of the namespace. Whgiphs, that can achieve constant degé@@og N) diameter,
peers join or depart, the responsibility is reassigned amoggd be(1 + o(1))-congestion-freeThe result from FISSIONE
the peers to maintain the hash table structure. DHT schemnd@sws that DHT schemes with constant degree and constant
have attracted significant attention in academic research {ngestion can still achiev@(log N) diameter, which is better
their desirable characteristics, such as scalability, robustnagan the lower bound(N'/?) conjectured before.
adaptability, self-management, and generality. Many proposed DHT schemes are based on some traditional

interconnection topologies: Chord, Tapestry, and Pastry are
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I. INTRODUCTION AND RELATED WORK




DHT scheme, ODRI, based on de Bruijn graphs; however ttenance mechanism in FISSIONE are significantly different
details of ODRI are still under investigation. Compared witfrom existing approaches. Compared with FISSIONE, Ulysses
the hypercube, the de Bruijn graph, or the torus, the Kautz O(log N) degree and achieves a different tradeoff. D2B
graph [16], [17] has some better properties, but there were and Viceroy are DHT schemes to achieve expected constant
DHT schemes based on Kautz graphs. In this paper, we shdegree and expecte@(log N) diameter. The expected de-
the optimal diameter and optimal fault tolerance propertiggee of D2B is constant, but its high probability bound is
of the Kautz graph and demonstrate that the Kautz graphGglog N), i.e., a few peers would be of degr@¢log N). The

(1 4+ o(1))-congestion-freavhen using the long path routingexpected diameter of Viceroy is aboBitog N; however its
algorithm. Then we propose FISSIONE, the first effectiv®(log N) diameter is achieved not with certainty but “with
DHT scheme based on Kautz graphs. high probability”. Among the known DHT schemes, only

FISSIONE is based on well-known Kautz graphs; howeveGAN, Koorde, and FISSIONE are definitely constant degree.
there are some challenges in building dynamic P2P netwof®AN is of 2d degree, but its diameter @(dN'/?). Koorde is

with good properties based on static Kautz graphs: constant degree ar@(log N) diameter, but it is notl+o(1))-

. . - . . congestion-fre@nd its congestion is more severe than that of

1) First, the identifiers (.)f peers or ObJeC_tS n PZP r_]etworiﬁSSIONE. The average routing path length of FISSIONE is
shoul_d be Kautz strings, .bUt there is no existing h.a%rhorter than that of CAN or Koorde with the same degree
algorithm that can determinately generate Kautz stnng\;hen the P2P network is large-scale

ﬁmf?rm!%/hmstnbuctieq InTthe Ktauti namespatlceG(ziJslgl—]!A— The remainder of the paper is organized as follows. Section
aigorithm ‘used n fapestry 1o generate 'Y T} introduces the Kautz graph and shows its good properties.
objects). We design Kautzhashalgorithm to achieve

h q . 4 effici Section Il describes the detailed design of FISSIONE. Section
that and prove its correctness and etfticiency. IV evaluates the characteristics of FISSIONE. Conclusions and
2) Second, the shortest path routing algorithm [17] gen

R Iture work are discussed in Section V.
ally used causes severe congestion in the Kautz graph.

We adopt the Iong path routing algorithm and demon- 1. KAUTZ GRAPH AND Low CONGESTION

strate its low congestion characteristic. Then we modify \;ny pHT schemes are based on traditional interconnec-
it to fit the routing algorithm used in dynamic P2Rj,, network topologies. Different from dynamic P2P net-

3 _?EFVéorkﬁ' K hi , | q works, the traditional interconnection topology poses some
) Third, the Kautz graph is a static topology and som its on the number of nodes it can support and does

mechanisms are required to adapt the static Kautz grap support the dynamic joining or departing of nodes. To

gracefully to dynamlc P2P networks_. In I:ISSIOI\IEd'stinguish them, the traditional interconnection networks are
peers are organized to form an approximate Kautz grapj ;e static networks in the paper

according to their identifiers, and the neighborhood

and identifiers are adapted dynamically to the changing static Kautz Graph
population of peers. FISSIONE keeps a topology rule
called neighborhood invariantat all times to acquire
good load balance and low diameter. gt large and

merge smallself-stabilization mechanism is propose Definition 1: The Kautz string¢ of length k and basel is

to deal with joining or departing of peers. Tlkgomic . .
updatemechanism is adopted to avoid temporary inaCd_eﬂned as a string, us . . . ux Whereu; belongs to an alphabet

curate routing or other mistakes in P2P networks wh of d +1 symbols{0,1,2,....d} andu; # uiyy (1 <@ <
updating. Based on these mechanisms, FISSIONE ca
be built as a scalable and high performance P2P networ,

FISSIONE adopts the Kautz graph as its static network
topology. This section reviews the Kautz graph [16], [17] and
&Is properties.

'Befinition 2: The Kautz namespac& autzSpace(d, k) is

efined as the set containing all Kautz strings of lerigtmd
FISSIONE can achieve many good characteristics, subhsed, i.e., KautzSpace(d, k) = {ujus ... ugluius ... uy is

as load balance, high performance, and low congestienKautz string.

FISSIONE is constant degreé)(log N) diameter and1 + The main feature of the Kautz string is that two consecutive

o(1))-congestion-freeThe degree of FISSIONE is between 3ymbols in it are always different. It is easy to see that there

and 6, and its average degree is 4. The diameter of FISSIONie N = d* + d*~' strings in KautzSpace(d, k) since the

is less thar2log NV, which matches the theoretical low boundirst symbol in the Kautz string has+ 1 possibilities and all

Q(log N) of constant degree DHT schemes. The averagaebsequent symbols hadepossibilities.

routing path length is aboubg N and the maintenance cost Definition 3: The Kautz graph K(d,k) [16], [17] is a

is O(log N). Similarly to CAN, D2B, Viceroy, and Ulysses, directed graph whose node set is given by all strings in

each peer in FISSIONE owns a zone in virtual 2-dimension&lautzSpace(d, k). There is an edge from nodé to node

Cartesian space and repositions the space when peers joifv oidenoted byU — V) iff V is a left-shifted version ot/,

leave. However, the design of FISSIONE is very different frore., there is an outgoing edge froth= uqus ... u; to V iff

them, and thus it can achieve different tradeoffs. The identifie¥S= uqus ... uiz for any z # vy, andx € {0,1,2,...,d}.

of peers and data objects in FISSIONE are Kautz stringsObviously, each node in the Kautz grapf(d, k) is of in-

with different lengths, and the neighborhood is representddgreed and out-degred and there aréV = d¥ +d*—! nodes

as an approximate Kautz graph. The topology rule and main-K(d, k). Figure 1 shows Kautz grapR (2, 3).



For example, the long path from no@61 to node212 is
201 — 012 — 121 — 212, and the long path fror201 to 102
is 201 — 010 — 102.

The long path may contain duplicate nodes and the algo-
rithm keeps it for symmetry and simplicity. Obviously, the
length of the long path between any two different nodes is
or k—1, and the average path lengthhis= #‘ll*kﬁ’ﬁ*(k*
)=k- ﬁ. The average routing path length of long path
routing algorithm is a little longer than that of the shortest path
routing algorithm (Table Il shows the comparison between
them), while the long path routing algorithm can achieve better
(t)ad balance and other good characteristics and its average

L " |
The Kautz graph is similar to the de Bruijn graph eXCeDrouting delay may even be less under heavy loads [17] (the

that its nodes’ labels are not normal strings (as in the d(eavere congestion on some nodes in the shortest path leads to
Bruijn graph) but Kautz strings. However, the Kautz grapﬁ g P

can achieve some better properties, such as optimal diame?éﬂivalﬁeu'ggnggg)me conaestion characteristic of lona path
optimal fault tolerance, and good load balance. 9 gp

Given degreel and diametek, the upper bound on the num_routlng in Kautz graphs. We use the conceprigestion-free

ber of nodesV in a graph is given by th&loore bound[18] from Xu et al[13].

14+d+d?*+...+d*. The Moore bound is not achievable except Definition 5: A P2P network is-congestion-fre¢13] (c is
: . a constant and: > 1) if its static network is bothce-node-
in the trivial case whed = 1 or k£ = 1. The number of nodes

in Kautz graphk (d. k) is d*~1 + d*, very close to the Moore congest|on-free_.and_c-edge-congestlon-frelmqerunlfo_rm all-
. - to-all communication load Being c-congestion-freeis also
bound. Furthermore, ik = 2, the largest number of nodes in d havi ; .
a graph is+d? and then Kautz graphs are the densest grap esferre to as having congestionor co_nstant_congestlon
network is said to bec-node-congestion-fred no node

when the diameter is 2 (since #(d,2), N = d +d?). From . . . .
L : is handling more thare times the average traffic per node.
the Moore bound, it is easy to find that the low bound of th . . . . X
network is said to be-edge-congestion-freé no edge is

diameter of graphs witv nodes is[log,(N(d — 1) +1)] — . . '
. handling more thar times the average traffic per edge.
L and the diameterk of Kautz graph K(d,k) reaches The uniform all-to-all communication loads defined as:

k k—1 _ _ _
the lower bound asflog,((d* +d"")(d —1) + ] — 1 = for each pair of node# andV (U # V), there is a unit of

k+1 _ gk—1 1 — 1=
ﬂ(fl_gﬁ(d h Izl +1)] ml d_lf +h1 1h_ k- imal di traffic from U to V. A static P2P network is defined as the
us the Kautz graplk(d, k) has the optimal diameter. case in which all nodes in the identification space exist and

'gr;aet;Ie | shows the degree/diameter tradeoff of relevant tODOIer'e alive, i.e., nodes in the P2P network form the complete

i static topology.
Kautz graphs are also optimally fault-tolerant [19]. The Underuniform all-to-all communication loadhere areV x

Kautz graphi (d, k) of degreed has connectivityl (i.e., there -\ 4y routings in the network. Assuming the average path
are d node-disjoint paths between any two nodes) and fallufgngth of the network i, then the average load on a node is
of any d — 1 components is tolerated. The corresponding d@\] 1)+ and the average load of an edgeNs: (N — 1)

Brujin graph h_as connectivity — 1. In addition, the Kautz hg E| (where|E| is the number of edges in the network).
graph can gchleve better load balance and lower latency th heorem 1:With the long path routing algorithm, Kautz
the de Bruijn graph [17]. Because the Kautz graph has th phK(d, k) is (1 + o(1))-congestion-free.

good features, FISSIONE selects it as the underlying static Proof: The detailed proof of Theorem 1 can be referred

topology. to [20], here is just the sketch. Define

S1 = {ujug .. uguiug . . ug|uius .. URUIUS - U
€ KautzSpace(d,2k)},

. . 52:{u1u2...ukug...uk\u1u2...uku2...uk

There are many routing algorithms for Kautz graphs, such € KautzSpace(d, 2k — 1) anduy = uy},
as theshortest path routinggorithm and thdong path rout- 5. — KqutzSpace(d, 2k) — Sy,
ing algorithm [17]. FISSIONE adopts thleng path routing g, — KqutzSpace(d, 2k — 1) — S,,
algorithmin Kautz graphs. S =S;US8,

Definition 4: Long path routing algorithmWith the long  The uniform all-to-all communication loads represented
path routing algorithm, the routing path (calléehg pat) by the setM: M ={ long paths froml/ to V' | U andV are
from nodeU = wujus...ur to nodeV = wvivy... v in the different nodes ik (d, k) }

Kautz graphK (d, k) is a path of length shown as below: Define mappingf: V6 € M, assuming is a routing path

Fig. 1. Kautz graphk (2, 3). Fig. 2. Neighborhood of FISSIONE.

B. Low Congestion Routing

U=mujuz.. . up — ugus ... upv1 — uUgly ... Ugv1v2 — of lengthn: biby...by — babs...bgy1 — bsby...byyo —
ce D URVIV2 .. V] — V1V ... 0 =V (|f Uk ?é Ul) L. bnbn+1 . bn+k, thenf(é) =biby... by ... bn+k-

or a path of length: — 1 shown as below: It is easy to prove thaf is a bijection fromM to S. Thus

U=ujus...up — UgU3 ... UV — UUyg . .. UpVoV3 — under theuniform all-to-all communication logdor any node

co UV . VgV = V1V ... 0 = V (if up =v1). R =rire...7, its load is equal to the number of the Kautz



TABLE |
DEGREHDIAMETER TRADEOFF OF DIFFERENT TOPOLOGIES

[ Topology [[ Degree | Diameter | Average path length
Hypercube topology (Chord) log N log N 1/2log N
d-torus topology (CAN) 2d 1/2dN1/d 1/4dN1/4
Butterfly topology d 2logy N(1 — o(1)) [14] about3/2log,; N [14]
de Bruijn graph d log; N log; N —1/(d—1) [14]
Kautz graph (FISSIONE) d D =log; N —log,;(1+1/d) D—1/(d+1)

TABLE Il
AVERAGE ROUTING PATH LENGTH(LONG PATH ROUTING ALGORITHM VS. SHORTEST PATH ROUTING ALGORITHN.

Kautz graph [ K210 [ K2,1D)] K(3,6) | K3,7) | K(4,5) | K(4,6) [ K(5,5) | K(6,4) | K(6,5) ]

Number of nodes 1536 3072 972 2916 1280 5120 3750 1512 9072
Shortest path routing algorithm [17] 8.7922 9.7865 5.4624 6.4567 4.6541 5.6505 4.7430 3.7983 | 4.7958
Long path routing algorithm 9.6667 10.6667 | 5.75 6.75 4.8 5.8 4.8333 3.8571 | 4.8571

stringrirs . .. 7 @appeared as a substring (except for the prefix) [1l. FISSIONE DESIGN
of Kautz strings inS. It can be found that the load,, of R A Overview

IS FISSIONE uses a Kautz gragti(2, k) as its static topology.

Each peer in FISSIONE owns a zone in a virtual 2-dimensional
Cartesian coordinate space. Peer and zone are synonyms in
the paper and can be used interchangeably. The identifiers of

Esd+ (k—1d" 1 —k
kxdt+ (k—1)d*! —k+1

(r1 #7k)

(r1=1%)

L) = {

The average path length in K(d, k) ish = k — 1

_ d+1" zones in FISSIONE are Kautz strings with base 2, and zones
Thus the average load of a node is : are formed into an approximate Kautz graph according to their
Avg(Ly) = (N—-1)xh identifiers.
e k1 1 Initially, zones have equal area and the lengths of their
= (d"+d" = 1) (k- ﬁ) identifiers are the same. Zones form a complete static Kautz
" 1 1 graph (e.g.K(2,1)) at the beginning. When peers join or
= kxd"+(k—1)xd —k+ d+1 depart, the entire coordinate space is dynamically partitioned

among all peers and the lengths of their identifiers may become
< Avg(Ly), and different. For example, if a new peerjoins, it first finds a
1 large zoneV that has no larger neighbors, and zdnés split

As Max(Ly) — Avg(Ly) = ﬁ

Maz(Ly,)/Avg(L,) <

Y e @ s

into two new zones Eplit large’ policy): one is for the peer
that ownsV originally and another for peer. The length of

= 14 ; new zone's identifier is one more than thatlofand its area
(k=1 N is one half of zond/. Then the neighborhoods related o
= 1+0( 1 ) is adapted to maintain the approximate Kautz graph. When
N xlogy, N a peerp departs, two brother zonés, and Y, which have
= 1+4o0(1) no smaller neighbors are found and mergechdfge small

policy) to a new zoneZ. The identifier of Z is one shorter
thanY; and its area is twice of that df;. Afterward related
peers would update their routing tables.

Thus K (d, k) is (14 o(1))-node-congestion-fre&Similarly,
it can be proved thaf((d, k) is (1 + o(1))-edge-congestion-
free Therefore Kautz grapi (d, k) is (1+ o(1))-congestion-

free

From Theorem 1, it can be derived that the Kautz grar%
has constant congestion (e.g. it isc@gestion-free When
the number of node$V is large, the Kautz graph is almos

congestion-free

t

To achieve good characteristics, FISSIONE keeps a topol-
ogy rule callecheighborhood invariantvhich requires that the
ifference of identifier lengths between neighbors is no more
an one at all times. Such a rule can ensure that neighbor
zones have similar area size and that the neighborhood is
simple.

A Kautz graph has optimal diameter and optimal fault- Each d_ata.object N FlS.S|ONE. is assigned a unique Ob-
tolerance characteristics. In addition, it il + o(1))- jectlD which is a Kautz string of fixed lengti. The object

congestion-freavhen using the long path routing. Thus th is published on the peer whose identifier is the prefix of its
Kautz graph is a good static topology to construct DH bjectlD.

schemes. In this paper, we propose a novel constant-degree )

and O(log N)-diameter DHT scheme, FISSIONE, which ig3: FISSIONE Neighborhood

based on Kautz grapk (2, k) with long path routing. From  The identifiers of zones in FISSIONE are Kautz strings with
Definition 5 and Theorem 1, FISSIONE has constant congdsse 2. Initially the identifiers of zones are labels of nodes in
tion. a static Kautz graph (e.gik(2,1)) and zones own the same



area in the Cartesian coordinate space. However, the leng
of identifiers may be different due to the dynamic arrival an

departure of nodes, as explained in a later subsection.
FISSIONE keeps a topology rule callegighborhood in-
variant at all times. Denoting the length of the identifier o

U as|U|, the neighborhood invariants shown as Theorem 2{ 3~ do D « DI|(SHA — 1(key||i))
(its proof is in Section V). . I1'|] is the concatenation operation
Theorem 2 (Neighborhood Invariant)f zone U andV in g ie;egt
FISSIONE are neighbors$|U| — |V|| < 1. 6 D — D||(SHA — 1(keyl|i))
The neighborhoods of zones are based on zone identifiers.  ; «— ; +1
Assuming the identifier of zon& is ujus ... u, (denoteitas |g R’ — Convert_binary_ternary(D)
U =wujus...u), to form a approximate Kautz graptl, has /I convert binaryD to ternaryR,
two kinds of neighbors: 9 R — Get_low_digit(R ,n)
Out-neighbors.  neighbors  whose identifiers are /I get the lown digits of R’ to acquire stringR
UoU3 - .. URGL -- -G With 0 < m < 2 (if m < 1, the |10 Q@ « Merge_string(R)

string in the styley; ... g, represents the null string).
In-neighbors: neighbors whose identifiers ate:us . . . u;
(a£u)withk—2<i<k.

The routing table ofU contains all the out-neighbors ang

in-neighbors ofJ. Notice that ifU is the out-neighbor oV, V'

ths
dProcedure Kautzhash (Keyword key, Lenm, Merg p, Digit n)

/I generate a Kautz string of length based on keywordey
/l p andn are two adjustable parameters
1 D« ¢ Il ¢isan empty string
[2 fori=0top—1

/I merge identical consecutive charactershirto
acquire Kautz string

11 until |Q| > m

12 ¢ — Get low_digit(Q, m)

13 return &

also is the in-neighbor df. Figure 2 shows the neighborhooc

of FISSIONE (pay special attention to nodegs 0202, 0201
and their neighbors).

C. Universal Naming
In many DHT schemes, data objects are encoded by so

Fig. 3. Kautzhashalgorithm.

The Kautzhash algorithm can adjust the parametearsn
and m to acquire destination Kautz strings with different
BMaracteristics. Whem = 100, FISSIONE could support a

public hash algorithm (e.g., SHA-1, MD5), and the identifiers2p system with more thatn'® peers (refer to section IV

of data objects are in a similar namespace related to g details) that is large enough for general applications. Thus
nodes’ identifiers. For example, the data namespace in Chgjd sety, = 100. To acquire the uniformly distributed Kautz
scheme is [0,2' — 1], which is also the namespace Ofstrings, we sep = 2 andn = 280. The following Theorem 3
nodes in Chord scheme. The identifiers of nodes in Fissigps proof shown in Appendix A) shows that when= 2 and

are Kautz strings with base 2 and tautzhashalgorithm is ,, — 980, the Kautzhash algorithm can efficiently generate
proposed to generate a destination Kautz sttifigr each data g destination Kautz string of length 100 for each data object
object O. Similar to SHA-1 [21], theKautzhashalgorithm = and the Kautz string generated is uniformly distributed in the
should be determinate and the Kautz string generated shoplgl;tz namespace.

be uniformly distributed in the Kautz namespace. Theorem 3:With high probability, the Kautzhash algo-

The Kautzhashalgorithm uses four parametergy, m, p  rithm (with parameter = 2 andn = 280) can generate
andn. For each data objec?, the Kautzhashalgorithm can he destination Kautz string of length 100 in one iteration,
generate a Kautz string of length based on its keyworfley.  anqg Kautz strings generated are uniformly distributed in the
The procedure oKautzhashis shown below: Kautz namespac& autzSpace(2,100).

First Kautzhash appendd), 1, ...,p to key and getske.yo, When the parameters are set= 2 and n 280, the
keyi, ..., keyy. Thenkeyo, keyi, ..., key, are respectively computing complexity oKautzhashalgorithm is about three
hashed to 160-bit binary numbets, D1, ..., D, by the pub-  times of SHA-1 algorithm; thus it is practical.
lic hash algorithm SHA-1, i.e.Do = SHA — 1(keyo), D1 = The procedure of publishing a data object is shown as
SHA—1(key), ..., Dp = SHA—1(key). Do, D1, ..., Dy pelow: If peerp would like to publish a data objedd, it
are concatenated to acquire a binary numbeand D is then  ghoyig first get the destination Kautz strisyof O. Then
convgrted to a ternary numbgr. The lown digits ofR, form peer p invokes a routing to Kautz string and the routing
R. Ris aternary number; howevét may not be a valid Kautz yoyg arrive at a peer whose identifier is the prefix of
string because there may exist certain sequeblees b with  (the routing algorithm is discussed in the next subsection).
b € {0,1,2} in R. Thus R is further converted to a Kautz Tn,s the data objead is published on peem. The lookup

string (@ by substituting a singlé for any sequencéb...bin  4f gaia objects is similar to the publication and omitted here.
R. If the length of @ is less thanm, then Kautzhashkeeps

the value ofDy, Dy,...,D,_1, appendsp + 1 to key, and o

calculatesD,.; by SHA-1, ..., and the procedure above i®- Routing in FISSIONE

repeated again until a Kautz strirfg with length of no less  Routing in FISSIONE is similar to that in Kautz graphs.
thanm is obtained. The desired destination Kautz stgnig Once a zonel = wujus...u, receives a routing message
then acquired from the low: digits of Q). Figure 3 shows the RoutindV, L, S) to destinationV = vjvy...v,, (U # V)
Kautzhashalgorithm. with left path lengthL, U sends a new routing message



RoutindV, L — 1, SX) to Q if the following conditions hold: the identifier ofV; is vivs ... vgxo @and the identifier ofl; is

(@) U has one out-neighbor zon®@ = wus...u;rX where wvjvs..vx20 (0 < 0,20 < 2,20 # Vg, Lo F# Vk, To £ To)- V1

X=xz1...2; (0<j<2)and (b)SX is a prefix of V. andV;, are brother zones. Figure 5 shows the case thatpeer
The initial values ofl. and S are set as below: Assume thergoins into zone 01.

is a routing from source zor& = wyws . .. wy to destination

Kautz stringV = vyvy ... vy, If wg, = vy, then setl = k—1,
S = vy; else setl = k, S = null. Figure 4 shows the routing o2 02
algorithm.
0|0
. . 01 111
Procedure FISSIONERouting (SourceZond/V, DestStringV’) of 2
/I routing from source zon&/ = wiws ... ws tO
fdesunaﬂon Kautz stringy’ = vivz ... om (a) Zones before pear joins (b) Zones after peep joins
1 | W = U1
2 then return W.Routing(V, k — 1,v1) Fig. 5. Peemp joins in FISSIONE.

3 else return W.Routing(V, k, null)
From the split procedure above, it is easy to know that the

I ) 4
Procedure U.Routing(DestV, PathLenL, ComPrefixS) area of a zone is in proportion @ when the length of

/] zoneU = uyus . .. us, deals with the routing message its identifier is h. The longer the identifier is, the less area
to destination Kautz strin§y = viva ... vm the zone occupies. Also, the number of data objects stored on
1 ifL=0 one peer is in proportion t3~" according to the publication
2 thenretumn U // reach destinatio’ procedure. Thus the number of data objects stored on a peer

3 else if 3Q € outneighbors(U) and@ = uz ... upX

and Is_prefiz(SX,V) IS In proportion to the area of its zone.

4 then S — SX Update the routing tables.Once zoné/ is split, the routing
5 Q.Routing(V,L —1,9) tables of related zones should be updated. For out-neighbors
I/ the routing message is forwarded @ R=vy...05q1...¢m (0 <m < 2) of V, the JOIN message
stops at zon&’, thus|V| < |R|andl < m < 2. If ¢y = 20, R
Fig. 4. Routing algorithm. becomes an out-neighbor i ; elseq; = %, and R becomes

an out-neighbor o¥;. Also R should update its routing table

The routing to destination Kautz String will stop at a accordingly. For in-neighbor® = avivs...v; (j < k) of V,

unique peemp whose identifier is a prefix of (the proof is  becomes an in-neighbor of both andV,. Figure 6 shows
shown in section 1V). the maintenance algorithm for peer joining.

E. Maintenance and Self-stabilization Procedure PeerJoir(GatePeen, NewPeerp)

1) Peer Joins:When a new peep joins in FISSIONE, its /I new peerp join in the system through known peer
join procedure can be divided into two phases: at the first| 1 U «— KautzhasHIP(p)) _
phase, peep routes to the peell that is responsible for the /U is the destination Kautz string of

- . W «— FISSIONE_Routi U
destination Kautz String op; at the second phase, the JOIN /Trouﬂng from pee?;f tg”g(’;nd)stops at zon®&’

N

message is propagated from pé&Erto a large zoné” which 3 VW
has no larger neighbors. Thé&his split and the routing tables | 4 while 3Q € neighbors(V) and|Q| < |V
should be updated. The details are shown below. 5 doV—Q

Split large zones When peerp joins, it should know a 6 Spl;/t(s‘&iylz’o‘gv to acquire zoned; and Vs
peern which is already in the P2P network. Pgefirst gets 7 Build_routingtables(Vi, V)
a unique destination Kautz striflg = ujus . . . u1g0 (€.9., by /1 build the routing tables of zondg and V2
performingKautz hashalgorithm on its IP address). Then peer | 8 Update_routingtables(neighbors(V'))
p invokes a routing from the gateway peeto U. The routing /I'update the routing tables 6f's neighbors

will reach a unique zoné&’ whose identifier is the prefix of
U, andWW invokes a JOIN message. Then starting from zongy. 6. Maintenance algorithm for peer joining.

W, if the current zone has a neighbor zone with larger area, it

forwards the JOIN message to the neighbor (if there is more2) Peer Departs:When a peep departs from FISSIONE,
than one neighbors with larger area, select one randomly ahé zoneV it owns should be occupied by other peers. That
forward the JOIN message to it). This process will not stdprce zones to merge. FISSIONE tries to merge the small
until the JOIN message reaches a zdhavhich has no larger brother zones which have no neighbors with smaller area.
neighbors and the JOIN message can not be forwarded anjerge small zonesIf peerp volunteers to depart from the
more. Thus zoné/ is split into two zonesl; and V,. The system, it produces a DEPART message. Starting from kgne
owner of zond/; is set to peem that was originally the owner if the current zone has a neighbor zone with smaller area, the
of zoneV before the split, and the owner of zohg is set to DEPART message should be forwarded to the neighbor. The
peerp. Suppose the identifier of zoré is viv, ... vk, then DEPART message is propagated until a zéhe- ujus . .. ug




is reached which has no neighbors with smaller area. Consider

U’s neighborR = aujus...u; (k—2 < i < k), obviously
k—2<1i<k-1(for |R| < |UJ); (from Corollary 1 in
Section IV) R has a neighboV = ujus ... ug_1Urq1 - . . Gm
(0<m<1). Then, (1) ifm =0, W = wjus...up_1ug. If

Procedure PeerDepartDepartPeep, DepartZonel’)
/I peerp that owns zond/ departs from the system

1 U<V

2 flag—1

3 repeat

W has a neighbdF with a smaller area, the DEPART message 4  Wwhile 3Q € neighbors(U) and|Q| > |U|
is forwarded to7T and continues to propagate; else the twog tdo'UhE)_Ig— k9 <i<k_1
brother zoneg/ and W which will be merged are acquired,; get neighborit = aus...u; (k=2 <i<k—1)

. . X of peerU = uy ... up—1uk
(2) it m = 1, (from Corollary 1 in Section IV)R has also | 7 get neighboMV = u; . .. wk—1%0kq1 - . . gm (0 < m < 1)

a neighborW’ = wjus . .. up_11xg. If either W of W' has of peerR;
a neighborT with a smaller area, the DEPART message |s8  if m =0 .
forwarded toT" and continues to propagate; else the brother® then if 3T & neighbors(W) and|T| > [W|
zonesW and W' which will be merged are acquired and the 10 then U — T
. 9 q Fo11 elseY; — U
DEPART message is stopped. 12 Yy — W
During the departure procedure, once the DEPART messages flag — 0

is forwarded one time, the identifier length of the zone passed4 elseget neighboV’ = u; ... ux_11ikdi of R

decreases by at least one. From Theorem 5 in Section IV, thes if 3T € neighbors(W,W') and|T| > |W|
DEPART message can be forwarded less thanN hops. | 16 thenU « T’
Thus we can acquire the brother zonés= y1ys ... yn_1yn | L/ elseYy — W
andYs = 419s ... Yn_19n, andY; and Y, have no smaller | 18 Yo =W
19 flag — 0

neighbor zones. Assume the ownersYof Y, are peep; and
peerp, respectively:

(1) if Y1 or Y3 is V, without loss of generality we can
assumeY; is V' and in this case peer; and peerp are the
same peer. Merge zoné§ and Y, into a new zoneV' =
Y1ys - .. yn—1 and assign peer, as the owner of zon& .

(2) if neitherY; norY; is V, merge zon&; andY; into a
new zoneV' = Y1¥ye - - - Yn—1, then change the owner of the
anev to peerp; and assign peep, as the owner of zone Fig. 7. Maintenance algorithm for peer departure.
v

20 until flag =0
21V — Merger_zones(Y1,Y2)
/l merge zoned; andY> to get zoneV'’
22 Update,routingtables(v/)
23 Update_routingtables (neighbors(V' )
/I update routing tables df and its neighbors

Update the routing tables After zoneY; and zoneY;
are merged into zon& ', the routing table of’" maintains
all in-neighbors and out-neighbors of boify and Y;. For
each in-neighborRk of Y; (or Y5), R substitutesV’ for its
out-neighborY; (or Y3). For each out-neighbdd” of Y; (or
Y,), W substitutes/” for its in-neighborY; (or Y2). Figure 7 )
shows the maintenance algorithm for peer departure. F. Fault-Tolerant Routing

Involuntary departure. To deal with involuntary failure,  When involuntary failures of peers occur and the related
each peer sendseepAlivemessages to all neighbors periodirouting tables have not been updated, the routing messages
cally. The deferred absence okaepAlivemessage from one may be forwarded to failed peers. To increase robustness,
neighbor indicates its failure. Once the failure of a ppas FISSIONE can adopt three fault-tolerant mechanisms:
detected by its neighbar, peern will generate one DEPART (1) DFTR [19] mechanism. FISSIONE can modify the
message for peer. And the remaining process is the same eéBFTR mechanism and its extension to choose other routing
that in the case of voluntary departure. paths when a failed peer occurs in the routing path.

3) Simultaneous Join or Departurdvlany peers may join  (2) Fault-tolerant neighbor mechanism. For each géet
in (or depart from) FISSIONE at the same time. That may, us . .. ug, peersusus...urq---q¢m (0 < m < 2) are
cause temporary inaccurate information in the routing tablesgarded asU’s fault-tolerant neighbors. Wher/ deals
of peers, which in turn may cause errors in the routing, joimith a routing messagdRoutindV, L, S), if the neighbor
or departure procedure. To avoid that, FISSIONE adopts ag...uzz;...2; (0 < j < 2) that the routing message
atomic updatemechanism: should be forwarded to has failef, can forward the routing

When a peer joins in (or departs from) FISSIONE, thmessage to its fault-tolerant neighbdbus ... ugq: ... gm
routing tables of related peers should be updated. Only whehere Sq; ... q,, is a prefix of V.
all the updates are completed, is the new routing tables allowed3) Multiple out-edges mechanism. For each péer=
to be used. During the update period, the relevant routingus ...us, peersus...ugpzy...x; (0 < j < 4) are also
requests are forwarded according to the original routing tablegarded a$/'s neighbors. Whery deals with routing mes-
but the JOIN or DEPART messages are withheld. The peeageRoutindV, L, .S), it first forwards the routing message to
that are the sources of the JOIN or DEPART messages aeghborV = us ... ugx1...2; whereSzy ...z  is a prefix
informed to resend these messages after the update is finiskeéd/. If V' has failed,U can forward the routing message to

Because the average degree of FISSIONE is only 4 and
the average number of hops for a JOIN or DEPART message
is propagated is small (referred to Section 1V), the overhead
caused by the atomic update mechanism is very small.



another peetis ... ugqs - . g WhereSq ... gy, is aprefix of  (2) If V is derived fromV" in the split,[V'| — [U| must be

V. 1 before the split. Then zon&" is larger than zond’', and
The DFTR mechanism is rather complex, but it does niite zoneV' wouldn't be split. Thus a contradiction occurs.

affect the degree characteristics of FISSIONE. The faultherefore, after a split Lemma 1 remains true.

tolerant neighbor mechanism is simple, but it would causeFor a merge, the proof is similar and omitted here. ®

an increase in the degree of FISSIONE (the fault-tolerantTheorem 1 can be easily derived from Lemma 1.

degree is 2). Multiple out-edge mechanisms can decrease the

routing path length of FISSIONE while increasing its degre% Correctness of FISSIONE

The detailed comparison of three fault-tolerant mechanisms is

omitted here, and this paper focuses on the basic FISSIONE-émma 2:For each zond/ = ujus...ux in FISSIONE,
scheme. there are no zone¥ = wjus ... upzy ... x; With 7 > 1 and

U#V.
The proof of Lemma 2 is shown in Appendix B.
Lemma 3:For each zond/ = ujus...u; and any Kautz
In this section, We will show and prove three theorems abostring S = s ... s;,(s1 # ur andm > 2) with base 2U has
the properties of the basic FISSIONE scheme. Due to spaweout-neighbots ... ugzi ... 2; (0 < j <2) with 2, ... 2;

IV. ANALYSIS AND EVALUATION

limitations, we only present the proof sketches. as a prefix ofS.
Theorem 3 (Neighborhood Invariant)f zone U and zone Proof: From lemma 1, if zon&) is an out-neighbor of
V are neighbors||U| — |V]| < 1. U,then|U| -1 < |Q] < |U| + 1. ThusQ is uy...u or

Theorem 4 (Correctness of FISSIONH) FISSIONE, the wg...ugz; OF ug...ugz1z2. Lemma 3 holds for the initial
routing to Kautz stringl’ = vyvs...v,, (m is a big enough static Kautz graph. After a split or merge, it is easy to
integer) will arrive at a unique zon¥  whose identifier is a demonstrate that lemma 3 still holds. Thus lemma 3 is always
prefix of V. true. [ |

Theorem 5 (Performance Characteristicdji an N-peer  The following two corollaries are direct conclusions from
FISSIONE system, Lemma 3.

(1) The in-degree of each peer is 2 and the out-degree igCorollary 1: For any zoneU = wjuy...u, if U has a
between 1 and 4. The average out-degree is 2. neighbor uy ... uxzy...2; (1 < j < 2), U has another

(2) The diameter of FISSIONE systems is less thasg N. neighboruy ... ux21q; ... gm (0 <m < 1).

(3) The messages caused by peer joining are propagated legsorollary 2: The out-degree of FISSIONE is between 1 and
than3log N hops (and the JOIN message is propagated leks
thanlog N), and the DEPART message is propagated less tharl-emma 3 and Corollary 1 show that the routing algorithm in
log N hops. Only constant peers need to update their routiggction lll could go on until the destination zoles reached.
tables when a peer joins or departs. Lemma 4:Consider the routing from source zo€ =
wiws . .. wy to any destination Kautz strin = vivs ... vy,

(W # V andm is an integer big enoughy, is an integer: if
v, = wy, let s = 1, else lets = 0. Let the routing path from

To prove these theorems, we first give some lemmas. W toV beU,(=W),Us,Us,...,U,(= V), thenU; is of the

Lemma 1:For each zond/ = wjusy...u; in FISSIONE, formw;...w;_,S and the routing message tHat deals with
if zone V = vyv,...v,, is an out-neighbor of zon&, then is in the form of RoutindV,k — s — i + 1, S) where S is a

A. Neighborhood Invariant

U] — V|| < 1,ie.,|k—m|<1. prefix of V.

Proof: Lemma 1 holds initially. We will show that if Proof: If vy = wy, let string .Sy = wy, else letSy be
Lemma 1 holds at a certain time, Lemma 1 will also holdull. ThenU; = W = wyws ... wi_sSo, V = 0102 ... 0y =
after a split or merge. Sovs+1 ---Vm. The routing message that W deals with is

In the case of a split, the large zone is divided into twRoutindV, k — s, Sp). Thus initially Lemma 4 holds fot/;.
zones. Assume after a split there are two zarieend V' with Suppose current zorng; (1 <p <k —s)iS w; ... wg_pS
[|lU| —|V|| > 2 andV is one out-neighbor of/. Recall that and the routing message thdt deals with isRoutingV, & —
before the split for any zon® and zoneW in FISSIONE, s — ¢+ 1,5) where S is a prefix of V. From Lemma 3,
[|P|—|W]|| < 1;thus||U|—|V]|| < 2. Thereford|U|—|V|| =2 U; has an out-neighbow; i ... wi_sSz...x; (0 < j <
and either zoné/ or zoneV is newly produced by the split. 2) with S" = Szq...z; as a prefix ofV, thenU;, =

(1) If U is derived fromU" in the split, then|U' |— V|| <1 w1 ... wp_sS21...2; = wir1 ... wp_sS and the routing
and |U| = |U’| + 1. Obviously, to achieve|U| — |V|| = 2, message that/;,; deals with isRoutindV,k — s — i,5").
|U'| —|V| must be 1 before the split. Recall thétis the out- Thus Lemma 4 holds fot/; ;. Therefore Lemma 4 holdsm
neighbor ofU after the split, thud” must be the out-neighbor From Lemma 4, wheri = k — s + 1 (L = 0), the routing
of U’ before the split. But ifU’| — || = 1 (which means the message reaches a zafigand the routing stops and there is
area of zond/ is larger than that of zon&') andU’,V are a certainS that is a prefix ofi andU; = S. Thus the routing
neighbors, then the JOIN message would be forwarded frdrom any source zone to destinatidhwill arrive and stop at
U’ to V and the zond/' would not have been split. Thus aa zoneV' whose identifier is the prefix of/. From Lemma
contradiction occurs. 2, zoneV' is unique. Therefore, Theorem 4 is true.



The path length of routing froil” to V' is k—s hops. Thus  First we evaluate the degree distribution of FISSIONE. We

we get the following corollary. calculate the degree of peers in FISSIONE when the number of
Corollary 3: The path length of routing initiated by anypeers is 6,000 and 50,000, and the simulation result is shown
source zonéJ = wujus ... u IS N0 more thark hops. in Figure 8. Figure 8 shows that the degree distribution of

peers in FISSIONE with different scales is slightly different,

C. Performance Characteristics but most peers are of degree 4.

Lemma 5:The in-degree of any zone is always 2. " ©
Proof: Initially there are three zones 0, 1, 2 and each T m6000pests % |
zone has two in-edges. So initially Lemma 4 holds. After ag WS0000pers | =70 1
split or merge, lemma 4 still holds. Thus Lemma 4 is alwaysg gw r
true. m = o
Lemma 6:In an N-peer FISSIONE system, the largest zoneg30 s %z I
U satisfies thatlU| < log V. Bt Bl
Proof: Let |U| = k, thenk is the smallest among  w: I ol
the lengths of identifiers of zones in FISSIONE. Peers in

FISSIONE form an approximate Kautz topology, th2fs+ °  Degrecof plars  ° S Aredof zones *°

2k=1 < N. Thenk <logN —log3+1 < log N. [ |
Lemma 7:In an N-peer FISSIONE system, the smallesgIgj 8.
zoneV satisfies thatV| < 2log N.

Proof: SupposeU is the largest zone in FISSIONE We observe the load balance characteristic of FISSIONE
system, and consider the routing path frdmto V. From and simulate FISSIONE with 6,000 and 50,000 peers. In each
Corollary 3, we know that the path length is no more thagxperiment, we calculate the area of each zone ansl bet the
|U|. Thus from Lemma 1, we can infer that’| — |U|| < |U]. smallest area among all zones. Figure 9 shows the percentage
BecausgV| > |U|, thus|V| — |U| < |U| and|V| < 2|U| < of peers that own a particular area. From Figure 9, it can be

Degree distribution. Fig. 9. Area distribution of zones.

2log N. B inferred that more than 80% of peers own the same afta
The following corollaries can be derived from Lemma 7 andnd the percentage of peers whose area is more 4Kais
Corollary 3 directly. zero. The number of objects stored on each peer is in direct

Corollary 4: In an N-peer FISSIONE system, I&f andV  proportion to its zone’s area; thus the distribution of objects
be the smallest and largest zones in the system respectiveler peers is almost uniform. Therefore, FISSIONE has a good

Then|U| - |V| < |V] < logN. load balance.
Corollary 5: In an N-peer FISSIONE system, the path Then we evaluate the average path length of FISSIONE in
length of routing is less thaflog N hops. different scales (from 256 peers up to 64K peers) and compare

Lemma 8:When a peer joins in or departs from Ahpeer it with CAN (with degree 4(d = 2) or degree §d = 3)) and
FISSIONE system, the messages caused are totally propagé#tedrde (with degree 4). In each experiment, we select two
at most3log N andlog N hops respectively (and the JOIN orrandom zones and invoke a routing from one to the other,
DEPART message is propagated at nlogtV hops), and only and then get the average path length over 10,000 routings.
constant peers need to update their routing tables. Figure 10 shows the simulation results. Figure 10 also shows

Proof: Take the split procedure as an example: thide diameter of FISSIONE (denoted as FISSIONE(max)).
message is first routed to the destination Kautz string. Frdrmom Figure 10, we can infer that the average path length of
Corollary 5, in this phase the message is propagated IE4SSIONE is less thaibg N and the diameter of FISSIONE
than 2log N hops. Then the JOIN message is forwarded s only a little more tharog V. When the number of peers is
neighbors whose identifiers are at least one shorter than thatesge, the average routing path length of FISSIONE is shorter
the current zone. From Corollary 4, in that phase the messdfgan that of CAN or Koorde.
is propagated at modbg N hops. Therefore, the message We also evaluate the distribution of routing path length in
caused by peer joining is propagated at mdkig N hops. FISSIONE. Figure 11 shows the distribution of routing path
From Corollary 2 and Lemma 5, the number of neighbors thi&ngth of 10,000 random routings in FISSIONE when the
should update their routing tables due to the split is constanimber of peers is 50,000. From Figure 11, we can infer that

m more than 50% of routing paths are of the same length.

Theorem 5 can be directly got from Corollary 2, Corollary We evaluate the self-stabilization cost when a peer joins or
5, Lemma 5, and Lemma 8. departs. In the experiment, the number of peers in FISSIONE
is 50,000. The experiment is repeated 100 times and each time
a peer joins through a random peer (or a random peer departs).
Figure 13 shows the average hops the update messages are

We implement FISSIONE in the simulator and evaluateropagated and Figure 14 shows the distribution of hops that
the following characteristics of FISSIONE: degree distributhe JOIN message and DEPART message are propagated.
tion, load balance, diameter, average path length, and falitom Figure 13 and Figure 14, it can be inferred that the
tolerance. average hops that the JOIN message or DEPART message is

D. Performance Evaluation
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propagated is very small, and they are propagated at most two

hops. The message cost of peer joining is larger than that

(1]
(2]
(3]

(4]

(5]

(6]

(7]

(8]

El

[10]

of

. . L2 11
peer departing because a routing to the destination Kautz strEnd

is invoked first.
18 60
15.52 O peer joins 0 JOIN message
o [JJOIN message 5 | ohoP B DEPART message
14 M peer departs 1hop
12 F ot
S
%10 | :}:30
I g+ §
61 St
a4 F 2 hops
10 |
2r 056 0.66
0 — T o LI

Fig. 13. Average update cost. Fig. 14. Hop distribution of messages.

We evaluate the fault-tolerance of FISSIONE and te

with 50,000 peers when the number of failed peers
500, 1,000, ...,7,500 respectively. Figure 12 shows the simu

(12]

(13]

(14]

(15]

(16]

(17]

(18]

and (1 + o(1))-congestion-freeFISSIONE can achieve good
load balance, high performance and low congestion. Our future
work will focus on two directions. First, the current design of
FISSIONE is based on the Kautz grapfi2, k) and needs

to be extended to generdl(d, k) for flexibility. Second,
the physical topological information should be exploited in
FISSIONE to reduce latency.
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APPENDIX
APPENDIXA: PROOF OFTHEOREM 3

FISSIONE is the first effective DHT scheme based on Kautz Theorem 3With high probability, theKautz hashalgorithm

graphs and it isO(log N) diameter with onlyO(1) degree (with parametersp

2 and n = 280) can generate the



destination Kautz string of length 100 in one iteration, and Thus
Kautz strings generated are uniformly distributed in the Kautz

= | — |
namespaceK autzSpace(2, 100). lg P(100) lgl.5+ '100 x1g 2+ 1g 279! — 1g 99!
When parametery = 2 and n = 280, the work that —lg 1801 — 280+ 1g3
Kautz hashalgorithm finished in the first iteration is shown as = —25.81043
below: First, concatenate three binary stririgs D, and Do For any0 < m < 100, (2™) < (,27,), therefore
into D (according to the characteristics of SHA-1 algorithm, 05 81043
Dy, D1, D, are all 160-bit binary strings, and as a resti, P(m) < P(100) = 10~

is & 480-Dit binary string). Following that) is converted into g in one iteration dkautz hashalgorithm, after merging
ternary stringR (R is a ternary string that is no longer thangentical consecutive characters of the 280-bit ternary string
303 bits, for2**0 < 3°%%). Taking the lown (n = 280) bits  r the probability of generating a Kautz stri@with length
of B , we get a 280-bit ternary string. Then we merge |ogs than 100 is less thaf0 « 10-25-81943 ~ 10-23. Thus we
identical consecutive characters i and get a new Kautz get Lemma A.2.
string @ with base 2. We will first prove that there is a 1esS | emma  A.2: With high probability, one iteration of
than 10-2% probability that the length of string) less than k4,tzhash algorithm (with parameters — 2 andn — 280)
100, and then we will prove that the destination Kautz strings,, generate a destination Kautz stringf length 100.
gcquired from the lower 100 bits @} is uniformly distributed | emyma A.3With high probability, the 280-bit ternary string
in KautzSpace(2,100). R generated irKautzhashalgorithm (with parameters = 2
To prove Theorem 3, we first introduce some lemmas. andn = 280) is uniformly distributed in intervalo, 3280 — 1.
Lemma A.1After merging identical consecutive characters, ~ Proof: Based on the characteristics of SHA-1 algorithm,
we can obtain a Kautz strin@ with base 2 from am-bit Wwith high probability Dy, D1, D, generated by SHA-1 algo-
ternary stringR. The probability of length of) beingm (1 < rithm is distributed evenly in intervd, 2'° —1], therefore,D
m < n) is as follows:P(m) = 1.5 % 2™ « (7 ~1) /3" . that is generated fromd,, D, andD; is uniformly distributed
Proof: For eachm-bit Kautz stringQ = biby...b,, N the interxal [0,2%%0 — 1] (i.e., Vi € [0724,80 -1}, P(D =
obtained after merging, lét be the result originated from thei) = 27*% = Fy). Thus the ternary string converted from
mergence of:; consecutive; (i.e. the mergence df,...b;) in D is also uniformly distributed in the interva0, 250 — 1].
— Divide interval 0,280 — 1] into segments with lengtB28?,
ternary stringR, then we may get: ' and let2®9 = % 3280 4+ ¢ (0 < d < 328), thereafter
r = |2980/3%80] = 79514548487 (around7.95 x 10'°). Thus
the interval [0,2%%° — 1] hasr complete segments, together

Z"E' 0 1) with an interval left wi.th I/ength_d, as shown in Figure 15.
il As a result, for any poinf?’ within interval [0,24%° — 1], let
R =7 %380+ d (0<d < 3%9), thenR (the lowest 280
_ _ _ _ bits of R') is d'.
Based on theories of combinatorics, Equation (1) (with

variablez;) has(fnjll) positive roots, i.e., after merging iden- 3280 3280 3280

tical consecutive character@)ﬁb‘_ll) different ternary strings A A A

will be converted into the same Kautz striig There are ! i i LI I i |

1.5 % 2™ Kautz strings inKautzSpace(2,m), and any of 1 | i<_d)4\ -

two different Kautz strings@; and Q2 (Q1 # Q2) are A 480 G

converted from different ternary string®; and R,. Thus
1.5% 2™ x (:}1‘_11) ternary strings would be converted to Kautq:igj 15
strings in KautzSpace(2,m) after merging, and the total =~

number of n-bit ternary strings is3". From this we can  TnhereforeVi ¢ [0,3280 — 1], the probabilityP(R = i) can
know that the probability of acquiring Kautz strings withye c51culated as fo’llows:
length m after merging identical consecutive characters is

Interval division.

L5%2mx (") /3m. ] P(R_i)_{ (r+1)*py (0<i<d)
According to Lemma A.1, letr = 280 andm = 100, we I A ) (d<i<3%)
get: 3280 _q
It can be validated that }~ P(R=1i) = 1. Here,r >
=0
P(100) = 1.5%2™ x (” - 1)/3n 7.95%10'° > 1, sor+1 ~ r; thereafter with high probability
-1 the ternary string is uniformly distributed in[0, 3230 — 1].
= 152"« (279) /3250 . " N
99 Lemma A.4:With high probability, the destination Kautz
2791 string ¢ obtained fromKautzhash algorithm (with param-
= 1.5x2%« m/32$0 etersp = 2, n = 280) is uniformly distributed in

KautzSpace(2,100).



Proof: In Kautzhash algorithm, it is obvious that
any Kautz string¢ can be generated via merging identical
consecutive characters of a certain 280-bit ternary stfing
in [0,328° — 1] and then truncating the lowest 100 bits.
Identical Rs can only be mapped to the same Kautz string
in KautzSpace(2,100).

For any destination Kautz string= b,b . .. b19o acquired
from Kautzhash algorithm, letd; in ¢ stand forz; (1 <
x; < 280) consecutiveb; (i.e., b;...b;) in R before merging,

T4

thereafter

100

> @ <280 2)
=1

Let the number of positive roots of Equation (2) (with
as the variables) bg thent is a number that is independent
of £ Each Kautz stringé is converted fromt different
ternary strings in0, 3289 — 1]. From Lemma A.3, with high
probability the ternary stringR is uniformly distributed in
[0,3280 — 1], and as a consequenceis uniformly distributed
in KautzSpace(2,100). [ ]
Theorem 3 can be directly got from Lemma A.2 and Lemma
A4,

APPENDIX
APPENDIXB: PROOF OFLEMMA 2

Lemma 2:For each zond/ = ujus...u; in FISSIONE,
there are no zone® = ujug...upzy ... z; with j > 1 and
U#£V.

Proof: Lemma 2 holds initially for static Kautz graphs.
We would show that if Lemma 2 holds at some time, Lemma
2 will also hold after a split or merge.

(1) In the case of a split, assume the large zdne=
v1vo. v IS divided into two zonesl; = wvive vz and
Vo = vva vpz1 (0 < 2o < 21 < 2,20 # Uk, T1 # Ug).
Obviously, eithervyvs ... vgxg OF V19, vpxy IS NOt @ prefix
of the other. Because,vs . .. v is not a prefix of any zones’
identifiers before the splitpyvs ... vz and vivy ... vpay
would not be a prefix of any zones’ identifiers. If there was
a zoneY whose identifier is a prefix objvs...vgzg OF
vivg ... vz (Without loss of generality we assumge is a
prefix of vyvs...vpxg), @aSY is not a prefix ofvivy ... vk
before the split, therefor&” equalswvivs...virz9. Then a
contradiction occurs fow,vs ... v, is a prefix of Y before
the split. Therefore, Lemma 2 holds after the split.

(2) In the case of a merge, the proof is similar to that in (1)
and omitted here.

Therefore, Lemma 2 holds. [ |



