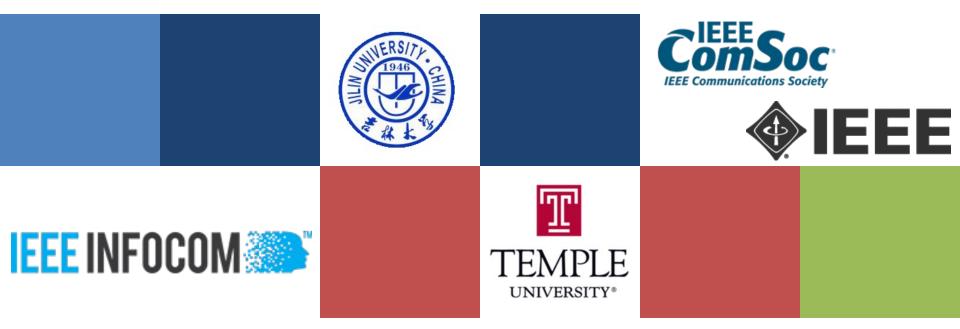
Worker Selection Towards Data Completion for Online Sparse Crowdsensing

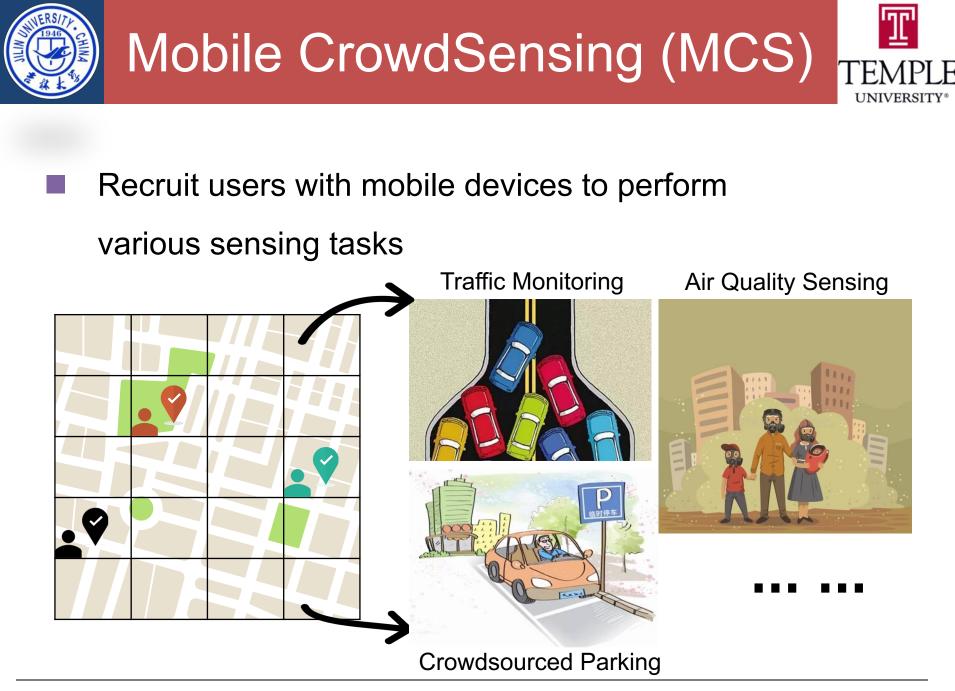


Wenbin Liu*, En Wang*, Yongjian Yang*, and Jie Wu+ *Jinlin University, +Temple University

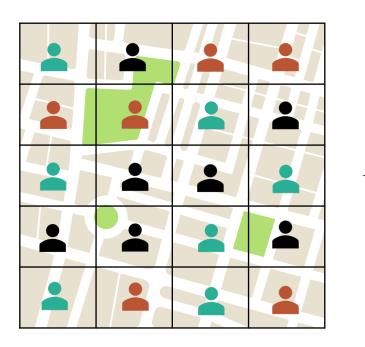
- I. Background and Motivation
- II. Problem and Framework
- III. Data Completion
- IV. Importance Estimation
- V. Worker Selection
- VI. Performance Evaluation
- VII.Conclusion

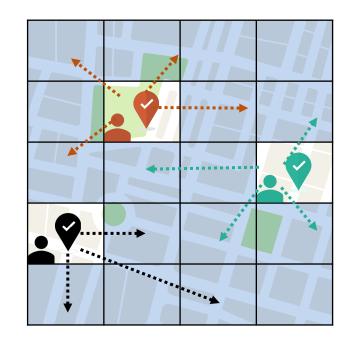
I. Background and Motivation

- II. Problem and Framework
- III. Data Completion
- IV. Importance Estimation
- V. Worker Selection
- VI. Performance Evaluation
- VII.Conclusion



- MCS: a large number of workers
- Sparse MCS: sense a few and infer the rest

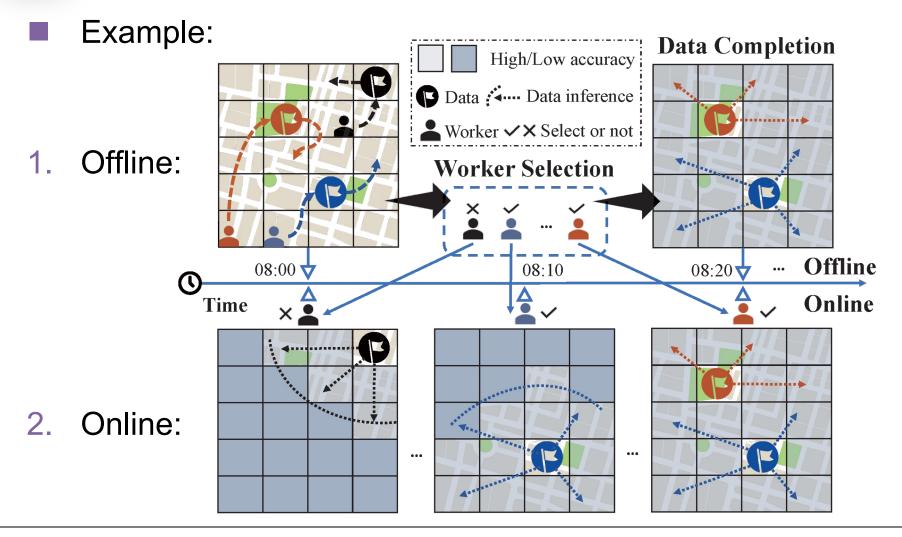




Offline vs. online

- Offline Sparse MCS
 - Pre-determined worker pool
 - Infer the rest after receiving all the data
- Online Sparse MCS
 - Workers participate in real time
 - Dynamically coming data
 - More realistic scenarios

Offline vs. online



- Intuitively: complete after receiving each new data
 - Cost a lot with high completion latency
- Alternatively: group data into batches
 - Still exist a lag between receiving and exploiting
- First challenge:
 - How to effectively exploit the dynamically coming data for <u>online data completion</u>?

- Some spatio-temporal areas are more important
 - □ Data from center areas → the corner ones
- Area importance is time-varying
 - Newly obtained data between the old ones
- Second challenge:
 - How to <u>estimate area importance</u> for improving data completion?

- Instead of passively waiting for given data
 - Select workers to actively sense important areas for accurate data completion
- Online scenarios
 - Workers and data are invisible and hard to predict
 - Third challenge:
 - How to select the worker set in an online manner to actively sense important area for accurate completion?

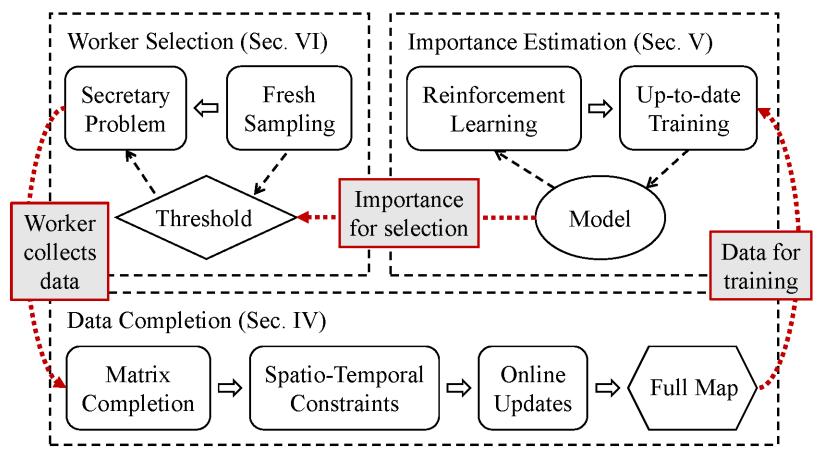
- I. Background and Motivation
- II. Problem and Framework
- III. Data Completion
- IV. Importance Estimation
- V. Worker Selection
- VI. Performance Evaluation
- VII.Conclusion

Problem Formulation

- Problem [Worker Selection Towards Data Completion for Online Sparse MCS]:
- Given a set of tasks with *m* sensing areas and *n* cycles,
 under a budget *B* and the duration *T*, our problem is to
 select a set of sequential participating workers μ
- Goal: minimizing the total completion error

minimize
$$\sum_{t=1}^{T} \varepsilon(Y, \hat{Y}_t)$$

subject to $\hat{Y}_t = f(Y'_t), \ \mu \subseteq W, \ \sum_{u_i \in \mu} c_i \leq B$



- I. Background and Motivation
- II. Problem and Framework
- III. Data Completion
- IV. Importance Estimation
- V. Worker Selection
- VI. Performance Evaluation
- VII.Conclusion

- A. Matrix Completion
 - In the physical world, the sensing data naturally exist with some correlations (*low-rank matrix*)

min rank
$$(\hat{Y})$$
, s.t., $\hat{Y} \otimes M = Y'$.

2. Factor the low-rank matrix into the latent spatiotemporal feature matrices

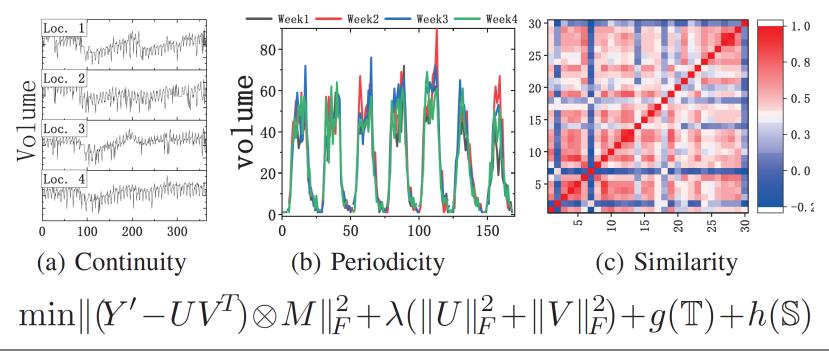
$$\hat{Y}_{m \times n} = U_{m \times r} V_{n \times r}^T$$

min $\| (Y' - UV^T) \otimes M \|_F^2 + \lambda (\|U\|_F^2 + \|V\|_F^2)$

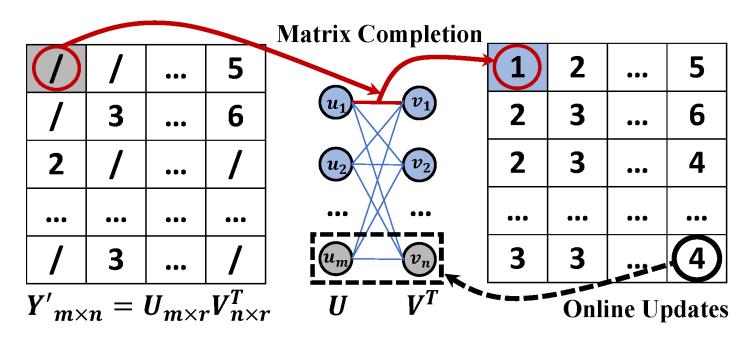
B. Spatio-Temporal Constraints

Usually, there exist spatial and temporal correlations

(continuity, periodicity, and similarity)



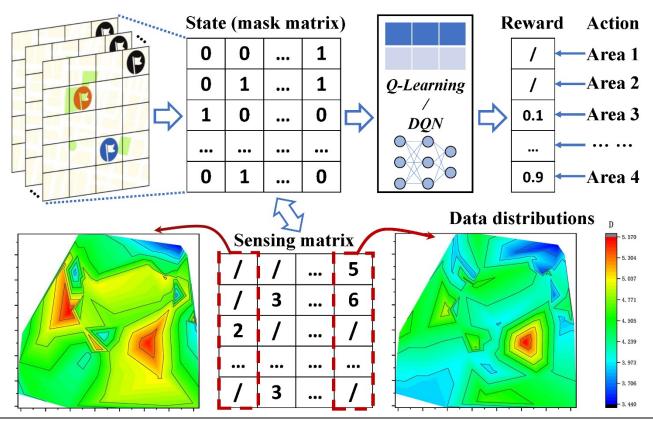
- C. Online Updates
 - With a new coming data, the new spatio-temporal matrices U/V are close to old ones (update tall matrices)



- I. Background and Motivation
- II. Problem and Framework
- III. Data Completion
- **IV. Importance Estimation**
- V. Worker Selection
- VI. Performance Evaluation
- VII.Conclusion

A. Reinforcement Learning

Connect areas with completion accuracy directly



Area Importance Estimation

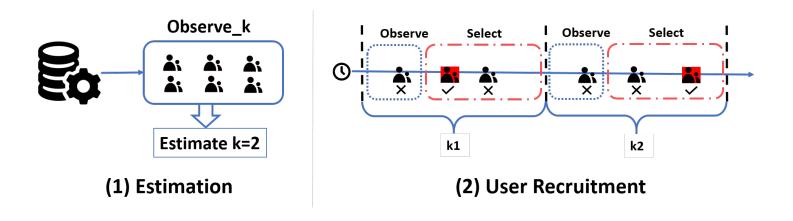
- B. Up-to-date Training
 - The sensing data may change a lot over time
 - ✓ Keep the model up-to-date
 - Utilize gradual changes in adjacent cycles and areas

a	4	5	•••	6	$avg_s \times (7/5)$ = 5	7 New data
Training data	6	8	•••	8		
	7	4	•••	7	$\left \begin{array}{c} avg_t & avg_y \\ = 7 & = 6 \end{array} \right $	5 S
	•••	•••	•••	•••		
	4	3	•••	7	× (6/7)	6

- I. Background and Motivation
- II. Problem and Framework
- III. Data Completion
- IV. Importance Estimation
- V. Worker Selection
- VI. Performance Evaluation

VII.Conclusion

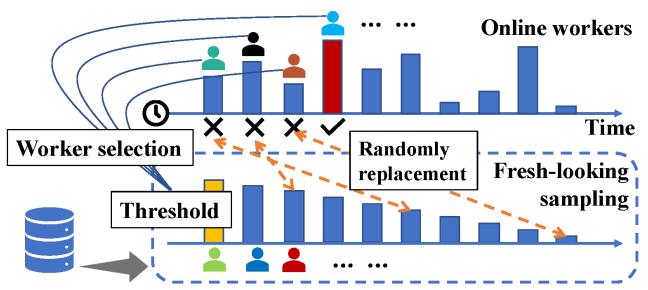
- A. Secretary Problem-based Worker Selection
 - 1. Estimation *k* (*budget and time constraints*)
 - 2. Online Segmented Recruitment: non-submodular *k*-Secretaries Problem (*online recruiting process*)



B. Fresh-looking Sampling

Construct a sample worker set to approximate the

first 1/e workers^[1]



[1] S. Ehsani, et al, "Prophet secretary for combinatorial auctions and matroids," in *Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms*. SIAM, 2018, pp. 700–714.

- I. Background and Motivation
- II. Problem and Framework
- III. Data Completion
- IV. Importance Estimation
- V. Worker Selection
- **VI. Performance Evaluation**

VII.Conclusion

Environmental monitoring

- DM2.5^[2], Temperature, Humidity^[3]
- Urban sensing

□ Traffic^[4], Parking^[5]

	Environme	ental Monitoring	Urban Sensing		
	PM2.5	Temperature	Humidity	Traffic	Parking
City	Beijing (China)	Lausanne (Switzerland)		New South Wales (Australia	Birmingham (UK)
Sensing areas	36 areas each with $1k*1km^2$	57 areas each	with $50*30m^2$	30 subway stations	73 car parks
Cycle & Duration	1 hour & 11 days	0.5 hour & 7 days		1 day & 1 year	0.5 hour & 77 days
Mean Std.	79.11 ± 81.21	$6.04 \pm 1.87^{\circ}C$	$84.52 \pm 6.32\%$	19095.73 ± 26750.79	647.97 ± 657.23

[2] Y. Zheng, et al, "U-air:when urban air quality inference meets big data," in ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2013, pp. 1436–1444.

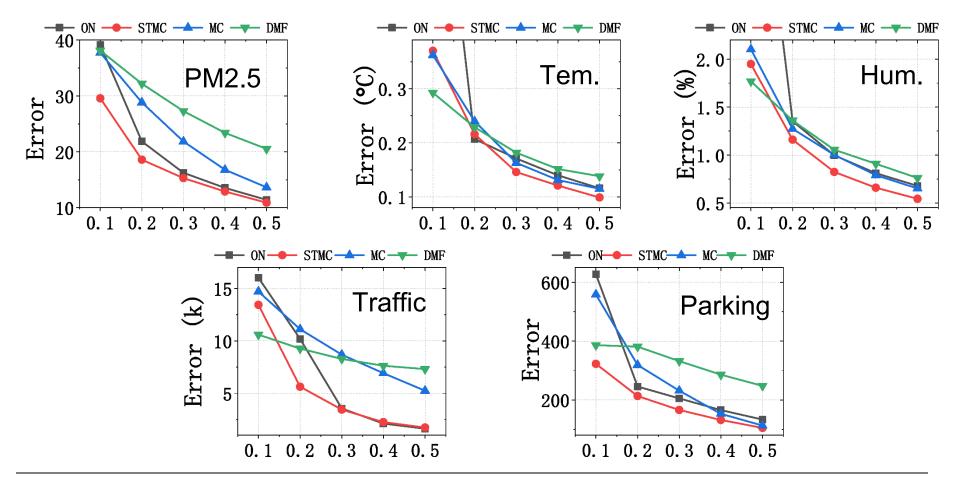
[3] F. Ingelrest, et al, "Sensorscope: Application-specific sensor network for environmental monitoring," *ACM Transactions on Sensor Networks*, vol. 6, no. 2, pp. 1–32, 2010.

[4] T. for NSW. (2019) System of traffic volume viewer. @ONLINE. [Online]. Available:

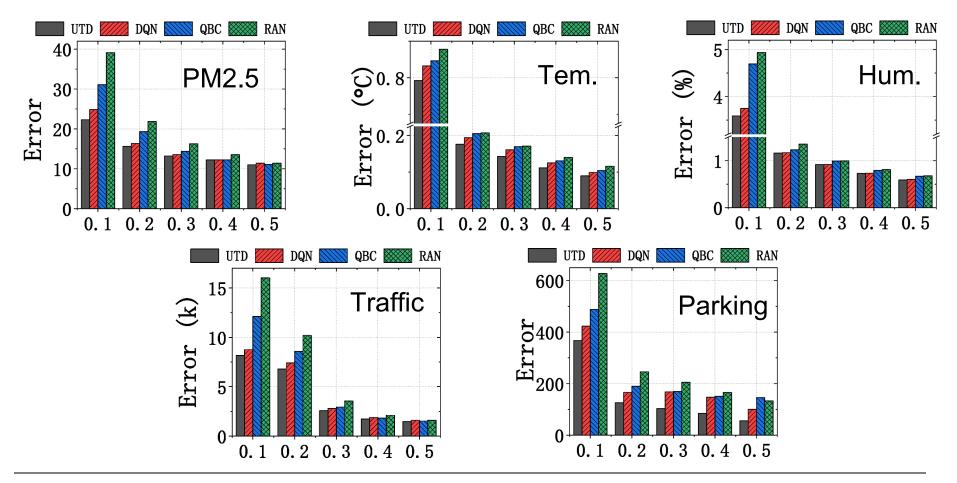
https://www.rms.nsw.gov.au/about/corporatepublications/statistics/traffic-volumes/aadt-map/index.html

[5] D. H. Stolfi, et al, "Predicting car park occupancy rates in smart cities," in *International Conference on Smart Cities*. Springer, 2017, pp. 107–117.

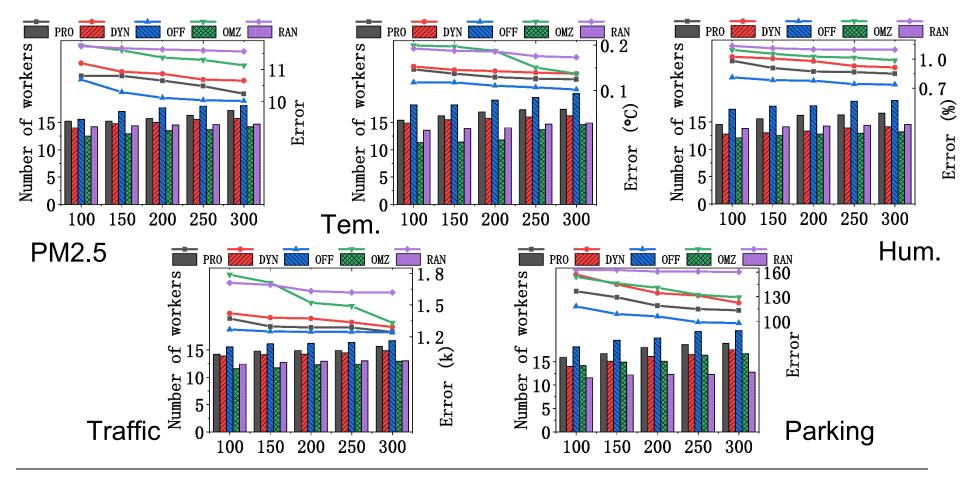
Data completion under randomly selection



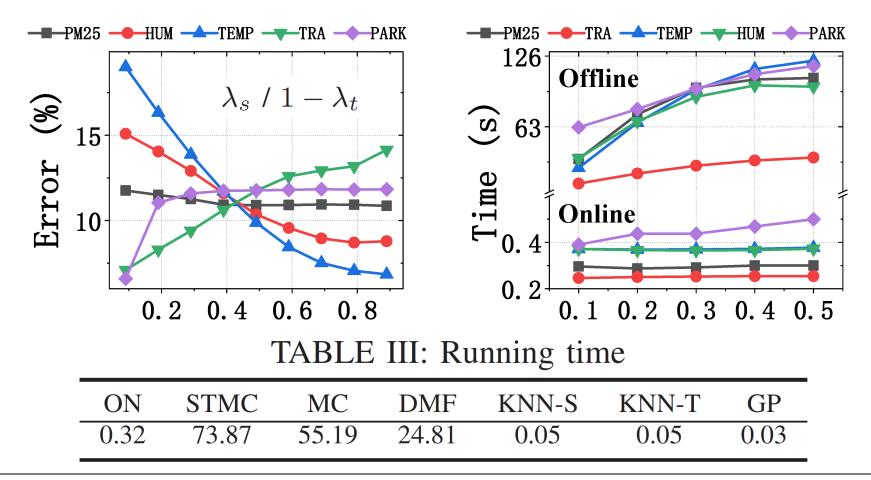
Importance estimation-guided data completion



Worker selection towards data completion



Spatio-temporal weights and running time:



- I. Background and Motivation
- II. Problem and Framework
- III. Data Completion
- IV. Importance Estimation
- V. Worker Selection
- VI. Performance Evaluation

VII.Conclusion

Conclusion

Online Sparse Crowdsensing:

Select suitable workers to actively sense important areas for online data completion

Framework OS-MCS:

- Matrix Completion with Online Updates
- RL-based Estimation with Up-to-date Training
- Online Selection with Fresh-looking Sampling
- Extensive Evaluation
 - Five typical sensing tasks (in two types)

Thank you!

Q&A

