Joint Prediction and Matching for Computing Resource Exchange
Platforms

Da Huo
Shanghai Jiao Tong University
Shanghai, Shanghai, China
sjtuhuoda@sjtu.edu.cn

Hao Chen
China Telecom Cloud Technology Co.
Ltd., Beijing 100033
Beijing, China
chenhao3@chinatelecom.cn

Fan Wu
Shanghai Jiao Tong University
Shanghai, Shanghai, China
fwu@cs.sjtu.edu.cn

Abstract

The rapid growth of deep learning has created unprecedented de-
mand for computing resources, while many small and enterprise-
level clusters remain underutilized. Computing resource exchange
platforms offer a solution by aggregating these idle resources. How-
ever, effective cluster-task matching depends on accurate perfor-
mance prediction. Existing approaches, which decouple prediction
from matching, often lead to suboptimal decisions due to misaligned
objectives. We propose a Matching-Focused Cluster Performance
Predictor (MFCP), an end-to-end framework that integrates perfor-
mance prediction with task matching to improve decision accuracy
and resource utilization. Unlike existing methods that prioritize pre-
diction accuracy, MFCP minimizes decision regret by aligning the
predictor’s loss with optimal matching objectives. To handle non-
differentiable matching optimization, we use continuous relaxation
and incorporate constraints via an interior-point method, ensuring
meaningful gradients for training. For non-convex optimization, we
approximate optimal decisions with gradient descent and estimate
gradients using zeroth-order perturbation. Experiments show that
MFCP consistently outperforms existing methods across different
cluster environments and scales, achieving lower matching regret
and higher resource utilization.

CCS Concepts
« Computing methodologies — Modeling methodologies.

“Corresponding authors.

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICPP °25, San Diego, CA, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2074-1/25/09

https://doi.org/10.1145/3754598.3754610

Zhenzhe Zheng”
Shanghai Jiao Tong University
Shanghai, China
zhengzhenzhe@sjtu.edu.cn

Jianfeng Hu
China Telecom Cloud Technology Co.
Ltd., Beijing 100033
Beijing, China
hujianfeng@chinatelecom.cn

Xiaoyao Huang
Cloud Computing Research Institute,
China Telecom
Beijing, China
huangxy32@chinatelecom.cn

Zhiyong Yan
China Telecom Cloud Technology Co.
Ltd., Beijing 100033
Beijing, China
yanzhy@chinatelecom.cn

Jie Wu

Cloud Computing Research Institute,

China Telecom
Beijing, China
wujie@chinatelecom.cn

Keywords

Deep learning cluster performance prediction, cluster-task match-
ing platform, decision focused learning

ACM Reference Format:

Da Huo, Zhenzhe Zheng, Xiaoyao Huang, Hao Chen, Jianfeng Hu, Zhiyong
Yan, Fan Wu, and Jie Wu. 2025. Joint Prediction and Matching for Computing
Resource Exchange Platforms. In 54th International Conference on Parallel
Processing (ICPP °25), September 08—11, 2025, San Diego, CA, USA. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3754598.3754610

1 Introduction

With the rapid development of Artificial Intelligence (AI), the com-
putational resource demands of deep learning tasks have signifi-
cantly increased, leading to a substantial increase in demand for
high-performance computing clusters. Although large-scale clus-
ters from centralized institutions in cloud computing, such as Ama-
zon Web Services (AWS) [2] and Microsoft Azure [30], are widely
available, the expansion of existing commercial clusters still cannot
keep pace with the fast growing computational demands driven
by scaling law. Meanwhile, a significant amount of computational
resources is distributed across small or enterprise-level institutions.
These computing clusters often remain underutilized due to the lack
of a convenient interface to share their idle computing resources.
Therefore, efficiently utilizing these idle computing resources is
crucial for addressing the issue of computing resource scarcity in
the era of AL

To utilize idle computing resources, computing resource ex-
change platforms, such as Equinix [12], have been proposed. These
platforms acquire and manage idle resources from third-party clus-
ters, aiming to efficiently match deep learning tasks to available
clusters to improve resource utilization. The two essential com-
ponents of such platforms are cluster performance prediction and
cluster-task matching. On one hand, since the deep learning clus-
ters are managed by third-party institutions, whose computing

https://orcid.org/0009-0000-3054-5472
https://orcid.org/0000-0002-5094-5331
https://orcid.org/0000-0003-2571-1979
https://orcid.org/0000-0002-8423-5522
https://orcid.org/0009-0009-0735-6038
https://orcid.org/0009-0008-3174-1019
https://orcid.org/0009-0007-0544-235X
https://orcid.org/0000-0002-3472-1717
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3754598.3754610
https://doi.org/10.1145/3754598.3754610

ICPP °25, September 08-11, 2025, San Diego, CA, USA

resources vary in architecture and quality, the platform needs to
evaluate the performance of running various deep learning tasks on
these clusters. Typically, there are two metrics: task execution time
and task success probability, i.e., reliability. Reliability is a critical
metric in such distributed systems, where third-party clusters may
experience communication or operation failures. Leveraging these
estimated performance metrics, the cluster-task matching process
aims to allocate tasks to clusters in a way that optimizes certain a
objective and satisfies some constraints, such as minimizing task
execution time and satisfying reliability constraints.

In practice, cluster performance prediction and cluster-task match-
ing are treated as two isolated problems. Existing work has focused
on predicting the performance of various deep learning tasks on
specific cluster hardware [13, 24, 39, 40], which ignores the decision
process in the downstream cluster-task matching. Specifically, a
key limitation of the approach in literature is that the metrics used
for matching are estimated by predictors and are treated as fixed
values instead of stochastic variables. The predictors minimize per-
formance prediction errors for individual clusters, ignoring that
downstream matching results depend on the joint interaction of all
clusters, making the predictors’ optimization objective misaligned
with minimizing matching error. To address this issue, we propose
a new matching-focused prediction framework to improve the final
matching accuracy by jointly considering the processes of cluster
performance prediction and cluster-task matching. Specifically, we
aim to integrate the training of the predictor with the optimization
of the downstream cluster-task matching, enabling the predictor to
directly minimize the regret in matching decisions, which is defined
as the discrepancy between the matching derived from the true
value (actual performance during execution) and the one from the
predicted value (performance estimated by predictors).

However, training such a predictor presents two main challenges:
non-differentiability of the matching optimization problem and diffi-
culty in gradient computation for backpropagation in an end-to-end
model training pipeline. The first challenge arises from that the
output of matching algorithm, i.e., the optimal matching, depends
on predicted performance but is inherently non-differentiable. This
lack of differentiability stems, on the one hand, from the fact that
the decision variables in the matching process can only take binary
values, making the overall function a step function. On the other
hand, it also arises from the presence of variables with different
roles in the optimization problem: the predicted execution time
is associated with costs in the objective function, while the pre-
dicted reliability serves as constraint variables in the inequality
constraints. When constraints are met, the gradient of the optimal
matching with respect to the predicted reliability becomes zero,
offering no meaningful guidance for training. Another challenge
is the difficulty of calculating the gradients for backward propa-
gation in the matching algorithm. When the matching problem
is convex, we can solve for the optimal matching using convex
optimization methods, and further obtain the gradient relation be-
tween the optimal matching and the predicted variables through
Karush-Kuhn-Tucker (KKT) conditions [9]. However, in more com-
plex settings where the matching objective may not be convex, we
can only iteratively approximate the optimal matching values, and
the gradient of the optimal matching with respect to the predicted
variables becomes challenging to compute in a closed form.

Da Huo, Zhenzhe Zheng, Xiaoyao Huang, Hao Chen, Jianfeng Hu, Zhiyong Yan, Fan Wu, and Jie Wu

We investigate the joint problem of prediction and matching in
computing resource exchange platforms, and propose Matching-
Focused Cluster Performance Predictor (MFCP) to address the chal-
lenges encountered in this scenario. This approach is to integrate
the predictor training with the downstream matching optimization
to improve matching quality. We address non-differentiability via
continuous relaxation and interior-point methods, while employing
zeroth-order gradient estimation for non-convex cases. To tackle
the difficulty of gradient computation in non-convex optimization
problems, we first approximate the optimal matching using gradi-
ent descent and then estimate the gradient of the optimal matching
with respect to the predictive variables by perturbing them through
a zeroth-order method. The main contributions of this work are
summarized as follows:

o We are the first to investigate the joint problem of performance
prediction and task matching in the emerging computing resource
exchange platforms, which conduct efficient cluster-task match-
ing to utilize idle computational resources from small institutions.
Solving this problem is essential for meeting the rapidly growing
demand for computational resources in the era of Al .

e We identify the limitations in conventional prediction-then-
matching two-stage approach in stochastic optimization. To over-
come these limitations, we propose a new framework that integrates
prediction and matching into a unified bilevel optimization frame-
work, providing a comprehensive formulation for this problem.

e We propose an end-to-end training framework, namely MFCP.
We relax the original matching problem to ensure it obtains contin-
uous and meaningful gradients, and uses perturbation to estimate
gradients to address the complex non-convex optimization prob-
lems in practical scenarios.

e We simulate and evaluate our algorithm and baselines on real-
world datasets from different metrics. Experiments demonstrate
MFCP achieves lower matching regret and higher resource utiliza-
tion across different cluster environments and scales than baselines.

2 Problem Formulation

Computing resource exchange platforms acquire and manage mul-
tiple heterogeneous computing clusters, and matches users’ deep
learning task requests with suitable clusters, as shown in Fig. 1. A
computing resource exchange platform faces two key issues: perfor-
mance prediction for newly acquired clusters and the matching of
deep learning tasks and clusters. In practice, prediction and match-
ing are often implemented as isolated problems within a two-stage
optimization framework.

2.1 Predict-then-Matching Framework

The predict-then-matching framework independently optimizes
the Cluster Performance Prediction and Cluster-Task Matching
problems in sequence.

Cluster Performance Prediction: The performance of a cluster
is usually measured by the execution time ¢ of a task. As shown
in Fig. 1, this is primarily determined by the cluster’s hardware
resources and system architecture. However, the cluster managed
by the computing resource exchange platform are often distributed
across different institutions and physical locations, and the platform
does not handle hardware maintenance or guarantee hardware

Joint Prediction and Matching for Computing Resource Exchange Platforms

Computing Resource Exchange Platform

= Task A
_
io]

~ Time: 400
S~ Reliability: 90%

Time: 200
_ _Reliability: 80%

I' Time: 100
! Reliability: 70%

Figure 1: Illustration of the computing resource exchange
platform. Dashed lines represent performance, while the
solid arrow represents matching.

availability. This distributed nature increases the probability of
connection interruptions or hardware failures [16, 23], which can
result in the interrupt of the task execution. Therefore, beyond
execution time, we must also consider the stability of the task
execution process. To quantify this, we introduce a reliability metric
a, which represents the probability of a task being successfully
completed when assigned to a given cluster!.

The platform builds neural network-based predictors to estimate
two performance metrics. To enable performance prediction, first it
is essential to map potential deep learning tasks to a feature space
Z. As task-to-feature embedding is well-studied in the literature,
such as layer-based approaches [40], graph-based approaches [24,
39], and operator-based approaches [13, 43] , we focus on training
predictors that map features to the performance predictions and
omit the distinction between tasks and features. For any task z €
Z, the execution time ¢ and the reliability a on a specific cluster
are predicted using two cluster-specific predictors: { = mg,(z)
and @ = mg(z). These predictors are typically implemented using
neural networks, where w and ¢ denote the model parameters. The
predictors are trained on a dataset D = {z,t,a}, where vectors z,
t and a represent all task samples, their corresponding execution
times and reliability metrics, respectively. For predictor training,
the Mean Squared Error (MSE) loss is commonly used, and the loss
function is as follows:

Lowse = ylie=il3 Lowse= plla-all @)

Cluster-Task Matching: Assume that there are M clusters
available over a period of time for N deep learning tasks z =
{z1,2z2,- -+ ,zN} from users to allocate. For notational simplicity,
we define M = {1,2,--- ,M} and N = {1,2,---,N}. The exe-
cution time for a task z; € z on cluster i € M is predicted as
fij = me,(zj), and the reliability is predicted as d;; = oy (zj).
For all tasks assigned to cluster i, the predicted time and relia-
bility vectors are expressed as t; and 4;, respectively. In the task-
cluster matching, each task is assigned to one cluster, and clusters
may execute multiple tasks. To represent this matching, we in-
troduce a binary decision variable x;; € {0,1}, where x;; = 1

!Reliability is also task-dependent, as the varying computational resource requirements
of different tasks may affect their successful execution.

ICPP °25, September 08-11, 2025, San Diego, CA, USA

indicates that task z; is assigned to cluster i. The decision variables
for all clusters are organized into a matrix X = [x1,x2,- -+ ,Xpm],
where the vector x; = [xj1, Xi2, - - - , X;N |. The execution time matrix
T = [t1, tg, - - - , tpr] and the reliability matrix A = [aj, a2, -+ ,ap]
have the similar structure. Our optimization objective is to min-
imize the execution time of all clusters while ensuring that the
reliability constraint is satisfied. We formulate the optimization
problem in the following general form:

m)}nf(X, T), (22)
st.g(X,A) >0, (2b)
Zzl xi— 1y =0, (2¢)
xij €{0,1}, Vie M,VjeN, (2d)

where 1, is an N-dimensional vector of ones. f(X, T) is the time
cost function with respect to the execution time, and g(X, A) rep-
resents the reliability constraint. We will clearly define these two
functions next. The constraint (2c) ensures that each task is as-
signed to exactly one cluster, while the constraints (2d) enforce
binary decision variables.

The time cost function is defined as the execution time of the
slowest computing cluster. This design helps to improve clusters
utilization and prevent the potential imbalance caused by a linear
cost function, where a large number of tasks may accumulate on
a few high-performance clusters, leaving other clusters idle for
extended periods. We consider the setting where tasks are exe-
cuted sequentially on each cluster, with exclusive access to all its
resources [17, 21, 33]. In this case, the total execution time of a
cluster is computed as the sum of the predicted execution times of
all its assigned tasks, while the overall makespan is determined by
the maximum execution time across all clusters.

f(XT) = e maXM X;rti. 3)

For the reliability constraint, we require that the overall task
success rate of the platform exceeds a specified threshold y. To
formalize this, we define the reliability constraint based on the
average reliability across all clusters as:

1 M
gX,A) = YN Zi:l x;a; —y. (4)

2.2 Matching-Focused Prediction Framework

Cluster-task matching heavily depends on the accuracy of per-
formance prediction, and even small prediction errors may lead
to matching errors. When the predictor is capable of accurately
forecasting the performance of clusters, we can effectively deter-
mine the optimal matching solution. However, the relation between
cluster performance across tasks and the task features z is highly
complex, making it difficult for a predictor to model accurately.
Additionally, acquiring training samples from physical machines
is often expensive, making it challenging to gather a large num-
ber of training samples, which further increases the discrepancy
between the predicted values and the actual values of the cluster
performance. Furthermore, minimizing the Mean Squared Error
(MSE) loss for the prediction task does not guarantee the optimal
decisions in the task-cluster matching. It focuses on minimizing
the prediction error independently for each cluster, ignoring the

ICPP °25, September 08-11, 2025, San Diego, CA, USA

Prediction
Independently trained with MSE loss

1)l v=9% w1 =L ~
y=2x I I A

1

= oA Y i

I

Matching

Cluster A 'Iasl‘l Task2 Task3 ! ;Z. m:

e e e e e e e —— - 1

=3 yE4x-366 7 : Taskl ! Task2 | Task3

= /ﬁ ! Predictor: Task 2 to Cluster A
I

! = !

Task 1 Truth: Task 2 to Cluster B

Task 2

= ! e 1
C(:Iu_ste;A 'Task 1 Task 2 :: Task 31 y=2x : T%H
1 1 2 :
=29 ! 1 M %ﬁ/:%m:
:: : [P]I : Task 1 :_;l'zisli2_: Task 3
I 2
Cluster B :_I:hl(l _Task 2 '_lfsl(g ! Predictor: Task 2 to Cluster B

High weight Low weight Truth: Task 2 to Cluster B

Figure 2: The comparison between the predict-then-matching
framework and the matching-focused prediction method.
The heights of the bars represent the true values while the
dashed lines represent the predicted values.

downstream matching objective. This may lead to significant mis-
matches between the tasks and the clusters. As illustrated in the
upper part of Fig. 2, we consider an example to build an execution
time predictor for three tasks using linear regression. The actual
execution times are represented by the height of the bars, and the
dashed lines denote the predictor’s estimation. For Cluster A, task
execution time increases linearly with z, while for Cluster B, it fol-
lows a more complex exponential trend. Due to independent MSE
minimization, the predictor incorrectly estimates that Cluster B
performs worse than Cluster A for Task 2. This results in incorrect
task allocation for task 2 using this independent predictor.

To address this issue, we propose incorporating cluster-specific
task preferences into the predictor training process. These task
preferences arise from hardware heterogeneity, such as specific
optimizations for convolutional or transformer architectures. By
assigning higher learning weights to the tasks preferred by a cluster,
the predictor can better align its predictions with downstream
matching objectives. As shown in the lower part of Fig 2, compared
to Cluster A, Cluster B is more efficient at executing Task 1 and Task
2 but less efficient at executing Task 3. Tasks preferred by Cluster
B are more likely to be assigned to Cluster B. Therefore, we assign
higher learning weights to such tasks in the predictor, while the
tasks with less preferences are given smaller weights. Leveraging
the cluster-specific task preferences, the predictor’s outputs can
still yield correct assignments, even if there remains a discrepancy
between the predicted and true values.

To implement this idea, we consider downstream cluster-task
matching process during the predictor training. This allows the
predictor to make trade-offs according to the corresponding cluster-
specific task preferences, optimizing the final matching accuracy
rather than minimizing the MSE loss. This approach integrates clus-
ter performance prediction and cluster-task matching into a unified
framework, which we call matching-focused cluster performance

Da Huo, Zhenzhe Zheng, Xiaoyao Huang, Hao Chen, Jianfeng Hu, Zhiyong Yan, Fan Wu, and Jie Wu

@ Cluster-Task .
Ground /—=—==1) ti & Matching —5 o s\
Truth =2 — = A== T \./’—> M;tchlr;g
S (= x*(T,A) egre
— o, ==
QPredlctlon £, al A = . LG x*)
g //’/\: — | — {’\ .\—>
S W e
Predlctor aan o |- S| oxT Xt L.a JL Gradient
- —— X"(T,A
TaSkSZ 0w ___ ta; =57 aa, ()Bx Descent

Figure 3: The training process of the MFCP method.

prediction. We formalize this framework as a bilevel problem:

s e i) v ann)
s.t. X* (T, A) = argminf (X, T).
XeFa

The upper-level optimization objective is to select the optimal pa-
rameters w, ¢ to minimize the distance between the matching solu-
tion based on predicted values T A and the matching solution based
on true values T, A, which we refer to as regret. The lower-level
optimization objective is to select the optimal matching decision X*
that minimizes the cost function f(X, T) within ¥, which repre-
sents the feasible domain under the reliability constraint in Equ. (4).

3 The Design of MFCP
3.1 The Whole Pipeline

In this section, we present MFCP, a system that integrates cluster
performance predictor training with cluster-task matching. MFCP
comprises three components: the predictor, the matching algorithm,
and the gradient calculation module, as illustrated in Fig. 3. The
forward propagation consists of prediction and matching: (1) ob-
taining actual and predicted performance metrics by executing
tasks z on the cluster and using a predictor, respectively, and (2)
employing these metrics as matching weights to compute optimal
matching results via the matching algorithm. MFCP then formu-
lates the matching regret between the two optimal matchings as
the loss function. During backpropagation (3), the gradients are
decomposed and computed in a right-to-left manner, corresponding
to the contributions from regret, matching, and prediction.

We consider the scenario where the computing resource ex-
change platform builds cluster-specific predictors m, and mgy,
for a cluster i € M. The pipeline first samples N deep learning
tasks z from the task pool Z to simulate the workload the platform
must allocate within a given time period. To evaluate all clusters’
performance on the sampled task vector z, we run the tasks directly
on each cluster i € M, to obtain their actual execution times t; and
reliability metrics a;. These actual measurements serve as ground
truth data for all clusters. We also use predictors my,, and mg, to
estimate the predicted execution time ; and predicted reliability 4;
for cluster i with respect to tasks z.

Then, using the predicted values T and A, the matching algo-
rithm generates an optimal task matching decision X* (T,A) of the
optimization problem (2). We also compute X* (T, A), the optimal
decision based on ground truth values. The system evaluates the

Joint Prediction and Matching for Computing Resource Exchange Platforms

regret caused by prediction errors using the following loss func-
tion, which is derived from the upper-level optimization objective
defined in (5):

L:%(f(x* (T,A),T)—f(x* (T,A),T)),)

where f(-) represents the optimization objective in (2). The exact
form depends on the modeling of the cluster scheduler.

Finally, during backpropagation to optimize the predictor param-
eters, we can express the gradient of the regret loss function based
on the chain rule of differentiation with respect to the predictor
parameters as

dL = dL dX*(TA) di;

do; dx=(T,A) di; do;’
Here we take the gradients of w; as an example, and the same
applies to ¢;. Treating the optimal matching X* (T,A) as a function
of the predicted variable i;, the first term on the right-hand side
of the equation is the gradients of the regret loss £ with respect
to the matching decision X*, the second term is the gradients of
the matching decision X* with respect to the predictor variable {;,
and the third term is the gradients of the predictor variable {; with
respect to the predictor parameters w;. The first and third terms
can be obtained directly from the gradient computations stored
during the neural network’s training process (i.e., the gradient
cache). However, the second term involves solving the optimization
problem (2) for which no closed-form solution exists, making it
challenging to explicitly compute the gradient.

™

3.2 Relaxing Optimization Problem

To compute the gradient, we must first ensure that X* (T A) is
a continuously differentiable function with respect to T and A.
However, X* is not always differentiable or its derivatives may not
always be meaningful (non-zero), primarily due to three factors:
the discrete decision space of X*, the piecewise linear nature of
the optimization objective (3) involving max operation, and the
inclusion of predictor variables A in constraints. In this subsection,
we address and resolve each of these factors in turn.

The first factor is that the optimization problem (2) is an integer
optimization problem. This directly results in the optimal matching
decision X* being a step function with respect to the predicted
values T and A, leading to either non-differentiability or vanishing
gradients. To address this issue, we consider a continuous relaxation
of the original problem. Specifically, during the training process of
predictors, we relax the feasible set of the decision variable X* from
the discrete set {0, 1} to the continuous interval [0, 1], represent-
ing the convex hull of the original set. This relaxation enables the
matching optimization algorithm to be treated as a continuous func-
tion of the predicted values Tand A, allowing meaningful gradients
to be computed for training. In contrast, during testing or system
deployment, the matching X* is obtained using the continuous
version of the matching optimization algorithm and subsequently
rounded to produce discrete solutions.

The second factor affecting differentiability arises from the na-
ture of the max operation in the objective function f(X, T), which
is not differentiable everywhere. As a piecewise linear function,
f(X,T) exhibits unequal left and right derivatives at certain points

ICPP °25, September 08-11, 2025, San Diego, CA, USA

due to the max operation. To address this, we introduce a smooth
approximation f(X, T), which is continuously differentiable. Specif-
ically, we define the smoothed objective function as follows.

FXT) = %log (D27 erin). ®)

THEOREM 1 (SMOOTH APPROXIMATION OF THE max OPERATION).

The function f(X, T) is a smooth approximation of f (X, T). As f —
oo, the smoothed function f(X, T) converges to function f(X,T).

The proofs of this theorem and subsequent theorems are pro-
vided in our technical report [1].

The last factor affecting the differentiability of optimization prob-
lem (2) arises from the inclusion of the predicted values A in the
constraints. Specifically, when A lies in the interior of the feasi-
ble set, the decision variable X satisfies the inequality constraints
g(X,A) > y and the gradient of X* with respect to A is zero, provid-
ing no useful information for gradient descent. Conversely, when
A lies on the boundary of the feasible set, it results in an infinite
gradient (considering constraint violations as incurring infinite
cost). This creates challenges in effectively training the predictor
¢ through the gradient of X* with respect to A. To resolve this
issue, we employ the interior-point method by incorporating the
inequality constraints involving A into the optimization objective.
Specifically, we use a logarithmic barrier function [8] to enforce
the constraints indirectly. The modified optimization objective is
defined as follows:

F(X,TA) = f(X,T) - Alog(g(X, A)),)

where A > 0 is a parameter that adjusts the weight of the con-
straints during the optimization process. And we can approximate
the optimization problem (2) as the following optimization problem:

minF (X, T,A),
X

M (10)
st. Zm xi—1ny =0, x;€][0,1].

Intuitively, given initialized X satisfying g(X, A) > y, an exponen-
tial rate of cost increase will occur when g(X, A) decreases towards
y during the optimization process. This mechanism acts as a barrier
to prevent g(X, A) — y from becoming negative. A smaller value of
A results in the logarithmic barrier term —Alog(g(X, A) —y) closely
approximating an ideal inequality constraint function, where the
cost is zero when the constraint is satisfied and approaches infinity
when it is violated. The interior-point method provides probabilistic
feasibility guarantees:

THEOREM 2 (e-FEASIBILITY). After k iterations with barrier pa-
rameter), the solution XK) satisfies:

P(g(X(k),A) > y—e) >1-6, (11)

_ _c_ _ 92792
where € = A and 6 = exp(—A /20'g) for constants c, a.

By addressing the three challenges of differentiability, we present
the final form of our bi-level optimization problem:

121;3% (F(x*(T.A).T.A) - F(x" (T,4).T.4)),
s.t., X* (T, A) = argminF (X, T, A) 2
XeF

ICPP °25, September 08-11, 2025, San Diego, CA, USA

where the upper level objective function represents the regret loss
function for training the predictors, while the lower level optmiza-
tion problem is (10). Importantly, the feasible domain ¥ for X no
longer includes the predicted variable A. Under this formulation,
the optimal matching X* exhibits continuous and meaningful gra-
dients with respect to the predicted variables T and A. Next, we
introduce efficient algorithms for computing these gradients.

3.3 End-to-end Training

We can obtain the gradient of the optimal matching with respect
to the predicted values from the analytical differentiation of the
optimal mapping. The time cost function (3) is a convex function,
and thus the objective function F (X, T, A) in the lower level opti-
mization problem (10) is convex with respect to both T and A,

1 M ot M xTa; -y
I pxiti) _ Zi=17i 7 7
F(X,T,A) = 5 log (Zi:l e) Alog (N .

In convex optimization problems, the mapping from parameters
to optimal solutions is implicit and lacks a closed-form expression,
making direct differentiation infeasible. However, we can leverage
the Lagrange multiplier method to express this implicit relationship
and thereby obtain the gradient relationship between the optimal
decision variables X* and the predictive variables T, A, which is
proposed by Donti et al. [9]. The Lagrangian is

L(X, v,pl,pz) =F(XTA)+v" (ZZI Xj — IN) +

M N MOSN
Zi:l Zj:l HijXij + Zi:l Zj:l wig (1= xij),

where v € RN denotes the Lagrange multiplier vector for equality
constraints, and ', p? € RMXN represent the Lagrange multiplier
matrices associated with the inequality constraints’ upper and lower
bounds, respectively. Since we only interested in the gradients of the
decision variables with respect to T and A rather than solving for
the decision variables themselves, we disregard the constraints on
the range of X. The original optimization problem (10) can thus be
reformulated as the unconstrained minimization of the Lagrangian
function L(X, v). The optimal matching X* satisfies
VxL
Z?gl x; — 1IN
ploXx

p*o(1-X)

(13)

O(X, T, A, v,yl,pz) = =0. (14)

By taking the total differential of the condition (14), we can obtain
the differential relationship between the predictor variables T, A
and the decision variables x;.

2 T 2 2
VZF DL 1 -I[dX V2, FdT + V%, FdA

D, 0 0 ofdv|_ 0
U, 0 Xy 0|lapt|T" 0 > (19
-U, 0 0 Xy4|ldp? 0

where D, € RN*MN s the equality constraint gradient ma-
trix (horizontal concatenation of M identity matrices Iy), U =
diag(p') and U, = diag(p?) are diagonal matrices from com-
plementary slackness conditions, while X; = diag(vec(X)) and
X, = diag(vec(1 — X)) represent diagonalized matching variables.
We can obtain the required gradient by solving this system of linear
equation (15). Notably, we have two sets of predictor variables T

Da Huo, Zhenzhe Zheng, Xiaoyao Huang, Hao Chen, Jianfeng Hu, Zhiyong Yan, Fan Wu, and Jie Wu

Algorithm 1: Optimal Matching by Gradient Descent

Input: Objective function F(X, T, A), execution time martix
T and reliablity martix A.
Output: The optimal matching X*.
1 Initialize X;
2 while Iter < Epochs do
5 | X e X—pVeF(X T, A);
L X(:, j) < softmax (X(;, j)) for1 < j < N;

5 return X* «— X,

4

and A, which jointly influence the final matching x;. Therefore, we
fix @ when optimizing ¢, and fix ¢ when optimizing w, ensuring
stability during optimization using partial derivatives.

3.4 Extension to Parallel Task Execution

We further consider a more complex but realistic scenario where
multiple deep learning tasks running on a cluster can share re-
sources and execute in parallel [20, 26]. Deep learning clusters
typically employ scheduling algorithms to select tasks for parallel
execution, aiming to minimize the total execution time. We define
a speedup ratio { as the ratio of the actual total execution time to
the sum of the execution times of all tasks. The speedup ratio { is
influenced by various factors, such as the locality of task deploy-
ment [22] and resource competition among tasks [27]. In this work,
we focus on a quantifiable factor: the number of deep learning
tasks assigned to a cluster?. To account for this, we introduce time
adjustment functions {; (xlTl N) to capture the impact of parallel
execution on computation time. We revise the time cost function
in Equ. (3) as follows:

f(XT) = ie{l{rzl,é-i-)-(,M} ({i(x;rlN) -x;rti) . (16)

And for the time cost function under the resource-sharing sce-
nario, the smoothed objective function is revised as

fX,T) = % log (ZZI eﬁgi(X;rlN)X?ti) , (17)
and F (X, T, A) is still defined as Equ. (9).

However, in this case, f(X, T) with respect to the decision vari-
able X is no longer a convex function. Consequently, the overall
continuous optimization objective F(X, T, A) also loses its convex-
ity. This renders the previously method for convex optimization
inapplicable and even makes solving for the optimal decision vari-
able X challenging. To address this complex and practical issue, we
intuitively employ a gradient descent algorithm to solve the match-
ing optimization problem (10) and then use the forward gradient
method to compute the gradient of the optimal matching X* with
respect to the prediction variables T and A.

Specifically, we first approximate the optimal decision variable
X* under the non-convex scenario using gradient descent, as shown
in Algorithm 1. After each gradient update of X based on the ob-
jective function F(X, T, A), we project X onto the feasible domain

This factor is statistically significant because a small number of tasks may lead to
underutilization of the cluster’s resources, resulting in a low speedup ratio. Conversely,
when a large number of tasks are assigned, they are typically scheduled in parallel
batches by the scheduling algorithm, leading to a relatively stable high speedup ratio.

Joint Prediction and Matching for Computing Resource Exchange Platforms

Algorithm 2: MFCP with Forward Gradient Method
Input: DL Tasks z, true execution time T, true reliability A,
perturbation size A and sampling count S.
Output: The optimal predictors w; and ¢; for cluster i € M.

1 Initialize w;, ¢;;

2 while Iter < Epochs do

5|t me,(2), 4« mg (2), T« [T[1: M =111,
A [A[1:M=-1],4];

4 Calculate X* (T A) by Algorithm 1;

5 while s < S do
6 Sample 0§ € N(0,1) and v, € N(0,1);
7 i:ls.(—fi+A~U‘;,ﬁ?(—ﬁi+A~vz,

T [Tl M-1] 8] A° « [A[1: M- 1].43);
8 Calculate X*(T%, A) and X* (T, A%) by Algorithm 1

respectively;
0 VE_X*(T, A) - X*(Ts’A)A—x*(T,A) -vf;

s 4 X* (LAY -x* (1A
o || XA« XEA)XTA) s
11 Aggregate all Vg_x* (T, A) to obtain w all
VS X*(T,A) to obtain w;
a; a;

dr dx(TA) di; .
ax(fA) d; dwi’
B dr dX*(TA) da; .
S R i e VR TR

12 W — w;—1

14 return w; and ¢;.

defined by the constraints using the softmax function. We then per-
form the gradient computation for the matching process and update
the parameters of predictors using Algorithm 1. Once the optimal
matching decision X* under the predicted variables is obtained
(line 4), we apply a small perturbation to the predicted variables T
and A, with the perturbation direction determined by a unit vector
v sampled from a normal distribution (lines 6-7). We then apply the
same gradient descent method to find its optimal matching decision
X* under the perturbed decision variables (line 8). Then we can
obtain the directional derivative of X* with respect to the decision
variables T or A along the direction v (line 9, 10). By aggregating all
the directional derivatives obtained from the samples, we finally es-
dX*(T,A)
dA

timate the gradient and update the predictor’s parameters

(lines 11-13). The zeroth-order gradient estimation introduces the
following bounded errors, which suggests an optimal perturbation

202

1/4
size A* = (ﬁz—g) balancing bias and variance:
THEOREM 3 (GRADIENT APPROXIMATION ERROR). Let V be the
estimated gradient via Algorithm 2. For f-smooth F(X):
272 2
~ A o
B[IV-vI?| < FA G Ty (18)
4 SA?
where d is the parameter dimension, A the perturbation size, and cr%
bounds the function variance.

ICPP °25, September 08-11, 2025, San Diego, CA, USA

3.5 Algorithm Analysis

Considering the impact of integrating the matching algorithm into
the predictive model training, we analyze the convergence guar-
antees and computational complexity of the algorithm. We first
examine the convergence properties of the MFCP approach under
both convex and non-convex settings.

THEOREM 4 (CONVEX CASE CONVERGENCE). When F(X) is k-
strongly convex and I-smooth, Algorithm 1 with learning raten < 1/1
achieves linear convergence:

k
IX® - X7 < (1= 7) IX© - x| (19)

where XK) denotes the k-th iteration and X* is the optimal solution.

For the non-convex case, we employ zeroth-order gradient esti-
mation to obtain gradients for backpropagation. The convergence
analysis yields the following results:

THEOREM 5 (NON-CONVEX CASE CONVERGENCE). Assume the
smoothed objective function F(X) has I-Lipschitz continuous gra-
dients, and the gradient estimation ﬁF(X) satisfies E[ﬁF(X)] =
VF(X) with bounded variance E[||§F(X) - VF(X)||?] < &2. For
Algorithm 1 using step sizep < %, we have:

1 k-1 2(F(X) = Finp)
- (t)y)2 Ve 7 Twy
= D BIVFXO) 2] < i +1

where Fynp = infx F(X) is the lower bound of the objective function.

na®, (20)

Finally, we conduct a computational complexity analysis of the
MFCP algorithm. The computational complexity has three com-
ponents: (1) Prediction Phase: For M clusters with feature dimen-
sion d, each predictor requires O(d?) operations per task, totaling
O(MNd?). (2) Matching Optimization: Each gradient descent itera-
tion in Algorithm 1 costs O(MN) operations. Let K be the number
of iterations, total cost is O(K;MN). (3) Gradient Estimation: For
S perturbations and Kj iterations per perturbation, the forward
gradient in Algorithm 2 requires O(SK2 MN) operations. Thus the
overall complexity per training epoch is:

Ciotal = O(MNd? + KyMN + SK2MN). (21)

4 Evaluation Results

We conduct extensive simulations to demonstrate the effectiveness
of the MFCP method in computing resource exchange platforms.

4.1 Experimental Setup

4.1.1 Dataset. The data utilized in our study was collected from
the computing platform managed by the Xirang. On the clusters of
the platform, we conducted experiments on various CV and NLP
models, and explored different model hyperparameter settings. For
the CV tasks, we used the CIFAR-10 and ImageNet datasets, while
for the NLP tasks, we utilized the Europarl dataset. Specifically,
we monitored and recorded the runtimes of each epoch during
actual execution, as well as the success probability of task com-
pletion. These measurements provide valuable insights into the
performance and reliability of the tested models under practical
conditions. We used a Graph Neural Network (GNN) to transform
these deep learning tasks into features. In the subsequent predictor
training, we only utilized fully connected layers for training.

ICPP °25, September 08-11, 2025, San Diego, CA, USA

Table 1: The Ablation study of MFCP.

Metric Regret Reliability Utilization
(1) 1.555£0.030 0.878 £0.005 0.387 = 0.002
(2) 1.274 £ 0.035 0.681 +£0.015 0.430 + 0.008
(3) 0.937 £0.062 0.890 £ 0.0011 0.487 = 0.007

MFCP 0.894 +0.035 0.886 +0.006 0.488 + 0.003

4.1.2 Baselines. We compare the following five methods:

e Task-Agnostic Matching (TAM): This naive method ignores
task variations in execution time and reliability, using average
cluster performance across tasks to solve problem (2).

e Two Stage Method (TSM) [39]: This method independently
trains cluster performance predictors by minimizing MSE loss, then
solves problem (2) using predicted values.

e Upper Confidence Bound-based Method (UCB) [44]: As
another commonly used and competitive approach, we employ a
robust method against prediction errors. In the matching algorithm,
we select the solution with the highest upper confidence bound
rather than the best-performing matching scheme to mitigate the
impact of stochastic environments on matching regret.

e MFCP with Analytical Differentiation (MFCP-AD): When
the cost function is convex, the KKT conditions reveal the relation-
ship between the optimal matching and the predictor variables. We
can directly derive the gradients of the optimal matching leveraging
the analytical differentiation of optimization mappings.

e MFCP with Forward Gradient (MFCP-FG): Another imple-
mentation of MFCP. When the cost function is not convex, we use
a forward gradient propagation approach to estimate the gradients.

4.1.3 Evaluation Metrics. We present the following three metrics
to comprehensively evaluate the effectiveness of the MFCP method.
o Regret: Regret measures the gap in time cost f(-) between
prediction-based matching and ground-truth-based matching. A
smaller regret indicates minimal impact of predictor errors on the
matching results. The formal definition of regret is provided in (6)
and is computed on the test set, distinguishing it from the loss.

o Reliability: Reliability reflects the average success probability
of task execution. Since the MFCP method relaxes the reliability
constraint g(-) into a logarithmic cost, it is necessary to evaluate
the reliability metric alongside the regret.

o Cluster Utilization: Cluster utilization is the total working
time of all clusters divided by their maximum possible working
time. It measures how evenly tasks are distributed across clusters.
Low utilization means some clusters stay idle for long periods while
others finish their tasks.

4.2 Ablation Study

We first demonstrate the effectiveness of the relaxation method
for gradient computation in MFCP through ablation experiments,
specifically including the following three metrics:

(1) Maximum Loss: We simplify the time loss function f(-)
used for matching to a linear function. Specifically, f(-) is
defined as the sum of execution times across all clusters
rather than the maximum execution time.

Da Huo, Zhenzhe Zheng, Xiaoyao Huang, Hao Chen, Jianfeng Hu, Zhiyong Yan, Fan Wu, and Jie Wu

(2) Interior-Point Method: We replace the logarithmic penalty
term for constraint violations with a hard penalty term, i.e.,
F(X,T,A) = f(X,T) + A - max(0,y — g(X, A)).

(3) Zero-Order Gradient Estimation: In the exclusive case, we
evaluate the performance degradation caused by zero-order
gradient estimation compared to gradient computation.

The experimental results are shown in Table 1. Experiment (1)
demonstrates that using a linear time loss function leads to inac-
curate matching results, which significantly impacts both match-
ing regret and cluster resource utilization. Experiment (2) reveals
that employing hard penalty term reduces training efficiency and
decreases the proportion of samples that ultimately satisfy the re-
liability constraints. Experiment (3) proves that the zeroth-order
gradient estimation method achieves competitive performance com-
pared to gradient computation, enabling the extension of the MFCP
approach to non-convex scenarios. These findings systematically
validate the rationality and effectiveness of the gradient computa-
tion design in MFCP.

4.3 Overall Performance

We first conduct experiments with five deep learning tasks matched
to three heterogeneous clusters. To ensure generalizability, we
perform three experiment sets, each randomly selecting clusters
(settings A, B, C). Results are evaluated using Regret, Reliability,
and Cluster Utilization, as illustrated in Fig. 4.

Among the five methods, MFCP-AD and MFCP-FG consistently
perform best, achieving the lowest regret, indicating more accurate
matching decisions. This also shows that in convex optimization
scenarios, MFCP with forward gradient can achieve performance
comparable to analytical differentiation. TSM has slightly higher
regret, revealing the gap between optimizing MSE loss and direct
regret optimization. UCB’s regret falls between TSM and MFCP, as
it is more robust to prediction errors than TSM but lacks explicit
task modeling. TAM’s performance depends on cluster environ-
ment: it works well when task performance differences are small
but fails reliability constraints under heterogeneity. Owing to the
influence of the interior-point method, the MFCP methods achieve
slightly higher reliability than other algorithms. In terms of cluster
utilization, the MFCP methods attain higher utilization by more
accurately modeling the performance relationships among clusters
during the matching process, thereby also reducing the overall
execution time required for all clusters to complete the tasks.

4.4 Performance under Different Scale Settings

We next evaluate the scalability of cluster-task matching by varying
the number of tasks in a single round. We measure the methods’ per-
formance in terms of Regret and Cluster Utilization under Setting
A, with the results presented in Fig. 5.

As the number of tasks increases, all methods show generally
linear regret growth. Both MFCP-AD and MFCP-FG maintain lower
regret than baselines, demonstrating robust matching decisions
across scales. This confirms the forward-gradient MFCP approach
achieves comparable results to analytical differentiation at varying
scales. For cluster utilization, all methods show increasing trends
with more tasks. TAM, which ignores task heterogeneity by using
training set averages, achieves lower utilization than TSM due to

Joint Prediction and Matching for Computing Resource Exchange Platforms

Regret

Reliability

ICPP °25, September 08-11, 2025, San Diego, CA, USA

Cluster Utilization

Reliability (%)

7

Setting

[1™ 777 tsm

Utilization (%)

Figure 4: Overall experiment results. The figure illustrates the performance of the three metrics for the five methods under
three cluster combination settings. Error bars represent 10x the actual standard deviation for visibility.

Regret Cluster Utilization

Utilization (%)

Number of Tasks Number of Tasks

—¥= TAM ={- TSM —@— UCB = MFCP-AD --A:- MFCP-FG

Figure 5: Experiment results with different number of tasks.
MEFCP-AD and MFCP-FG exhibit similar performance.

Table 2: Performance on parallel task execution settings

Method Regret Reliability ~ Utilization
TAM 3.032 +£0.000 0.759 +0.000 0.485 % 0.000
TSM 2.014 £ 0.035 0.832+0.003 0.547 = 0.001
UCB 1.835+0.064 0.847 =0.003 0.553 £ 0.002

MFCP-FG 1.496 +0.081 0.851 +£0.005 0.560 + 0.003

poorer task balancing. UCB outperforms TSM through more ac-
curate predictions in stochastic environments. By modeling the
downstream matching algorithm, the MFCP methods consistently
achieve the highest utilization, showing superior workload distri-
bution across clusters.

4.5 Performance on Parallel Task Execution
Settings

We further evaluated the performance of different methods in a
parallel execution setting, where tasks are executed concurrently on
clusters. Compared to the assumption that the total execution time
of tasks is additive when multiple tasks run on a cluster, considering
the acceleration effects introduced by parallel execution in cluster
schedulers is more realistic and important. To model this scenario,
we defined the function { as an exponential decay curve from 1 to
0.6, reflecting the diminishing marginal effect typically observed
when clusters handle multiple tasks in parallel. We assume all
clusters share the same scheduling algorithm in this evaluation.
Given that the MFCP-AD method is unsuitable for non-convex
scenarios, we focused on the remaining four methods, with their
results summarized in Table 2.

The experimental results demonstrate that MFCP-FG consis-
tently outperforms baselines in matching regret and cluster uti-
lization, adapting well to parallel task complexities. Specifically,
compared to TSM and UCB, MFCP-FG reduced regret by 25.7% and
18.5%, confirming its superior matching accuracy in real-world par-
allel execution. This improvement highlights MFCP-FG’s practical
applicability in managing resources under challenging conditions,
validating its robustness in diverse cluster environments.

5 Related Works

Predicting the performance of deep learning tasks on hardware
devices primarily revolves around three methodological paradigms.
Configuration-based approaches analyze performance variations of
recurrent computational tasks under different configurations [18,
19, 37], but their neglect of internal model structures limits cross-
task generalization. Another approach decomposes models into
independent operators and estimates total runtime by accumulating
predicted execution times of individual components. This includes
physical modeling based on GPU computational capabilities and
operator workloads [35, 42], as well as data-driven predictions using
convolutional neural networks [25, 36]. However, these methods fail
to effectively capture topological dependencies between operators.
Recent advances employ graph neural networks (GNNs) for end-to-
end prediction by directly processing computational graphs [10, 14].
To accelerate training, feature compression techniques have been
proposed, such as Horus that vectorizes computational graphs [41]
and DNNAbacus utilizing network structural matrices [5].
Decision-Focused Learning (DFL) minimizes task regret through
joint optimization of prediction and decision processes. For differ-
entiable strictly convex optimization problems, gradients can be
computed via total differentiation of first-order optimality condi-
tions or KKT conditions [3, 9, 15]. Addressing non-differentiable
combinatorial optimization, research progresses along three main
directions: 1) Introducing smooth analytical terms like regulariza-
tion [38], logarithmic components [29], or entropy functions [4, 7]
to ensure differentiability; 2) Treating optimization as black-box
oracles and estimating gradients through random perturbations, as
exemplified by DBB [34], DPO [6], and I-MLE [32]; 3) Construct-
ing surrogate loss functions to provide meaningful subgradients,
including SPO [11], NCE [31], and LTR [28]. Our work specifically
investigates the scenario of prediction and matching in computing
resource exchange platforms, addressing unexplored challenges

ICPP °25, September 08-11, 2025, San Diego, CA, USA

in DFL theory regarding multiple optimization variables and pre-
dictive variables within constraints, while proposing an efficient
predictor training framework tailored to practical applications.

6 Conclusion

In this work, We tackled the challenge of using idle computing
resources in deep learning clusters by combining performance pre-
diction and task matching into a single optimization framework.
MEFCP solves issues like non-differentiability and gradient compu-
tation in complex scenarios, leading to better resource allocation.
Experiments show that MFCP improves decision accuracy, offering
an effective solution for growing Al computational needs.

Acknowledgments

This work was supported in part by National Key R&D Program of
China (No. 2023YFB4502400), in part by the Fundamental Research
Funds for the Central Universities (project numberYG2022QN039),
in part by China NSF grant No. 62322206, 62132018, 62025204,
62272307, 62372296, U2268204. The opinions, findings, conclusions,
and recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the funding
agencies or the government.

References

[1] 2025. Supplementary Material. https://drive.google.com/drive/folders/
1bionk2aooM4q1bHjx9Npqq9AnOBkVI7E?usp=sharing.

[2] Amazon Web Services. 2024. Amazon Web Services (AWS). https://aws.amazon.
com Accessed: 2024-12-06.

[3] Brandon Amos and J. Zico Kolter. 2017. OptNet: Differentiable Optimization as a
Layer in Neural Networks. In ICML. 136-145.

[4] Brandon Amos, Vladlen Koltun, and J. Zico Kolter. 2019. The Limited Multi-Label
Projection Layer. CoRR abs/1906.08707 (2019).

[5] LuBai, Weixing Ji, Qinyuan Li, Xilai Yao, Wei Xin, and Wanyi Zhu. 2022. DNNAba-
cus: Toward Accurate Computational Cost Prediction for Deep Neural Networks.
CoRR abs/2205.12095 (2022).

[6] Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe
Vert, and Francis R. Bach. 2020. Learning with Differentiable Pertubed Optimizers.
In NeurIPS. 9508-9519.

[7] Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. 2020. Fast
Differentiable Sorting and Ranking. In ICML. 950-959.

[8] Stephen Boyd and Lieven Vandenberghe. 2004. Convex optimization. Cambridge
university press.

[9] Priya L. Donti, J. Zico Kolter, and Brandon Amos. 2017. Task-based End-to-end

Model Learning in Stochastic Optimization. In NIPS. 5484-5494.

Lukasz Dudziak, Thomas Chau, Mohamed S. Abdelfattah, Royson Lee, Hyeji Kim,

and Nicholas D. Lane. 2020. BRP-NAS: Prediction-based NAS using GCNs. In

NeurIPS. 10480-10490.

Adam N. Elmachtoub and Paul Grigas. 2022. Smart "Predict, then Optimize".

Management Science 68, 1 (2022), 9-26.

Equinix, Inc. 2024. Equinix: Global Data Center Solutions and Services. Website.

https://www.equinix.com Accessed: 2024-12-06.

Chengquan Feng, Li Lyna Zhang, Yuanchi Liu, Jiahang Xu, Chengruidong Zhang,

Zhiyuan Wang, Ting Cao, Mao Yang, and Haisheng Tan. 2024. LitePred: Transfer-

able and Scalable Latency Prediction for Hardware-Aware Neural Architecture

Search. In NSDL

Yanjie Gao, Xianyu Gu, Hongyu Zhang, Haoxiang Lin, and Mao Yang. 2023.

Runtime Performance Prediction for Deep Learning Models with Graph Neural

Network. In ICSE-SEIP. 368-380.

Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa

Cruz, and Edison Guo. 2016. On Differentiating Parameterized Argmin and

Argmax Problems with Application to Bi-level Optimization. CoRR abs/1607.05447

(2016).

Albert G. Greenberg, James R. Hamilton, David A. Maltz, and Parveen Patel. 2009.

The cost of a cloud: research problems in data center networks. ACM SIGCOMM

computer communication review 39, 1 (2009), 68-73.

Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeongjae Jeon,

Junjie Qian, Honggiang Harry Liu, and Chuanxiong Guo. 2019. Tiresias: A GPU

Cluster Manager for Distributed Deep Learning. In NSDI. 485-500.

[10]

[11

[12]

[13]

[14

[15]

[16]

[17]

10

Da Huo, Zhenzhe Zheng, Xiaoyao Huang, Hao Chen, Jianfeng Hu, Zhiyong Yan, Fan Wu, and Jie Wu

[18] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej
Wasowski. 2013. Variability-aware performance prediction: A statistical learning
approach. In ASE. 301-311.

Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen, and Tianwei Zhang. 2021.
Characterization and prediction of deep learning workloads in large-scale GPU
datacenters. In SC. 104.

Qinghao Hu, Meng Zhang, Peng Sun, Yonggang Wen, and Tianwei Zhang. 2023.
Lucid: A Non-intrusive, Scalable and Interpretable Scheduler for Deep Learning
Training Jobs. In ASPLOS. 457-472.

Zhiming Hu, James Tu, and Baochun Li. 2019. Spear: Optimized Dependency-
Aware Task Scheduling with Deep Reinforcement Learning. In ICDCS. 2037-2046.
Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wen-
cong Xiao, and Fan Yang. 2019. Analysis of Large-Scale Multi-Tenant GPU
Clusters for DNN Training Workloads. In USENIX ATC. 947-960.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated
Learning: Challenges, Methods, and Future Directions. IEEE Signal Process. Mag.
37, 3 (2020), 50-60.

Chieh-Jan Mike Liang, Zilin Fang, Yuqing Xie, Fan Yang, Zhao Lucis Li, Li Lyna
Zhang, Mao Yang, and Lidong Zhou. 2023. On Modular Learning of Distributed
Systems for Predicting End-to-End Latency. In NSDI 1081-1095.

Ying-Chiao Liao, Chuan-Chi Wang, Chia-Heng Tu, Ming-Chang Kao, Wen-Yew
Liang, and Shih-Hao Hung. 2020. PerfNetRT: Platform-Aware Performance
Modeling for Optimized Deep Neural Networks. In ICS. 153-158.

Gangmuk Lim, Jeongseob Ahn, Wencong Xiao, Youngjin Kwon, and Myeongjae
Jeon. 2021. Zico: Efficient GPU Memory Sharing for Concurrent DNN Training.
In USENIX ATC. 161-175.

Yizhou Luo, Qiang Wang, Shaohuai Shi, Jiaxin Lai, Shuhan Qi, Jiajia Zhang, and
Xuan Wang. 2024. Scheduling Deep Learning Jobs in Multi-Tenant GPU Clusters
via Wise Resource Sharing. In IWQoS. 1-10.

Jayanta Mandi, Victor Bucarey, Maxime Mulamba Ke Tchomba, and Tias Guns.
2022. Decision-Focused Learning: Through the Lens of Learning to Rank. In
ICML. 14935-14947.

Jayanta Mandi and Tias Guns. 2020. Interior Point Solving for LP-based predic-
tion+optimisation. In NeurIPS.

Microsoft Azure. 2024. Microsoft Azure Cloud Services. https://azure.microsoft.
com Accessed: 2024-12-06.

Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi,
Victor Bucarey, and Tias Guns. 2021. Contrastive Losses and Solution Caching
for Predict-and-Optimize. In IJCAL 2833-2840.

Mathias Niepert, Pasquale Minervini, and Luca Franceschi. 2021. Implicit MLE:
Backpropagating Through Discrete Exponential Family Distributions. In NeurIPS.
14567-14579.

Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo. 2018.
Optimus: an efficient dynamic resource scheduler for deep learning clusters. In
EuroSys. 3:1-3:14.

Marin Vlastelica Pogancic, Anselm Paulus, Vit Musil, Georg Martius, and Michal
Rolinek. 2020. Differentiation of Blackbox Combinatorial Solvers. In ICLR.
Hang Qi, Evan Randall Sparks, and Ameet Talwalkar. 2017. Paleo: A Performance
Model for Deep Neural Networks. In ICLR.

Chuan-Chi Wang, Ying-Chiao Liao, Ming-Chang Kao, Wen-Yew Liang, and Shih-
Hao Hung. 2020. Toward Accurate Platform-Aware Performance Modeling for
Deep Neural Networks. CoRR abs/2012.00211 (2020).

Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang, Jian He,
Yong Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. MLaaS$ in the Wild: Workload
Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters. In NSDL
945-960.

Bryan Wilder, Bistra Dilkina, and Milind Tambe. 2019. Melding the Data-
Decisions Pipeline: Decision-Focused Learning for Combinatorial Optimization.
In AAAI 1658-1665.

Gyeongsik Yang, Changyong Shin, Jeunghwan Lee, Yeonho Yoo, and Chuck Yoo.
2022. Prediction of the Resource Consumption of Distributed Deep Learning
Systems. Proc. ACM Meas. Anal. Comput. Syst. 6, 2 (2022), 29:1-29:25.

Gingfung Yeung, Damian Borowiec, Adrian Friday, Richard Harper, and Peter
Garraghan. 2020. Towards GPU Utilization Prediction for Cloud Deep Learning.
In HotCloud.

Gingfung Yeung, Damian Borowiec, Renyu Yang, Adrian Friday, Richard Harper,
and Peter Garraghan. 2022. Horus: Interference-Aware and Prediction-Based
Scheduling in Deep Learning Systems. IEEE Trans. Parallel Distributed Syst. 33, 1
(2022), 88-100.

Geoffrey X. Yu, Yubo Gao, Pavel Golikov, and Gennady Pekhimenko. 2021. Habi-
tat: A Runtime-Based Computational Performance Predictor for Deep Neural
Network Training. In ATC. 503-521.

Li Lyna Zhang, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting Cao, Yuqing
Yang, and Yunxin Liu. 2021. nn-Meter: towards accurate latency prediction of
deep-learning model inference on diverse edge devices. In MobiSys. 81-93.
Dongruo Zhou, Lihong Li, and Quanquan Gu. 2020. Neural Contextual Bandits
with UCB-based Exploration. In ICML. 11492-11502.

[19

[20

[21

~
£,

[23

[24

[25]

[26

~
=

[28

[29

[30

[31

[33

[34

[35

[36

[37

[38

[39

[40

[41

=
)

[43

(44

https://drive.google.com/drive/folders/1bionk2aooM4q1bHjx9Npqq9AnOBkVI7E?usp=sharing
https://drive.google.com/drive/folders/1bionk2aooM4q1bHjx9Npqq9AnOBkVI7E?usp=sharing
https://aws.amazon.com
https://aws.amazon.com
https://www.equinix.com
https://azure.microsoft.com
https://azure.microsoft.com

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Predict-then-Matching Framework
	2.2 Matching-Focused Prediction Framework

	3 The Design of MFCP
	3.1 The Whole Pipeline
	3.2 Relaxing Optimization Problem
	3.3 End-to-end Training
	3.4 Extension to Parallel Task Execution
	3.5 Algorithm Analysis

	4 Evaluation Results
	4.1 Experimental Setup
	4.2 Ablation Study
	4.3 Overall Performance
	4.4 Performance under Different Scale Settings
	4.5 Performance on Parallel Task Execution Settings

	5 Related Works
	6 Conclusion
	Acknowledgments
	References

