
Efficient Geometric Routing in Three Dimensional
Ad Hoc Networks

Cong Liu and Jie Wu
Department of Computer Science and Engineering

Florida Atlantic University
Boca Raton, FL 33431

Abstract—Efficient geometric routing algorithms have been
studied extensively for two-dimensional ad hoc networks, or
simply, 2D networks. They are not only efficient but have
also been proven to be worst-case optimal localized routing
algorithms. However, few prior works have focused on efficient
geometric routing in 3D networks due to the lack of an efficient
method to bound the search once the greedy routing algorithm
encounters a local minimum, like face routing in 2D networks. In
this paper, we tackle the problem of efficient geometric routing
in 3D networks. We propose routing on hulls, a 3D analogue
to face routing, and present the first 3D partial unit Delaunay
triangulation (PUDT) algorithm to divide the entire networ k
space into a number of closed subspaces. Our proposed greedy-
hull-greedy (GHG) routing is efficient because it limits thelocal-
minimum recovery process on the hull of only one of these
subspaces. Simulation results verify the efficiency of our proposed
algorithms.

Index Terms—Delaunay triangulation, geometric routing, ad
hoc networks, three-dimensional (3D) networks.

I. I NTRODUCTION

In this paper, we focus on efficient geometric routing
algorithms for three-dimensional ad hoc networks, or simply,
3D networks. Exploiting the geometry of the network to
perform routing is a commonly-used approach for overcoming
the challenges posed by resource-limited ad hoc networks. An
important property of geometric routing algorithms is thatthey
are based on local information which can easily be refreshed
to reflect unavoidable topology changes in mobile networks.

Most geometric routing protocols start with greedy for-
warding, which is simple and close to optimal. In greedy
forwarding, each node knows the positions of its neighbors,
and the node forwards each message to the neighbor that
is the closest to the message’s destination. However, greedy
forwarding is not always successful: it fails when a message
reaches alocal minimumnode whose neighbors are all further
away from the destination than the node itself. For 2D net-
works, face routing is the most prominent solution to recover
from local-minima. In the greedy-face-greedy (GFG) approach
and its variants [1], [2], [3], [4], and [5], a message stuck
in a local minimum is routed along the face intersecting the
source-destination line (i.e. the empty network space between
the local-minimum and the destination) until it finds a node
that is closer to the destination than the local minimum, at
which point it continues with greedy forwarding. [4] and [5]
show that geometric routing protocols are not only efficientin
the average case; they are also worst-case optimal localized
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Fig. 1. An example of greedy-hull-greedy routing.

routing protocols with the hop-counts of the resulting paths
bounded byO(d2), whered is the distance between the source
and destination.

However, the detection of the face requires a planarized
network graph which can only be constructed in 2D networks.
Localized planar graph constructions in 2D networks include
relative neighbor graph (RNG) [6], Gabriel graph (GG) [7],
and Delaunay triangulation (DT) [8], [9]. Few previous re-
search works have attempted to discover a similar structurein
3D networks. In [10], Flury and Wattenhofer used virtual cubes
to capture the surface of holes, and they used random walk
to recover from local minima. Their work proved the optimal
worst-case boundO(d3) for localized routing algorithms and
provided the first feasible solution for geometric routing in 3D.
However, the virtual cube approach is expensive (requiring3-
hops of information), and the random walk is inefficient.

In this paper, we propose a low-cost, localized 3Dpartial
unit Delaunay triangulation(PUDT) algorithm for capturing
the empty 3D network subspaces in order to perform an
efficient local-minimum recovery search. Our PUDT algorithm
requires just over 1-hop of information.

Local recognition of the network subspaces and the nodes
in each subspace is the main challenge. In this paper, (1) we
define a triangle as a small plane delimited by the three edges
of three connected nodes; (2) we divide the entire network
space into a number of subspaces delimited by these triangles;
(3) analogous to the planar graph construction process which
removes intersecting edges, we use a PUDT algorithm which
removes intersecting triangles (more precisely, an intersecting
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triangle and edge); and (4) we define thehull of a subspace as
a structure that contains the triangles shared by the adjacent
subspace and thesingle edges(none of which belong to any
triangle), and we devise localized algorithms to recognizehulls
and identify the triangles and single edges belonging to each
hull.

Analogous to face routing, once the message reaches a local-
minimum, we use hull-based routing to constrain the local-
minimum recovery search on the hull of a particular subspace
instead of wandering aimlessly throughout the entire network.
It switches to greedy mode when a node that is closer to the
destination than the local-minimum is reached. Ourgreedy-
hull-greedy(GHG) routing contains this hull-based routing and
is shown to be efficient through simulation.

An example routing process of our GHG protocol is shown
in Figure 1, where greedy routing sends the message from
node 55 (source) to 15. On local-minimum 15, hull-based
routing sends the message from nodes 15 to 70 where greedy
can be continued (since 70 is closer to 46 than 15). Finally,
greedy routing sends the message from 70 to 46 (destination).

Our contributions in this paper are summarized as follows:

• We first propose to use partial unit Delaunay triangulation
(PUDT) to define network hulls in 3D networks.

• We present the first localized PUDT algorithm and a low-
cost local hull construction algorithm.

• We devise a 3D geometric routing protocol, greedy-hull-
greedy (GHG), which efficiently recovers from local-
minima on a target hull.

• We perform simulations to show that the overhead of our
low-cost PUDT is just over 1-hop of information, and
that our GHG protocol is efficient.

This paper is organized as follows. Section II introduces
some preliminaries and reviews related works. Section III
covers the main ideas in this paper. Section IV proposes the
low-cost PUDT algorithm. Section V presents the localized
hull construction and target hull selection. Section VI illus-
trates the elements in the GHG routing algorithm. Simulation
evaluations are shown in Section VII. Finally, Section VIII
concludes the paper with future research directions.

II. PRELIMINARIES & RELATED WORKS

A. Geometric routing

This paper considers an ad hoc network with all nodes
distributed in a 3D space. Following the traditional line of
research, all wireless nodes have distinctive identities,each
wireless node knows its location information (i.e. througha
GPS receiver), and all wireless nodes have the same transmis-
sion range which is normalized to one unit. Consequently, all
wireless nodes (V ) together define a unit-disk graphUDG(V )
in a 2D network or aunit-ball graph UBG(V ) in a 3D
network. Several planar network topologies are proposed,
including RNG [6], GG [7], and DT [8], [9], which can be
used as the underlying structure forface routing.

In [11], a depth-first-search geometric routing protocol is
proposed, which is also applicable in 3D networks. In this

algorithm, messages only need to keepO(1) routing state
information; all other information is stored in the nodes.

Other geometric routing protocols that can be extended to
run in 3D networks include those that use virtual coordinates
and those that rely on virtual global structures [12], [13],
[14], and [15]. The problem with all of these approaches
is that they require global operations on the network. Other
regionized approaches to improve routing performance and
tolerate location errors include [16], [17], and [18].

B. Localized planar graphs in 2D networks

A planar graph construction is localized if every wireless
node u can determine the edges ofG incident onu using
only the information of the nodes within a constant hop.
The relative neighborhood graph [6], denoted byRNG(V ),
consists of all edgesuv such that‖uv‖ < 1 and there is
no point w such that‖uw‖ < ‖uv‖ and ‖wv‖ < ‖uv‖. Let
disk(u, v) be the closed disk with diameteruv. The Gabriel
graph [7], denoted byGG(V ), consists of all edgesuv such
that ‖uv‖ < 1 and the interior ofdisk(u, v) does not contain
any other nodew.

Delaunay triangulationDT (V ) [8], [9] for a setV of points
in the plane is a triangulation such that the circumcircle of
a triangle inDT (V ) formed by three points inV does not
contain vertices other than the three that define it. Ind-
dimensional Euclidean space, a Delaunay triangulation is a
triangulationDT (V ) such that no point inV is inside the
circum-hypersphere of anyd-simplex in DT (V ). Here, ad-
simplex is thed-dimensional analogue of a triangle. We are
interested in 3-dimensional spaces where the 3-simplex is a
tetrahedron. In Euclidean space, the Delaunay triangulation of
V corresponds to the dual graph of the Voronoi tessellation
for V .

A unique Delaunay triangulation (DT ) exists if V is a set
of points in general position. That is, no three points are onthe
same line and no four are in the same circle for a set of points
on a 2D plane, or, no four points are on the same tetrahedron
and no five points are in the same sphere for a 3-dimensional
set of points. To simplify the proofs, from now on we assume
that V is a set of points in general position. Otherwise, a
very small random perturbation to their coordinates allowsthe
assumption above without causing any problems in the actual
network. Unit Delaunay triangulation(UDT ) differs from
DT in that UDT only contains the edges which are shorter
than one.Partial unit Delaunay triangulation(PUDT ) differs
from UDT in that PUDT might contain extra edges and
fewer triangles to guarantee routing delivery.

III. O UR PROPOSEDAPPROACH

Our proposed geometric routing protocol starts with greedy
forwarding. Once the message is forwarded to a local-
minimum, a recovery process is started by searching nodes
in the subspace containing the segment between the local-
minimum and destination. Once the routing algorithm is recov-
ered from the local minimum (by forwarding the message to a
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node that is closer to the destination than the local minimum),
it continues with greedy forwarding.

There are several challenges in this paper. The first chal-
lenge concerns dividing the network space into subspaces
so that we can limit the local-minimum recovery search in
one of these subspaces to improve recovery efficiency. In 2D
networks, faces are divided by non-crossing edges. Local-
minimum recovery consists of searching along consecutive
edges bordering a particular face. We first propose to use
triangles consisting of three connected nodes to divide the3D
network space into subspaces. The entire network space is
divided by triangles into one outer subspace and a number
of inner subspaces. In Figure 1, the network consists of two
spherical inner subspaces and one outer subspace which fills
the rest of the entire space.

The second challenge concerns removing intersecting tri-
angles. In 2D planarization, crossing edges need to be re-
moved such that the network plane can be divided into faces.
Similarly, non-overlapping subspaces cannot be divided with
intersecting triangles. We propose a low-cost, localized PUDT
algorithm in Section IV to remove intersecting triangles which
uses just over 1-hop of information.

The third challenge concerns identifying nodes in different
subspaces since our local minimum recovery search is limited
to the nodes within a particular subspace. This essentially
consists of grouping the triangles and edges into different
subspaces. We define a hull for a subspace as a structure
which contains the triangles bordering the subspace and the
triangles and single edges (edges not belonging to any triangle)
inside the subspace. We propose a local hull construction in
Section V in which each node locally groups its triangles and
single edges into different hulls. When distinguishing each
triangle by two sides, each triangle and single edge must
belong to exactly one hull.

In Figure 1, the hull of the right-side inner subspace contains
all of the triangles on the right-side ball and the single
edge(p16, p71) inside the ball. Some triangles have their two
sides belonging to different hulls, and others have both sides
belonging to the same hull. For example, both sides of the
blue triangle belong to the outer hull (for the outer subspace).
Each single edge belongs to only one hull.

The last two important challenges deal with finding (Sec-
tion V) and searching (Section VI) the target hull once the
message is in a local-minimum. For a particular destination,
a target hull is one of the local hulls of the local minimum
which contains all or part of the segment between the local-
minimum and the destination. Recovery from a local-minimum
is guaranteed when searching the target hull. For enhanced
performance, we propose a hull-based connected dominating
set (CDS) in Section VI, to further limit the node in the local
minimum recovery search.

IV. PARTIAL UNIT DELAUNAY TRIANGULATION (PUDT)

In a PUDT for 3D networks, intersecting triangles and edges
are logically removed such that the entire network space can
be divided into a number of subspaces.
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Fig. 2. Triangles in RNG, GG, and PUDT.

A. The basic approach and its correctness

GG and RNG are more popular than PUDT in 2D networks
because they are simpler. However, in 3D networks, PUDT is
the only feasible choice among the three because GG and
RNG remove most of the triangles. As can be observed in
the random network in Figure 2, PUDT conserves as many
triangles as possible while GG and RNG destroy most triangles
because they remove excessive edges. It can be proved that
RNG ⊆ GG ⊆ PUDT in terms of triangles as well as edges.

We denote nodes asp1, p2, . . ., an edge between nodes
p1 and p2 as edge(p1, p2), a triangle determined by three
points not in a line as∆(p1, p2, p3), a tetrahedron as
T (p1, p2, p3, p4), and a ball determined by four points
not on the same plane asball(p1, p2, p3, p4). Note that
ball(p1, p2, p3, p4) is the circumsphere ofT (p1, p2, p3, p4).

When the edges can be arbitrarily long, the result of
applying Delaunay triangulation to a set of vertexes is a
space uniquely divided into a number of non-intersecting
tetrahedra and a single outer subspace. The rule is that only
the tetrahedra without a fifth vertex inside its circumsphere is a
valid Delaunay tetrahedron. Two tetrahedra are intersecting if
there is a common point inside them. For example, in Figure
3(a), T (p1, p3, p4, p5) and T (p1, p2, p3, p4) are intersecting,
and Delaunay triangulation ensures that only one of them is
valid. In this example,T (p1, p2, p3, p4) is not valid sincep5

is insideball(p1, p2, p3, p4).
The PUDT algorithm in 3D networks is analogous to planar

graph construction in 2D networks: the latter is used to
remove intersecting edges, while the former is used to remove
intersecting triangles. It can be proved that if there is no
intersecting edge and triangle, then there is no intersecting
tetrahedra. This is because when two tetrahedra intersect,one
of the four triangles on the first tetrahedron must intersecta
triangle on the second tetrahedron; moreover if two triangles
intersect, an edge of one of the triangles must intersect the
other triangle. When the network is very dense, the non-
removed triangles partition the network space into a number
of tetrahedra. Otherwise, there are some irregular polyhedra.

Our basic PUDT algorithm logically removes the edges
and triangles, which are defined in Definition 1, and it is
illustrated in Figures 3(a) and 3(b). Definition 1 guarantees
that an edge and a triangle cannot exist at the same time if
they intersect. Note that we define edges and triangles as two
kinds of objects. Removing any of the three edges of a triangle
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results in removing the triangle. However, a triangle can be
removed while all of its three edges are retained in the graph.

Definition 1 (Invalid edge & triangle):If edge(p1, p2) in-
tersects∆(p3, p4, p5) and p2 is outsideball(p1, p3, p4, p5),
thenedge(p1, p2) is an invalid edge (invalidated by∆(p3, p4,
p5)). Otherwise, ifp2 is insideball(p1, p3, p4, p5), then∆(p3,
p4, p5) is an invalid triangle (invalidated byedge(p1, p2)).
∆(p3, p4, p5) is also invalid if any of its three edges are
invalid or if there exists a vertexu such that the radius of
ball(u, p3, p4, p5) is greater than 1.

The last constraint in the definition is required for guar-
anteeing delivery (in Theorem 5) which otherwise is not
guaranteed in Delaunay triangulation [3]. Theorem 1 will show
that invalid edges and triangles determined distributively are
consistent among the nodes. Theorems 2 and 3 will show that
the position information of a 2-hop neighbor is sufficient for
the correctness of Theorem 1. Theorem 4 shows that network
connectivity is conserved when invalid edges are removed.

Theorem 1:If edge(p1, p2) intersects∆(p3, p4, p5), then
invalid edges and triangles determined distributively arecon-
sistently among the nodes.

Proof: To prove this theorem, we need to prove thatp1

and p2 make consistent decisions, which is to prove the fol-
lows: (1) if p2 is outsideball(p1, p3, p4, p5), thenp1 is outside
ball(p2, p3, p4, p5) as shown in Figure 3(a), and (2) ifp2 is
insideball(p1, p3, p4, p5), thenp1 is insideball(p2, p3, p4, p5)
as shown in Figure 3(b). The detailed proof can be found in
the Appendix.

In case 1 (Figure 3(a)),edge(p1, p2) is invalid and there
are two tetrahedra:T (p1, p3, p4, p5) and T (p2, p3, p4, p5).
In case 2 (Figure 3(b)),∆(p3, p4, p5) is invalid, and there
are three tetrahedra:T (p1, p2, p3, p4), T (p1, p2, p3, p5), and
T (p1, p2, p4, p5). There are no intersecting triangles in ei-
ther case:∆(p3, p4, p5) is valid iff all of ∆(p1, p2, p3),
∆(p1, p2, p4), and∆(p1, p2, p5) are invalid, and vice versa.

Nodes can determine invalid edges and triangles consis-
tently only if they have sufficient information about the other
nodes. To detect an invalid edge consistently, both of its nodes
must know about any triangle invalidating this edge. To detect
an invalid triangle∆ consistently, all three of its nodes must
know of (1) any edge invalidating∆, and (2) any other triangle
invalidating any edge of∆.

Theorem 2:In UBG(V ), if an edge intersects a triangle,
then all five of the vertexes are at most 2-hops away.

Proof: We can prove this theorem by proving: if
edge(p1, p2) intersects∆(p3, p4, p5), then either (1)p1 or p2

connects to all ofp3, p4, andp5, or (2) p3, p4, or p5 connects
to both p1 and p2. The detailed proof can be found in the
Appendix.

Theorem 3:In UBG(V ), if one of the three edges of a
triangle is invalidated by another triangle, then all six ofthe
vertexes are 2-hops away.

Proof: The proof can be found in the Appendix.

Theorem 4:The connectivity of the network is conserved
after all invalid edges are removed.

Proof: We need to prove that ifedge(p1, p2) is invalidated
by ∆(p3, p4, p5), both p1 and p2 connect to at least one of
p3, p4, andp5. This follows directly from Theorem 2.

B. A Low-cost PUDT algorithm

We have showed a basic PUDT algorithm in which the
nodes propagate 2-hops of position information and then
remove all invalid edges and triangles. In this subsection,
we will calculate the PUDT with just over 1-hop of position
information. In our low-cost PUDT algorithm, each node
sends its own position and might also send someadvertised
information to its neighbors, which includes the positions
of some of a node’s 1-hop neighbors. The basic PUDT
algorithm is a special case in which each node’s advertised
information includes the position information for all of the
neighbors, while the low-cost PUDT algorithm includes as
little information as possible. Simulation results in Section VII
shown that the average amount of advertised information is
less than 3% of 2-hop information and hence we say that it is
just over 1-hop.

We have five rules on selecting advertised information. The
first four rules are regarding edges invalidated by triangles or
triangles invalidated by edges. Figures 4(a) and 4(b) show the
two situations of connectivities between the five vertexes of an
edge and a triangle that intersect each other. Other situations
are impossible, as shown in the proof of Theorem 2. Rules 1-4
are illustrated as follows. In Figure 4(a) for rules 1 and 2, if p1

is not connected with any ofp3, p4, andp5, then (1)p2 should
advertisep2 to p3, p4, andp5 when edge(p1, p2) invalidates
∆(p3, p4, p5), and (2)p2 should advertise{p3, p4, p5} to p2

when∆(p3, p4, p5) invalidatesedge(p1, p2). In Figure 4(b) for
rules 3 and 4, ifp1 is not connected withp3, andp2 is not
connected withp4, then (3)p5 should advertise{p1, p2} to p3

and p4 when edge(p1, p2) invalidates∆(p3, p4, p5), and (4)
p5 should advertise{p3, p4} to p1 andp2 when∆(p3, p4, p5)
invalidatesedge(p1, p2).

The fifth rule is regarding triangles invalidated by other
triangles. In Figure 4(c) for rule 5, if∆(p3, p4, p5) invalidates
edge(p1, p2) and p6 is not connected with some vertexes in
∆(p3, p4, p5), thenp1 should advertise these vertexes top6.

To reduce the size of the advertised information, we opti-
mize the algorithm by (1) sending advertised information only
when necessary, and (2) selecting minimized advertised infor-
mation to send. For example, in Figure 4(a), if∆(p3, p4, p5) is
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Fig. 4. Illustrations of our low-cost PUDT algorithm.

also invalidated by another, sayedge(u, v), of which all of the
three vertexes in∆(p3, p4, p5) are aware, then it is unnecessary
for p1 to advertise{u, v} to the vertex nodes in∆(p3, p4, p5).

V. L OCAL HULLS AND TARGET HULL

After the PUDT algorithm, each node knows all of its
adjacent valid edges and triangles. Note that greedy forwarding
uses all nodes in the network whereas hull-based routing
only uses nodes on the valid edges and triangles. Therefore,
in the section, only valid edges and triangles are used and
we refer to them simply as edges and triangles. The entire
network space is divided into subspaces by triangles. This
section will present the solutions to two problems: (1) how
each node locally groups single edges and triangles into hulls
of different subspaces (i.e., identify local hulls); and (2) given
a destination, how the target hull is selected. Note that we only
identify local hulls since it is impossible to determine whether
two objectsare on the same global hull with local information.
We define objects as either triangles or single edges. Local
hulls can be combined when messages are routing on the hull
(in Section VI-B) which guarantees that every node in a global
hull can be traveled to by messages.

A. Construction of Local hulls

To identify nodes in different subspaces consists essentially
of identifying the triangles and edges in different subspaces.
We define a hull for a particular subspace as a structure which
contains the triangles bordering the subspace and the triangles
andsingle edges(edges not belonging to any triangle) inside
the subspace. First, we will present some concepts.

We distinguish triangles by both vertexes and sides, and a
triangle with its side touching a subspace belongs to the hull
of the subspace. Two sides of a triangle can belong to either
two different hulls or the same hull. In the following, we refer
to a triangle as a triangle with a particular side. The side ofa
triangle is defined by the order of the vertexes using the right
hand rule. In Figure 5(a),∆(p1, p2, p3) is the triangle facing
upward, while∆(p1, p3, p2) is the one facing downward.

We define the angle between two triangles as the angle to
flip one of the triangles along their common edge until they
are on the same plane and face-to-face. In Figure 5(d), the
angle between∆(p1, p2, p3) and∆(p1, p4, p2) is α; the angle
between∆(p1, p3, p2) and ∆(p1, p2, p4) is π − α; and the
angle between∆(p1, p2, p3) and∆(p1, p2, p4) is undefined.

We define that two triangles are neighboring triangles if they
can be flipped to become face-to-face, and when flipping one
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of the triangles, it does not pass through any other triangle.
That is, if ∆1 and ∆2 are neighboring triangles, then(1)∆1

and∆2 have an angleα, and (2) for any∆3 that also share
the common edge of∆1 and∆2, if ∆3 has an angleβ with
∆1 (or ∆2), thenβ > α.

To group the objects into different local hulls, we first find
the components, which consist of either a single edge or a set
of neighboring triangles, then we group different components
into different hulls. An example of a component consisting of
neighboring triangles is shown in Figure 6(a). Starting from
any triangle, say∆(p1, p3, p4), we can find a sequence of con-
secutive neighboring triangles adjacent top1: ∆(p1, p4, p5),
∆(p1, p5, p6), ∆(p1, p6, p7), and∆(p1, p7, p3), which are in
a component ofp1. We can find another component for node
p1 consisting of the opposite triangles in the first component.
The third component forp1 is the single edge,edge(p1, p2).
Similarly, we can find two components forp1 in Figure 6(b),
and there are three components for thep1 in Figure 6(c).

Before combining components, we define two concepts. (1)
The angleα between an edge (or a segment) and a triangle that
share a common vertex is defined as the follows. As illustrated
in Figure 5(b), letu be the intersection point ofedge(p2, p3)
and the projection of theedge(p1, t) on ∆(p1, p2, p3). If u
is on edge(p2, p3), as in Figure 5(b), the angleα is the
angle betweensegment(p1, t) and its projectionedge(p1, u).
Otherwise, as in Figure 5(c),α is undefined. (2) The closest
object to an edge (or segment)e is a triangle or an edge
that has the smallest angle withe. The closest object to
segment(p1, t) in Figure 5(b) is∆(p1, p2, p3), and the closest
object tosegment(p1, t) in Figure 5(c) isedge(p1, p3).

The following rule determines whether two components
belong to the same hull. Once two components are determined
as belonging to the same hull, we combine them by putting
their objects together. (1) If two componentsC1 andC2 have
two triangles that are opposite, these two components belong
to different hulls (thoughC1 andC2 can belong to the same
global hull). (2) If C1 and C2 belong to the same hull and
C2 andC3 belong to different hulls, thenC1 andC3 belong
to different hulls. (3) For each edge (not necessarily a single
edge) inC1, we select its closest object in the components that
were not determined as belonging to different components. If
the closest object is found in componentC2, thenC1 andC2

belong to the same hull.
In Figure 6(a), letC1 be the component ofp1 consisting

of triangles facing nodet, C2 be the component consisting of
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triangles facingp2, andC3 be the component consisting of the
single edgeedge(p1, p2); C1 andC2 belong to different hulls
because they contain opposite triangles, such as∆(p1, p3, p4)
and∆(p1, p4, p2); C3 andC2 belong to the same hull because
one of the triangles or edges inC2 must be the closest object
to edge(p1, p2) in C3; finally, C3 andC1 belong to different
hulls becauseC2 andC1 belong to different hulls. Therefore,
p1 has two local hulls. Similarly, in Figures 6(b) and 6(c), we
can see thatp1 has only one hull.

B. Determine the target hull

When a message reaches a local minimum, one of the
adjacent hulls of the local minimum (the target) is selected
such that the message can recover from the local minimum
by searching this hull (searching the nodes in or on the hull’s
subspace). We define thetarget hullas the hull whose subspace
contains all or part of the segment connecting the local-
minimum m and destinationt, or simply them-t segment.

Since each object belongs to only one hull, to determine
the target hull is to find a representative object (a triangle
or a single edge) of the target hull. First we find the closest
object to thes-t segment. If the closest object is a triangle
or a single edge, then this object is the representative of the
target hull. Otherwise, the closest object is an edge, saye, on
some triangle. In this case, we flip the virtual triangle, which
consists of the two vertexes ofe and the destination, along
e to find the triangle which has the smallest angle with the
virtual triangle. This triangle is the representative object of the
target hull. In Figure 6(a), supposep1 is the local minimum,
t is the destination, andedge(p1, p3) is the closest object of
segment(p1, t). We can flip the virtual triangle∆(t, p1, p3)
(or ∆(t, p3, p1)) to find the first triangle∆(t, p4, p3) (or
∆(t, p3, p7)) on the target hull. It can be proved that all or
part of them-t segment is in the subspace of the target hull,
since there cannot be a triangle dividing them-t segment and
its closest object into different subspaces.

When routing on a target hull, each node only forwards the
message to its neighbors adjacent to the triangles and single
edges on the target hull. Therefore, in hull routing, when a
node forwards a message to another node, the sender needs to
tell the receiver which hull is the target hull by piggybacking
the information about an object on the target hull that the
receiver knows. Theorem 5 shows that hull-based routing can
always make progress.

Theorem 5:If the subspace of the target hull contains all
or part of them-t segment, then either the destination is on

the target hull, or at least one node on the target hull is closer
to the destination than the local minimum.

Proof: If the destination is reachable and is not on the
target hull, then there must be a triangle, say∆(u, v, w), that
intersects them-t segment. In this case, at least one vertex in
∆(u, v, w) must be closer tot thanm. Otherwise∆(u, v, w)
is not a valid triangle. This is because if all of the vertexes
of ∆(u, v, w) are outsideball(m, ‖mt‖) (which is the ball
centered atm with radius equal to the distance betweenm
and t, ‖mt‖), then ball(u, v, w, m) containsball(m, ‖mt‖).
This follows that the radius ofball(u, v, w, m) is greater than
1 (since the radius of the contained ball‖mt‖ > 1) and
∆(u, v, w) is invalid, according to Definition 1.

VI. GHG AND EXTENSION

A. Greedy-hull-greedy (GHG) routing

Greedy-hull-greedy (GHG) routing is analogous to greedy-
face-greedy (GFG) routing. All geometric routing algorithms
contain a greedy routing algorithm and a recovery algorithm,
since greedy routing (which forwards the message ever closer
to its destination) is the simplest and most efficient. An
execution of GHG is a repetitive alteration between greedy
forwarding and hull-based local-minimum recovery. GHG can
be easily extended with a bounded circle as in [5] to achieve
the worst case boundO(d3), whered is the distance between
the source and destination. Delivery is guaranteed since hull
routing can always make progress (Theorem 5).

B. Efficient searching on the target hull

In 2D, searching the border of a face for a recovery node
is a trivial one-dimensional search. Random walk is proposed
in [10] to search the virtual cube structure also proposed in
[10]. We use a more efficient hull-based, depth-first search,in
which each message is forwarded at most twice the number
of the nodes on a target hull (leaf nodes forward at most once
and non-leaf nodes forward at mostk+1 times, wherek is the
number of children in the search tree). Therefore, we conserve
the worst-case bound ofO(d3).

In [11], a depth-first search (DFS) has been proposed for
use in geometric routing where depth can be defined as the
reciprocal of the distance between the nodes and the destina-
tion. In this algorithm, messages only storeO(1) routing state
information. This algorithm can be improved by allowing each
node to overhear the messages of its neighbors.

We assume that each message has a unique ID. Whenever
a nodeu overhears or receives a message for the first time, it
creates a record for the message. This record is removed when
the message expires. Each record stores (1) a set of nodes that
were overheard forwarding the message to some other nodes,
(2) an ancestor node ofu that first forwards the message to
u, and (3) a set of nodes thatu forwarded the message to.
The DFS rules are: (1) whenu receives a message fromv, if
it is the first time thatu receives it (v is the ancestor) oru
forwarded the message tov before,u sends the message to the
next neighborw that is the closest to the destination among
the neighbors on the target hull and that does not have the
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Fig. 7. Comparison of PUDT costs.

message (known from overhearing); (2) ifw does not exist,u
forwards the message back to the ancestor; and (3) ifv is not
the ancestor andu did not send the message tov, u returns
the message tov.

We associate each message with a counter which increases
whenever it starts to travel to a new hull. When a node finds
that a message travels to two of its local hulls with the same
counter value, the node combines these two local hulls into
one hull. This ensures that each forwarding node forwards
the message to all of its neighbors on the target hull when
the target hull contains different local hulls of the forwarding
node. It can be proved that this algorithm guarantees that any
recovery node on the target hull can be traveled to.

C. Extension: CDSs on hulls

In [19], the Gabriel Graph (GG) is constructed on the
connected dominating set (CDS) of the network nodes to
reduce the number of nodes on each face. We use CDS to
reduce the number of nodes on each hull to make searching
more efficient. Our CDS nodes are hull-specific. Note that
we cannot construct a CDS on all nodes since it results in
removing most of the triangles.

An optional step can be applied before the hull-based
CDS selection to reduce the CDS size by allowing nodes
to construct larger local hulls through exchanging local hull
information and combining hulls when hulls share objects.

VII. S IMULATION

A. Evaluation of our PUDT algorithm

PUDT is performed in random 3D networks of size1, 000×
1, 000 × Z, whereZ varies among 100, 200, and 400. For
eachZ, networks containing a varied amount of nodes are
generated. For eachZ and each network density, 100 networks
are generated to repeat the simulation by randomly selecting
an(x, y, z) coordinate for each node within the specific space.

We compare the cost of the basic PUDT (denoted byO(d)
in the simulation results) and the low-cost PUDT (denoted by
O(1)) in terms of the size of position information exchanged
among the nodes. The size is measured by the volume of
position information, each of which contains three integers

describing thex, y, and z coordinates of a node. The sim-
ulation results are plotted in log scale. The measurement
does not include information about the node’s own position.
Simulation results in Figures 7(a)-7(c) show that cost of the
PUDT algorithms under different heightZ and number of
nodes. The results show that the average cost of the low-cost
PUDT is only around 3% of the 2-hop information which is
required in the basic PUDT. Also, the maximum cost of the
low-cost PUDT is almost equal to the average cost of the basic
PUDT.

B. Routing performance

We compare the routing performances of Flooding (which
finds the optimal paths), DFS [11] and DFS+CDS (DFS runs
on the connected dominating set of the network), greedy-
random-greedy (GRG) [10] which performs its random walk
local-minimum recovery search on the hull we constructed,
and GHG. Our simulation metric is in terms of hop-count.

We generate networks with randomly placed nodes and
artificial holes to emulate obstacles in practical situations. The
size of all networks is500 × 500 × 500 and the transmission
range of the nodes is 100. A number ofN nodes are randomly
placed in each network whose degreeD ranges between 8,
12, or 16 neighbors per node, andN is calculated fromD as
N = 5003/(π×1002/(D+1)). A rectangular hole whose size
is H×H×150 is created at the center of each network, where
H ranges between 200 and 400 in different networks. Small
holes other than the artificial hole might exist in regions where
node density is low. Disconnected networks are discarded.
For eachD and H , we generate 30 networks to repeat the
simulation. For each network, we select at most 5000 pairs of
nodes as the sources and destinations. Since all protocols have
the same path length when greedy forwarding is successful, we
require that, in these selected pairs of nodes, the destination
is a local-minimum of the source in order to create larger
differences in the simulation results.

First, we compare GHG with Flooding, DFS, and
DFS+CDS. Figures 8(a)-8(c) show that the path length of
all protocols increases as the size of the hole increases (the
increase in Flooding is the smallest). The performance of
GHG is, on average, only 20% longer than the optimal path
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Fig. 8. Comparison of routing performances.

length of Flooding and is at most 50% longer in the worst-
case. Comparatively, DFS and DFS+CDS have a longer path
length which in the worst case is about six and three times
longer than GHG, respectively. The performance of DFS and
DFS+CDS becomes worse as the network density increases.
As the density increases, the percentage of nodes on the hulls
(or border of the holes) decreases and the percentage of nodes
inside the dense region of the network increases. Therefore,
the simple combination of DFS and CDS is not sufficient to
improve performance in dense networks, where the hull-based
search in GHG is more efficient.

Second, we compare GHG with GRG. From Figures 8(a)-
8(c), the performances of Flooding, GRG, and GHG all
increase as network density increases. This is because the
actual size of the holes decreases as the network density
increases and the percentage of nodes on the hull decreases as
the density increases. The performance of GRG is less efficient
than that of GHG: GRG has a longer path length which in the
worst-case is about two to four times longer than GHG. GRG
also searches the target hull when recovering. The difference
is that GRG performs a simple random walk search. GHG has
better performance since (1) its hull-based DFS tries to send
the message to the nodes closer to the destination to speed-
up the recovery process; and (2) it tries not to repeat sending
messages to each node.

C. Summary of simulation

To summarize the simulation results, our localized PUDT
has low overhead: it requires each node to exchange just over
1-hop of information to calculate. The routing performanceof
GHG is shown to be, on average, only 20% longer than the
optimal path and can be three times shorter than the DFS+CDS
in dense network (D = 16) and four times shorter than GRG
in sparse networks (D = 8).

VIII. C ONCLUSION

In this paper, we propose some solutions for efficient
geometric routing in 3D networks. We present the first 3D
localized PUDT algorithm, hull recognition algorithm, and
GHG, the first 3D analogue to face routing. Simulation results
show that our PUDT algorithm is low in cost, and GHG is

more efficient than DFS and GRG. We believe many problems
in geometric routing in 2D networks can be redefined or
extended to 3D networks based on our model, which include
multicast, geocast, virtual coordinates, handling uncertain po-
sition information, and energy efficient routing.
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APPENDIX

Proof of Theorem 1:If two balls intersect at three points,
then each ball is divided into two domes by the intersecting
plane determined by the three points. For each ball, one of the
domes is inside the other ball and the other dome is outside
the other ball.

Case 1: As shown in Figure 3(a), we will show that
if p2 is outsideball(p1, p3, p4, p5), then p1 is outside ball
ball(p2, p3, p4, p5). Since the intersectionu of edge(p1, p2)
and ∆(p3, p4, p5) is inside ball(p1, p3, p4, p5), edge(p1, p2)
has an intersectionv with ball(p1, p3, p4, p5). Sincep1 andv
are on different sides ofplane(p3, p4, p5), they are on two dif-
ferent domes ofball(p1, p3, p4, p5) separated byplane(p3, p4,
p5). Since v is inside T (p2, p3, p4, p5), dome(p3, p4, p5, v)
is inside ball(p2, p3, p4, p5). Thus, dome(p3, p4, p5, p1) is
outside ball(p2, p3, p4, p5) which follows thatp1 is outside
ball(p2, p3, p4, p5).

Case 2:As shown in Figure 3(b), we will show that ifp2 is
insideball(p1, p3, p4, p5), thenp1 is insideball(p2, p3, p4, p5).
Sincep2 is inside ball(p1, p3, p4, p5), line(p1, p2) intersects
with ball(p1, p3, p4, p5) at v, and p1 and v are on dif-
ferent sides ofplane(p3, p4, p5). It follows that p1 and
v are on different domes ofball(p1, p3, p4, p5) separated
by plane(p3, p4, p5). As p2 is inside T (p3, p4, p5, v), it
is impossible forv to be insideball(p2, p3, p4, p5); other-
wise p2 is inside ball(p2, p3, p4, p5) instead of on the ball.
Therefore,dome(p3, p4, p5, v) is outsideball(p2, p3, p4, p5),
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Fig. 10. Illustration for the proof of Theorem 3.

dome(p1, p3, p4, p5) is insideball(p2, p3, p4, p5), and finally
p1 is insideball(p2, p3, p4, p5).

Proof of Theorem 2:We will show that the opposite cases
below are impossible which are illustrated in Figures 9(a)-9(f).
We ignore the symmetric cases. If neitherp1 nor p2 connects
to both p3, p4, and p5, we can assumep1 does not connect
to p3 without loss of generality. Ifp2 does not connect top3,
then either bothp4 and p5 do not connect top1 (case 1), or
p4 does not connect top1 andp5 does not connect top2 (case
2). If p2 connects top3, thenp2 cannot connect top4 andp1

cannot connect top5 (case 3).
Case 1:As shown in Figures 9(a) and 9(d),p3 connects to

neitherp1 norp2, andp4 andp5 do not connect top1. Let L be
a plane which containsp1 andp2 and which is perpendicular
to ∆(p1, p2, p3). p4, p5, andp3 must be on the same side of
L. Therefore,edge(p1, p2) cannot intersect∆(p3, p4, p5).

Case 2: As shown in Figures 9(b) and 9(e),p3 connects
to neitherp1 nor p2, p5 does not connect top2, andp4 does
not connect top1. Let L be a plane which containsp1 and
p2 and which is perpendicular to∆(p1, p2, p3). p4, p5, andp3

must be on the same side ofL. Therefore,edge(p1, p2) cannot
intersect∆(p3, p4, p5).

Case 3: As shown in Figures 9(c) and 9(f),p1 does not
connect top3 andp5, andp4 does not connect top2. Let L be
the intersection plane of the unit balls centered atp1 and p4

respectively.p3 andp5 must be aboveL andp2 must be under
L. Therefore,edge(p1, p2) cannot intersect∆(p3, p4, p5).

Proof of Theorem 3:Illustrated in Figure 10, the theorem
can be rephrased as: if one of the edges in∆(p1, p2, p3) inter-
sects another∆(p4, p5, p6), then any vertex in∆(p1, p2, p3)
is at most 2 hops away from any vertex in∆(p4, p5, p6).

Symmetrically, we only need to prove thatp1 is at
most 2 hops away from any vertex in∆(p4, p5, p6). If
it is edge(p1, p2) or edge(p1, p2) that is invalidated by
∆(p4, p5, p6), p1 is at most 2 hops from any vertex in
∆(p4, p5, p6). This follows directly from Theorem 2.

We need to prove that ifedge(p2, p3) is invalidated by
∆(p4, p5, p6), then p1 directly connects to at least one ver-
tex in ∆(p4, p5, p6). This must be true. As shown in Fig-
ure 10, let|p1, p2| > |p1, p3|, we can see thatp3 is outside
of ball(p4, p5, p6, p2) since edge(p2, p3) is invalidated by
∆(p4, p5, p6). By assumption, all vertexes of∆(p4, p5, p6) are
outside of the ball centered atp1 with radius equal to|p1, p2|.
Therefore, all vertexes in∆(p4, p5, p6) are to the left of the
intersecting planeL of the two balls, while all vertexes in
∆(p1, p2, p3) are on or to the right ofL. This contradicts the
fact thatedge(p2, p3) intersects∆(p4, p5, p6).


