
Joint Prediction and Matching for Computing Resource Exchange
Platforms

Da Huo

Shanghai Jiao Tong University

Shanghai, Shanghai, China

sjtuhuoda@sjtu.edu.cn

Zhenzhe Zheng
∗

Shanghai Jiao Tong University

Shanghai, China

zhengzhenzhe@sjtu.edu.cn

Xiaoyao Huang

Cloud Computing Research Institute,

China Telecom

Beijing, China

huangxy32@chinatelecom.cn

Hao Chen

China Telecom Cloud Technology Co.

Ltd., Beijing 100033

Beijing, China

chenhao3@chinatelecom.cn

Jianfeng Hu

China Telecom Cloud Technology Co.

Ltd., Beijing 100033

Beijing, China

hujianfeng@chinatelecom.cn

Zhiyong Yan

China Telecom Cloud Technology Co.

Ltd., Beijing 100033

Beijing, China

yanzhy@chinatelecom.cn

Fan Wu

Shanghai Jiao Tong University

Shanghai, Shanghai, China

fwu@cs.sjtu.edu.cn

Jie Wu

Cloud Computing Research Institute,

China Telecom

Beijing, China

wujie@chinatelecom.cn

Abstract
The rapid growth of deep learning has created unprecedented de-

mand for computing resources, while many small and enterprise-

level clusters remain underutilized. Computing resource exchange

platforms offer a solution by aggregating these idle resources. How-

ever, effective cluster-task matching depends on accurate perfor-

mance prediction. Existing approaches, which decouple prediction

frommatching, often lead to suboptimal decisions due tomisaligned

objectives. We propose a Matching-Focused Cluster Performance

Predictor (MFCP), an end-to-end framework that integrates perfor-

mance prediction with task matching to improve decision accuracy

and resource utilization. Unlike existing methods that prioritize pre-

diction accuracy, MFCP minimizes decision regret by aligning the

predictor’s loss with optimal matching objectives. To handle non-

differentiable matching optimization, we use continuous relaxation

and incorporate constraints via an interior-point method, ensuring

meaningful gradients for training. For non-convex optimization, we

approximate optimal decisions with gradient descent and estimate

gradients using zeroth-order perturbation. Experiments show that

MFCP consistently outperforms existing methods across different

cluster environments and scales, achieving lower matching regret

and higher resource utilization.

CCS Concepts
• Computing methodologies→Modeling methodologies.

∗
Corresponding authors.

This work is licensed under a Creative Commons Attribution 4.0 International License.

ICPP ’25, San Diego, CA, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2074-1/25/09

https://doi.org/10.1145/3754598.3754610

Keywords
Deep learning cluster performance prediction, cluster-task match-

ing platform, decision focused learning

ACM Reference Format:
Da Huo, Zhenzhe Zheng, Xiaoyao Huang, Hao Chen, Jianfeng Hu, Zhiyong

Yan, FanWu, and JieWu. 2025. Joint Prediction andMatching for Computing

Resource Exchange Platforms. In 54th International Conference on Parallel
Processing (ICPP ’25), September 08–11, 2025, San Diego, CA, USA. ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/3754598.3754610

1 Introduction
With the rapid development of Artificial Intelligence (AI), the com-

putational resource demands of deep learning tasks have signifi-

cantly increased, leading to a substantial increase in demand for

high-performance computing clusters. Although large-scale clus-

ters from centralized institutions in cloud computing, such as Ama-

zon Web Services (AWS) [2] and Microsoft Azure [30], are widely

available, the expansion of existing commercial clusters still cannot

keep pace with the fast growing computational demands driven

by scaling law. Meanwhile, a significant amount of computational

resources is distributed across small or enterprise-level institutions.

These computing clusters often remain underutilized due to the lack

of a convenient interface to share their idle computing resources.

Therefore, efficiently utilizing these idle computing resources is

crucial for addressing the issue of computing resource scarcity in

the era of AI.

To utilize idle computing resources, computing resource ex-

change platforms, such as Equinix [12], have been proposed. These

platforms acquire and manage idle resources from third-party clus-

ters, aiming to efficiently match deep learning tasks to available

clusters to improve resource utilization. The two essential com-

ponents of such platforms are cluster performance prediction and

cluster-task matching. On one hand, since the deep learning clus-

ters are managed by third-party institutions, whose computing

https://orcid.org/0009-0000-3054-5472
https://orcid.org/0000-0002-5094-5331
https://orcid.org/0000-0003-2571-1979
https://orcid.org/0000-0002-8423-5522
https://orcid.org/0009-0009-0735-6038
https://orcid.org/0009-0008-3174-1019
https://orcid.org/0009-0007-0544-235X
https://orcid.org/0000-0002-3472-1717
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3754598.3754610
https://doi.org/10.1145/3754598.3754610

ICPP ’25, September 08–11, 2025, San Diego, CA, USA Da Huo, Zhenzhe Zheng, Xiaoyao Huang, Hao Chen, Jianfeng Hu, Zhiyong Yan, Fan Wu, and Jie Wu

resources vary in architecture and quality, the platform needs to

evaluate the performance of running various deep learning tasks on

these clusters. Typically, there are two metrics: task execution time

and task success probability, i.e., reliability. Reliability is a critical

metric in such distributed systems, where third-party clusters may

experience communication or operation failures. Leveraging these

estimated performance metrics, the cluster-task matching process

aims to allocate tasks to clusters in a way that optimizes certain a

objective and satisfies some constraints, such as minimizing task

execution time and satisfying reliability constraints.

In practice, cluster performance prediction and cluster-taskmatch-

ing are treated as two isolated problems. Existing work has focused

on predicting the performance of various deep learning tasks on

specific cluster hardware [13, 24, 39, 40], which ignores the decision

process in the downstream cluster-task matching. Specifically, a

key limitation of the approach in literature is that the metrics used

for matching are estimated by predictors and are treated as fixed

values instead of stochastic variables. The predictors minimize per-

formance prediction errors for individual clusters, ignoring that

downstream matching results depend on the joint interaction of all

clusters, making the predictors’ optimization objective misaligned

with minimizing matching error. To address this issue, we propose

a new matching-focused prediction framework to improve the final

matching accuracy by jointly considering the processes of cluster

performance prediction and cluster-task matching. Specifically, we

aim to integrate the training of the predictor with the optimization

of the downstream cluster-task matching, enabling the predictor to

directly minimize the regret in matching decisions, which is defined

as the discrepancy between the matching derived from the true

value (actual performance during execution) and the one from the

predicted value (performance estimated by predictors).

However, training such a predictor presents twomain challenges:

non-differentiability of thematching optimization problem and diffi-

culty in gradient computation for backpropagation in an end-to-end

model training pipeline. The first challenge arises from that the

output of matching algorithm, i.e., the optimal matching, depends

on predicted performance but is inherently non-differentiable. This

lack of differentiability stems, on the one hand, from the fact that

the decision variables in the matching process can only take binary

values, making the overall function a step function. On the other

hand, it also arises from the presence of variables with different

roles in the optimization problem: the predicted execution time

is associated with costs in the objective function, while the pre-

dicted reliability serves as constraint variables in the inequality

constraints. When constraints are met, the gradient of the optimal

matching with respect to the predicted reliability becomes zero,

offering no meaningful guidance for training. Another challenge

is the difficulty of calculating the gradients for backward propa-

gation in the matching algorithm. When the matching problem

is convex, we can solve for the optimal matching using convex

optimization methods, and further obtain the gradient relation be-

tween the optimal matching and the predicted variables through

Karush-Kuhn-Tucker (KKT) conditions [9]. However, in more com-

plex settings where the matching objective may not be convex, we

can only iteratively approximate the optimal matching values, and

the gradient of the optimal matching with respect to the predicted

variables becomes challenging to compute in a closed form.

We investigate the joint problem of prediction and matching in

computing resource exchange platforms, and propose Matching-
Focused Cluster Performance Predictor (MFCP) to address the chal-

lenges encountered in this scenario. This approach is to integrate

the predictor training with the downstream matching optimization

to improve matching quality. We address non-differentiability via

continuous relaxation and interior-point methods, while employing

zeroth-order gradient estimation for non-convex cases. To tackle

the difficulty of gradient computation in non-convex optimization

problems, we first approximate the optimal matching using gradi-

ent descent and then estimate the gradient of the optimal matching

with respect to the predictive variables by perturbing them through

a zeroth-order method. The main contributions of this work are

summarized as follows:

•We are the first to investigate the joint problem of performance

prediction and task matching in the emerging computing resource

exchange platforms, which conduct efficient cluster-task match-

ing to utilize idle computational resources from small institutions.

Solving this problem is essential for meeting the rapidly growing

demand for computational resources in the era of AI .

•We identify the limitations in conventional prediction-then-

matching two-stage approach in stochastic optimization. To over-

come these limitations, we propose a new framework that integrates

prediction and matching into a unified bilevel optimization frame-

work, providing a comprehensive formulation for this problem.

•We propose an end-to-end training framework, namely MFCP.

We relax the original matching problem to ensure it obtains contin-

uous and meaningful gradients, and uses perturbation to estimate

gradients to address the complex non-convex optimization prob-

lems in practical scenarios.

•We simulate and evaluate our algorithm and baselines on real-

world datasets from different metrics. Experiments demonstrate

MFCP achieves lower matching regret and higher resource utiliza-

tion across different cluster environments and scales than baselines.

2 Problem Formulation
Computing resource exchange platforms acquire and manage mul-

tiple heterogeneous computing clusters, and matches users’ deep

learning task requests with suitable clusters, as shown in Fig. 1. A

computing resource exchange platform faces two key issues: perfor-

mance prediction for newly acquired clusters and the matching of

deep learning tasks and clusters. In practice, prediction and match-

ing are often implemented as isolated problems within a two-stage

optimization framework.

2.1 Predict-then-Matching Framework
The predict-then-matching framework independently optimizes

the Cluster Performance Prediction and Cluster-Task Matching

problems in sequence.

Cluster Performance Prediction: The performance of a cluster

is usually measured by the execution time 𝑡 of a task. As shown

in Fig. 1, this is primarily determined by the cluster’s hardware

resources and system architecture. However, the cluster managed

by the computing resource exchange platform are often distributed

across different institutions and physical locations, and the platform

does not handle hardware maintenance or guarantee hardware

2

Joint Prediction and Matching for Computing Resource Exchange Platforms ICPP ’25, September 08–11, 2025, San Diego, CA, USA

Cluster A

Task A

Cluster B

Cluster C

Computing Resource Exchange Platform

Time: 400

Reliability: 90%

Time: 100

Reliability: 70%

Time: 200

Reliability: 80%

Task B

Task C
…

Figure 1: Illustration of the computing resource exchange
platform. Dashed lines represent performance, while the
solid arrow represents matching.

availability. This distributed nature increases the probability of

connection interruptions or hardware failures [16, 23], which can

result in the interrupt of the task execution. Therefore, beyond

execution time, we must also consider the stability of the task

execution process. To quantify this, we introduce a reliability metric

𝑎, which represents the probability of a task being successfully

completed when assigned to a given cluster
1
.

The platform builds neural network-based predictors to estimate

two performance metrics. To enable performance prediction, first it

is essential to map potential deep learning tasks to a feature space

Z. As task-to-feature embedding is well-studied in the literature,

such as layer-based approaches [40], graph-based approaches [24,

39], and operator-based approaches [13, 43] , we focus on training

predictors that map features to the performance predictions and

omit the distinction between tasks and features. For any task 𝑧 ∈
Z, the execution time 𝑡 and the reliability 𝑎 on a specific cluster

are predicted using two cluster-specific predictors: 𝑡 = 𝑚𝝎 (𝑧)
and 𝑎 =𝑚𝝓 (𝑧). These predictors are typically implemented using

neural networks, where 𝝎 and 𝝓 denote the model parameters. The

predictors are trained on a dataset 𝐷 = {z, t, a}, where vectors z,
t and a represent all task samples, their corresponding execution

times and reliability metrics, respectively. For predictor training,

the Mean Squared Error (MSE) loss is commonly used, and the loss

function is as follows:

L𝑡,MSE =
1

|𝐷 | ∥t − t̂∥2
2
, L𝑎,MSE =

1

|𝐷 | ∥a − â∥2
2
. (1)

Cluster-Task Matching: Assume that there are 𝑀 clusters

available over a period of time for 𝑁 deep learning tasks z =

{𝑧1, 𝑧2, · · · , 𝑧𝑁 } from users to allocate. For notational simplicity,

we define M = {1, 2, · · · , 𝑀} and N = {1, 2, · · · , 𝑁 }. The exe-

cution time for a task 𝑧 𝑗 ∈ z on cluster 𝑖 ∈ M is predicted as

𝑡𝑖 𝑗 = 𝑚𝝎𝑖
(𝑧 𝑗), and the reliability is predicted as 𝑎𝑖 𝑗 = 𝑚𝝓 𝑗

(𝑧 𝑗).
For all tasks assigned to cluster 𝑖 , the predicted time and relia-

bility vectors are expressed as t̂𝑖 and â𝑖 , respectively. In the task-

cluster matching, each task is assigned to one cluster, and clusters

may execute multiple tasks. To represent this matching, we in-

troduce a binary decision variable 𝑥𝑖 𝑗 ∈ {0, 1}, where 𝑥𝑖 𝑗 = 1

1
Reliability is also task-dependent, as the varying computational resource requirements

of different tasks may affect their successful execution.

indicates that task 𝑧 𝑗 is assigned to cluster 𝑖 . The decision variables

for all clusters are organized into a matrix X = [x1, x2, · · · , x𝑀],
where the vector x𝑖 = [𝑥𝑖1, 𝑥𝑖2, · · · , 𝑥𝑖𝑁]. The execution timematrix

T = [t1, t2, · · · , t𝑀] and the reliability matrix A = [a1, a2, · · · , a𝑀]
have the similar structure. Our optimization objective is to min-

imize the execution time of all clusters while ensuring that the

reliability constraint is satisfied. We formulate the optimization

problem in the following general form:

min

X
𝑓 (X,T), (2a)

s.t. 𝑔(X,A) ≥ 0, (2b)∑︁𝑀

𝑖=1
x𝑖 − 1𝑁 = 0, (2c)

𝑥𝑖 𝑗 ∈ {0, 1}, ∀𝑖 ∈ M, ∀𝑗 ∈ N , (2d)

where 1𝑁 is an 𝑁 -dimensional vector of ones. 𝑓 (X,T) is the time

cost function with respect to the execution time, and 𝑔(X,A) rep-
resents the reliability constraint. We will clearly define these two

functions next. The constraint (2c) ensures that each task is as-

signed to exactly one cluster, while the constraints (2d) enforce

binary decision variables.

The time cost function is defined as the execution time of the

slowest computing cluster. This design helps to improve clusters

utilization and prevent the potential imbalance caused by a linear

cost function, where a large number of tasks may accumulate on

a few high-performance clusters, leaving other clusters idle for

extended periods. We consider the setting where tasks are exe-

cuted sequentially on each cluster, with exclusive access to all its

resources [17, 21, 33]. In this case, the total execution time of a

cluster is computed as the sum of the predicted execution times of

all its assigned tasks, while the overall makespan is determined by

the maximum execution time across all clusters.

𝑓 (X,T) = max

𝑖∈{1,2,· · · ,𝑀 }
x⊤𝑖 t𝑖 . (3)

For the reliability constraint, we require that the overall task

success rate of the platform exceeds a specified threshold 𝛾 . To

formalize this, we define the reliability constraint based on the

average reliability across all clusters as:

𝑔(X,A) = 1

𝑀𝑁

∑︁𝑀

𝑖=1
x⊤𝑖 a𝑖 − 𝛾 . (4)

2.2 Matching-Focused Prediction Framework
Cluster-task matching heavily depends on the accuracy of per-

formance prediction, and even small prediction errors may lead

to matching errors. When the predictor is capable of accurately

forecasting the performance of clusters, we can effectively deter-

mine the optimal matching solution. However, the relation between

cluster performance across tasks and the task features z is highly
complex, making it difficult for a predictor to model accurately.

Additionally, acquiring training samples from physical machines

is often expensive, making it challenging to gather a large num-

ber of training samples, which further increases the discrepancy

between the predicted values and the actual values of the cluster

performance. Furthermore, minimizing the Mean Squared Error

(MSE) loss for the prediction task does not guarantee the optimal

decisions in the task-cluster matching. It focuses on minimizing

the prediction error independently for each cluster, ignoring the

3

ICPP ’25, September 08–11, 2025, San Diego, CA, USA Da Huo, Zhenzhe Zheng, Xiaoyao Huang, Hao Chen, Jianfeng Hu, Zhiyong Yan, Fan Wu, and Jie Wu

Cluster A

Cluster B

y = 2x

Task 1 Task 2 Task 3

y = 4x - 3.667

Task 1 Task 2 Task 3

Prediction Matching

Predictor: Task 2 to Cluster A

y = 2x

y = 4x - 3.667

Task 1 Task 2 Task 3

Truth: Task 2 to Cluster B

Matching-Focused Prediction

y = 2x

y = 3x - 2.3333

Task 1 Task 2 Task 3

High weight Low weight

Independently trained with MSE loss

Task 1 Task 2 Task 3

Task 1 Task 2 Task 3

Cluster A

Cluster B Predictor: Task 2 to Cluster B

Truth: Task 2 to Cluster B

Figure 2: The comparison between the predict-then-matching
framework and the matching-focused prediction method.
The heights of the bars represent the true values while the
dashed lines represent the predicted values.

downstream matching objective. This may lead to significant mis-

matches between the tasks and the clusters. As illustrated in the

upper part of Fig. 2, we consider an example to build an execution

time predictor for three tasks using linear regression. The actual

execution times are represented by the height of the bars, and the

dashed lines denote the predictor’s estimation. For Cluster A, task

execution time increases linearly with 𝑧, while for Cluster B, it fol-

lows a more complex exponential trend. Due to independent MSE

minimization, the predictor incorrectly estimates that Cluster B

performs worse than Cluster A for Task 2. This results in incorrect

task allocation for task 2 using this independent predictor.

To address this issue, we propose incorporating cluster-specific

task preferences into the predictor training process. These task

preferences arise from hardware heterogeneity, such as specific

optimizations for convolutional or transformer architectures. By

assigning higher learning weights to the tasks preferred by a cluster,

the predictor can better align its predictions with downstream

matching objectives. As shown in the lower part of Fig 2, compared

to Cluster A, Cluster B is more efficient at executing Task 1 and Task

2 but less efficient at executing Task 3. Tasks preferred by Cluster

B are more likely to be assigned to Cluster B. Therefore, we assign

higher learning weights to such tasks in the predictor, while the

tasks with less preferences are given smaller weights. Leveraging

the cluster-specific task preferences, the predictor’s outputs can

still yield correct assignments, even if there remains a discrepancy

between the predicted and true values.

To implement this idea, we consider downstream cluster-task

matching process during the predictor training. This allows the

predictor to make trade-offs according to the corresponding cluster-

specific task preferences, optimizing the final matching accuracy

rather than minimizing the MSE loss. This approach integrates clus-

ter performance prediction and cluster-task matching into a unified

framework, which we call matching-focused cluster performance

Tasks 𝑧
Predictor

Cluster 𝑥∗ 𝑇, 𝐴

ො𝑥∗ ෠𝑇, መ𝐴
𝜕ℒ

𝜕𝑥∗

𝜕𝑥∗

𝜕 Ƹ𝑡𝑖

𝜕 Ƹ𝑡𝑖
𝜕𝜔𝑖

𝜕𝑥∗

𝜕 ො𝑎𝑖

𝜕 ො𝑎𝑖
𝜕𝜑𝑖

Ƹ𝑡𝑖 , ො𝑎𝑖

𝑡𝑖 , 𝑎𝑖

𝑡𝑖 , 𝑎𝑖

Cluster-Task

Matching

Matching

Regret

ℒ ො𝑥∗, 𝑥∗

Ground

Truth

Prediction1

1
2
2

3
3
2Gradient

Descent

Figure 3: The training process of the MFCP method.

prediction. We formalize this framework as a bilevel problem:

min

𝝎,𝝓

1

𝑁

(
𝑓

(
X∗

(
ˆT, Â

)
,T

)
− 𝑓

(
X∗ (T,A) ,T

))
,

s.t. X∗ (T,A) = argmin

X∈FA

𝑓 (X,T) .
(5)

The upper-level optimization objective is to select the optimal pa-

rameters 𝝎, 𝝓 to minimize the distance between the matching solu-

tion based on predicted values
ˆT, Â and the matching solution based

on true values T,A, which we refer to as regret. The lower-level

optimization objective is to select the optimal matching decision X∗

that minimizes the cost function 𝑓 (X,T) within FÂ, which repre-

sents the feasible domain under the reliability constraint in Equ. (4).

3 The Design of MFCP
3.1 The Whole Pipeline
In this section, we present MFCP, a system that integrates cluster

performance predictor training with cluster-task matching. MFCP

comprises three components: the predictor, the matching algorithm,

and the gradient calculation module, as illustrated in Fig. 3. The

forward propagation consists of prediction and matching: (1) ob-

taining actual and predicted performance metrics by executing

tasks z on the cluster and using a predictor, respectively, and (2)

employing these metrics as matching weights to compute optimal

matching results via the matching algorithm. MFCP then formu-

lates the matching regret between the two optimal matchings as

the loss function. During backpropagation (3), the gradients are

decomposed and computed in a right-to-left manner, corresponding

to the contributions from regret, matching, and prediction.

We consider the scenario where the computing resource ex-

change platform builds cluster-specific predictors 𝑚𝝎𝑖
and 𝑚𝝓𝑖

for a cluster 𝑖 ∈ M. The pipeline first samples 𝑁 deep learning

tasks z from the task poolZ to simulate the workload the platform

must allocate within a given time period. To evaluate all clusters’

performance on the sampled task vector z, we run the tasks directly

on each cluster 𝑖 ∈ M, to obtain their actual execution times t𝑖 and
reliability metrics a𝑖 . These actual measurements serve as ground

truth data for all clusters. We also use predictors𝑚𝝎𝑖
and𝑚𝝓𝑖

to

estimate the predicted execution time t̂𝑖 and predicted reliability â𝑖
for cluster 𝑖 with respect to tasks z.

Then, using the predicted values
ˆT and Â, the matching algo-

rithm generates an optimal task matching decision X∗ (ˆT, Â) of the
optimization problem (2). We also compute X∗ (T,A), the optimal

decision based on ground truth values. The system evaluates the

4

Joint Prediction and Matching for Computing Resource Exchange Platforms ICPP ’25, September 08–11, 2025, San Diego, CA, USA

regret caused by prediction errors using the following loss func-

tion, which is derived from the upper-level optimization objective

defined in (5):

L =
1

𝑁

(
𝑓

(
X∗

(
ˆT, Â

)
,T

)
− 𝑓

(
X∗ (T,A) ,T

))
, (6)

where 𝑓 (·) represents the optimization objective in (2). The exact

form depends on the modeling of the cluster scheduler.

Finally, during backpropagation to optimize the predictor param-

eters, we can express the gradient of the regret loss function based

on the chain rule of differentiation with respect to the predictor

parameters as

dL
d𝝎𝑖

=
dL

dX∗ (ˆT, Â)
dX∗ (ˆT, Â)

dt̂𝑖

dt̂𝑖
d𝝎𝑖

. (7)

Here we take the gradients of 𝝎𝑖 as an example, and the same

applies to 𝝓𝑖 . Treating the optimal matching X∗ (ˆT, Â) as a function
of the predicted variable t̂𝑖 , the first term on the right-hand side

of the equation is the gradients of the regret loss L with respect

to the matching decision X∗, the second term is the gradients of

the matching decision X∗ with respect to the predictor variable t̂𝑖 ,
and the third term is the gradients of the predictor variable t̂𝑖 with
respect to the predictor parameters 𝝎𝑖 . The first and third terms

can be obtained directly from the gradient computations stored

during the neural network’s training process (i.e., the gradient

cache). However, the second term involves solving the optimization

problem (2) for which no closed-form solution exists, making it

challenging to explicitly compute the gradient.

3.2 Relaxing Optimization Problem
To compute the gradient, we must first ensure that X∗ (ˆT, Â) is
a continuously differentiable function with respect to

ˆT and Â.
However, X∗ is not always differentiable or its derivatives may not

always be meaningful (non-zero), primarily due to three factors:

the discrete decision space of X∗, the piecewise linear nature of
the optimization objective (3) involving max operation, and the

inclusion of predictor variables Â in constraints. In this subsection,

we address and resolve each of these factors in turn.

The first factor is that the optimization problem (2) is an integer

optimization problem. This directly results in the optimal matching

decision X∗ being a step function with respect to the predicted

values
ˆT and Â, leading to either non-differentiability or vanishing

gradients. To address this issue, we consider a continuous relaxation

of the original problem. Specifically, during the training process of

predictors, we relax the feasible set of the decision variable X∗ from
the discrete set {0, 1} to the continuous interval [0, 1], represent-
ing the convex hull of the original set. This relaxation enables the

matching optimization algorithm to be treated as a continuous func-

tion of the predicted values
ˆT and Â, allowing meaningful gradients

to be computed for training. In contrast, during testing or system

deployment, the matching X∗ is obtained using the continuous

version of the matching optimization algorithm and subsequently

rounded to produce discrete solutions.

The second factor affecting differentiability arises from the na-

ture of the max operation in the objective function 𝑓 (X,T), which
is not differentiable everywhere. As a piecewise linear function,

𝑓 (X, T) exhibits unequal left and right derivatives at certain points

due to the max operation. To address this, we introduce a smooth

approximation
˜𝑓 (X, T), which is continuously differentiable. Specif-

ically, we define the smoothed objective function as follows.

˜𝑓 (X,T) = 1

𝛽
log

(∑︁𝑀

𝑖=1
𝑒𝛽x⊤𝑖 t𝑖

)
. (8)

Theorem 1 (Smooth Approximation of the max Operation).

The function ˜𝑓 (X, T) is a smooth approximation of 𝑓 (X, T). As 𝛽 →
∞, the smoothed function ˜𝑓 (X,T) converges to function 𝑓 (X,T).

The proofs of this theorem and subsequent theorems are pro-

vided in our technical report [1].

The last factor affecting the differentiability of optimization prob-

lem (2) arises from the inclusion of the predicted values Â in the

constraints. Specifically, when Â lies in the interior of the feasi-

ble set, the decision variable X satisfies the inequality constraints

𝑔(X, Â) ≥ 𝛾 and the gradient of X∗ with respect to Â is zero, provid-

ing no useful information for gradient descent. Conversely, when

Â lies on the boundary of the feasible set, it results in an infinite

gradient (considering constraint violations as incurring infinite

cost). This creates challenges in effectively training the predictor

𝝓 through the gradient of X∗ with respect to Â. To resolve this

issue, we employ the interior-point method by incorporating the

inequality constraints involving Â into the optimization objective.

Specifically, we use a logarithmic barrier function [8] to enforce

the constraints indirectly. The modified optimization objective is

defined as follows:

𝐹 (X,T,A) = ˜𝑓 (X,T) − 𝜆 log(𝑔(X,A)), (9)

where 𝜆 > 0 is a parameter that adjusts the weight of the con-

straints during the optimization process. And we can approximate

the optimization problem (2) as the following optimization problem:

min

X
𝐹 (X,T,A) ,

s.t.

∑︁𝑀

𝑖=1
x𝑖 − 1𝑁 = 0, x𝑖 ∈ [0, 1] .

(10)

Intuitively, given initialized X satisfying 𝑔(X,A) > 𝛾 , an exponen-

tial rate of cost increase will occur when 𝑔(X,A) decreases towards
𝛾 during the optimization process. This mechanism acts as a barrier

to prevent 𝑔(X,A) − 𝛾 from becoming negative. A smaller value of

𝜆 results in the logarithmic barrier term −𝜆 log(𝑔(X,A) −𝛾) closely
approximating an ideal inequality constraint function, where the

cost is zero when the constraint is satisfied and approaches infinity

when it is violated. The interior-point method provides probabilistic

feasibility guarantees:

Theorem 2 (𝜖-Feasibility). After 𝑘 iterations with barrier pa-
rameter 𝜆, the solution X(𝑘) satisfies:

P
(
𝑔(X(𝑘) ,A) ≥ 𝛾 − 𝜖

)
≥ 1 − 𝛿, (11)

where 𝜖 = 𝑐

𝜆
√
𝑘
and 𝛿 = exp(−𝜆2/2𝜎2𝑔) for constants 𝑐, 𝜎𝑔 .

By addressing the three challenges of differentiability, we present

the final form of our bi-level optimization problem:

min

𝝎,𝝓

1

𝑁

(
𝐹

(
X∗

(
ˆT, Â

)
,T,A

)
− 𝐹

(
X∗ (T,A) ,T,A

))
,

s.t., X∗
(
ˆT, Â

)
= argmin

X∈F
𝐹

(
X, ˆT, Â

)
,

(12)

5

ICPP ’25, September 08–11, 2025, San Diego, CA, USA Da Huo, Zhenzhe Zheng, Xiaoyao Huang, Hao Chen, Jianfeng Hu, Zhiyong Yan, Fan Wu, and Jie Wu

where the upper level objective function represents the regret loss

function for training the predictors, while the lower level optmiza-

tion problem is (10). Importantly, the feasible domain F for X no

longer includes the predicted variable Â. Under this formulation,

the optimal matching X∗ exhibits continuous and meaningful gra-

dients with respect to the predicted variables
ˆT and Â. Next, we

introduce efficient algorithms for computing these gradients.

3.3 End-to-end Training
We can obtain the gradient of the optimal matching with respect

to the predicted values from the analytical differentiation of the

optimal mapping. The time cost function (3) is a convex function,

and thus the objective function 𝐹 (X,T,A) in the lower level opti-

mization problem (10) is convex with respect to both T and A,

𝐹 (X,T,A) = 1

𝛽
log

(∑︁𝑀

𝑖=1
𝑒𝛽x⊤𝑖 t𝑖

)
− 𝜆 log

(∑𝑀
𝑖=1 x⊤

𝑖
a𝑖 − 𝛾

𝑀𝑁

)
.

In convex optimization problems, the mapping from parameters

to optimal solutions is implicit and lacks a closed-form expression,

making direct differentiation infeasible. However, we can leverage

the Lagrange multiplier method to express this implicit relationship

and thereby obtain the gradient relationship between the optimal

decision variables X∗ and the predictive variables T,A, which is

proposed by Donti et al. [9]. The Lagrangian is

𝐿(X,𝝂, 𝝁1, 𝝁2) = 𝐹 (X,T,A) + 𝝂⊤
(∑︁𝑀

𝑖=1
x𝑖 − 1𝑁

)
+∑︁𝑀

𝑖=1

∑︁𝑁

𝑗=1
𝜇1𝑖 𝑗𝑥𝑖 𝑗 +

∑︁𝑀

𝑖=1

∑︁𝑁

𝑗=1
𝜇2𝑖 𝑗 (1 − 𝑥𝑖 𝑗),

(13)

where 𝝂 ∈ R𝑁 denotes the Lagrange multiplier vector for equality

constraints, and 𝝁1, 𝝁2 ∈ R𝑀×𝑁 represent the Lagrange multiplier

matrices associatedwith the inequality constraints’ upper and lower

bounds, respectively. Since we only interested in the gradients of the

decision variables with respect to T and A rather than solving for

the decision variables themselves, we disregard the constraints on

the range of X. The original optimization problem (10) can thus be

reformulated as the unconstrained minimization of the Lagrangian

function 𝐿(X,𝝂). The optimal matching X∗ satisfies

Φ(X,T,A, 𝝂, 𝝁1, 𝝁2) =


∇X𝐿∑𝑀

𝑖=1 x𝑖 − 1𝑁
𝝁1 ⊙ X

𝝁2 ⊙ (1 − X)

 = 0. (14)

By taking the total differential of the condition (14), we can obtain

the differential relationship between the predictor variables T,A
and the decision variables x𝑖 .


∇2XX𝐹 D𝑇

𝝂 I −I
D𝝂 0 0 0
U1 0 X𝑑 0
−U2 0 0 X̄𝑑



𝑑X
𝑑𝝂
𝑑𝝁1

𝑑𝝁2

 = −


∇2XT𝐹𝑑T + ∇2XA𝐹𝑑A

0
0
0

 , (15)

where D𝝂 ∈ R𝑁×𝑀𝑁
is the equality constraint gradient ma-

trix (horizontal concatenation of 𝑀 identity matrices I𝑁), U1 =

diag(𝝁1) and U2 = diag(𝝁2) are diagonal matrices from com-

plementary slackness conditions, while X𝑑 = diag(vec(X)) and
X̄𝑑 = diag(vec(1 − X)) represent diagonalized matching variables.

We can obtain the required gradient by solving this system of linear

equation (15). Notably, we have two sets of predictor variables T

Algorithm 1: Optimal Matching by Gradient Descent

Input: Objective function 𝐹 (X,T,A), execution time martix

T and reliablity martix A.

Output: The optimal matching X∗.

1 Initialize X;

2 while Iter < Epochs do
3 X← X − 𝜂∇𝑥𝐹 (X,T,A);
4 X(:, 𝑗) ← softmax (X(:, 𝑗)) for 1 ≤ 𝑗 ≤ 𝑁 ;

5 return X∗ ← X.

and A, which jointly influence the final matching x∗
𝑖
. Therefore, we

fix 𝝎 when optimizing 𝝓, and fix 𝝓 when optimizing 𝝎, ensuring
stability during optimization using partial derivatives.

3.4 Extension to Parallel Task Execution
We further consider a more complex but realistic scenario where

multiple deep learning tasks running on a cluster can share re-

sources and execute in parallel [20, 26]. Deep learning clusters

typically employ scheduling algorithms to select tasks for parallel

execution, aiming to minimize the total execution time. We define

a speedup ratio 𝜁 as the ratio of the actual total execution time to

the sum of the execution times of all tasks. The speedup ratio 𝜁 is

influenced by various factors, such as the locality of task deploy-

ment [22] and resource competition among tasks [27]. In this work,

we focus on a quantifiable factor: the number of deep learning

tasks assigned to a cluster
2
. To account for this, we introduce time

adjustment functions 𝜁𝑖 (x⊤𝑖 1𝑁) to capture the impact of parallel

execution on computation time. We revise the time cost function

in Equ. (3) as follows:

𝑓 (X,T) = max

𝑖∈{1,2,· · · ,𝑀 }

(
𝜁𝑖 (x⊤𝑖 1𝑁) · x⊤𝑖 t𝑖

)
. (16)

And for the time cost function under the resource-sharing sce-

nario, the smoothed objective function is revised as

˜𝑓 (X,T) = 1

𝛽
log

(∑︁𝑀

𝑖=1
𝑒𝛽𝜁𝑖 (x

⊤
𝑖 1𝑁)x⊤𝑖 t𝑖

)
, (17)

and 𝐹 (X,T,A) is still defined as Equ. (9).

However, in this case, 𝑓 (X,T) with respect to the decision vari-

able X is no longer a convex function. Consequently, the overall

continuous optimization objective 𝐹 (X,T,A) also loses its convex-

ity. This renders the previously method for convex optimization

inapplicable and even makes solving for the optimal decision vari-

able X challenging. To address this complex and practical issue, we

intuitively employ a gradient descent algorithm to solve the match-

ing optimization problem (10) and then use the forward gradient

method to compute the gradient of the optimal matching X∗ with
respect to the prediction variables T and A.

Specifically, we first approximate the optimal decision variable

X∗ under the non-convex scenario using gradient descent, as shown
in Algorithm 1. After each gradient update of X based on the ob-

jective function 𝐹 (X,T,A), we project X onto the feasible domain

2
This factor is statistically significant because a small number of tasks may lead to

underutilization of the cluster’s resources, resulting in a low speedup ratio. Conversely,

when a large number of tasks are assigned, they are typically scheduled in parallel

batches by the scheduling algorithm, leading to a relatively stable high speedup ratio.

6

Joint Prediction and Matching for Computing Resource Exchange Platforms ICPP ’25, September 08–11, 2025, San Diego, CA, USA

Algorithm 2:MFCP with Forward Gradient Method

Input: DL Tasks z, true execution time T, true reliability A,

perturbation size Δ and sampling count 𝑆 .

Output: The optimal predictors 𝝎𝑖 and 𝝓𝑖 for cluster 𝑖 ∈ M.

1 Initialize 𝝎𝑖 , 𝝓𝑖 ;

2 while Iter < Epochs do
3 t̂𝑖 ←𝑚𝝎𝑖

(z), â𝑖 ←𝑚𝝓𝑖
(z), ˆT←

[
T[1 : 𝑀 − 1], t̂𝑖

]
,

Â← [A[1 : 𝑀 − 1], â𝑖];
4 Calculate X∗ (ˆT, Â) by Algorithm 1;

5 while 𝑠 ≤ 𝑆 do
6 Sample 𝑣𝑠𝑡 ∈ 𝑁 (0, 1) and 𝑣𝑠𝑎 ∈ 𝑁 (0, 1);
7 t̂𝑠

𝑖
← t̂𝑖 + Δ · 𝑣𝑠𝑡 , â𝑠

𝑖
← â𝑖 + Δ · 𝑣𝑠𝑎 ,

ˆT𝑠 ←
[
T[1 : 𝑀 − 1], t̂𝑠

𝑖

]
, Â𝑠 ←

[
A[1 : 𝑀 − 1], â𝑠

𝑖

]
;

8 Calculate X∗ (ˆT𝑠 , Â) and X∗ (ˆT, Â𝑠) by Algorithm 1

respectively;

9 ∇𝑠
t̂𝑖

X∗ (ˆT, Â) ← X∗ (ˆT𝑠 ,Â)−X∗ (ˆT,Â)
Δ · 𝑣𝑠𝑡 ;

10 ∇𝑠â𝑖 X
∗ (ˆT, Â) ← X∗ (ˆT,Â𝑠)−X∗ (ˆT,Â)

Δ · 𝑣𝑠𝑎 ;

11 Aggregate all ∇𝑠
t̂𝑖

x∗ (ˆT, Â) to obtain
dX∗ (ˆT,Â)

dt̂𝑖
, all

∇𝑠â𝑖 X
∗ (ˆT, Â) to obtain

dX∗ (ˆT,Â)
dâ𝑖

;

12 𝝎𝑖 ← 𝝎𝑖 − 𝜂 dL
dX∗ (ˆT,Â)

dX∗ (ˆT,Â)
dt̂𝑖

dt̂𝑖
d𝝎𝑖

;

13 𝝓𝑖 ← 𝝓𝑖 − 𝜂 dL
dX∗ (ˆT,Â)

dX∗ (ˆT,Â)
dâ𝑖

dâ𝑖
d𝝓𝑖

;

14 return 𝝎𝑖 and 𝝓𝑖 .

defined by the constraints using the softmax function. We then per-

form the gradient computation for the matching process and update

the parameters of predictors using Algorithm 1. Once the optimal

matching decision X∗ under the predicted variables is obtained

(line 4), we apply a small perturbation to the predicted variables
ˆT

and Â, with the perturbation direction determined by a unit vector

𝑣 sampled from a normal distribution (lines 6-7). We then apply the

same gradient descent method to find its optimal matching decision

X∗ under the perturbed decision variables (line 8). Then we can

obtain the directional derivative of X∗ with respect to the decision

variables
ˆT or Â along the direction 𝑣 (line 9, 10). By aggregating all

the directional derivatives obtained from the samples, we finally es-

timate the gradient
dX∗ (ˆT,Â)

dÂ
and update the predictor’s parameters

(lines 11-13). The zeroth-order gradient estimation introduces the

following bounded errors, which suggests an optimal perturbation

size Δ∗ =
(
2𝜎2

𝐹

𝛽2𝑆

)
1/4

balancing bias and variance:

Theorem 3 (Gradient Approximation Error). Let ∇̂ be the
estimated gradient via Algorithm 2. For 𝛽-smooth 𝐹 (𝑋):

E
[
∥∇̂ − ∇∥2

]
≤ 𝛽2Δ2

4

𝑑 +
𝜎2
𝐹

𝑆Δ2
𝑑, (18)

where 𝑑 is the parameter dimension, Δ the perturbation size, and 𝜎2
𝐹

bounds the function variance.

3.5 Algorithm Analysis
Considering the impact of integrating the matching algorithm into

the predictive model training, we analyze the convergence guar-

antees and computational complexity of the algorithm. We first

examine the convergence properties of the MFCP approach under

both convex and non-convex settings.

Theorem 4 (Convex Case Convergence). When 𝐹 (𝑋) is 𝜅-
strongly convex and 𝑙-smooth, Algorithm 1 with learning rate 𝜂 ≤ 1/𝑙
achieves linear convergence:

∥𝑋 (𝑘) − 𝑋 ∗∥2 ≤
(
1 − 𝜅

𝑙

)𝑘
∥𝑋 (0) − 𝑋 ∗∥2, (19)

where 𝑋 (𝑘) denotes the 𝑘-th iteration and 𝑋 ∗ is the optimal solution.

For the non-convex case, we employ zeroth-order gradient esti-

mation to obtain gradients for backpropagation. The convergence

analysis yields the following results:

Theorem 5 (Non-Convex Case Convergence). Assume the
smoothed objective function 𝐹 (𝑋) has 𝑙-Lipschitz continuous gra-
dients, and the gradient estimation ∇̂𝐹 (𝑋) satisfies E[∇̂𝐹 (𝑋)] =

∇𝐹 (𝑋) with bounded variance E[∥∇̂𝐹 (𝑋) − ∇𝐹 (𝑋)∥2] ≤ 𝜎2. For
Algorithm 1 using step size 𝜂 ≤ 1

𝑙
, we have:

1

𝑘

∑︁𝑘−1
𝑡=0
E

[
∥∇𝐹 (𝑋 (𝑡))∥2

]
≤

2(𝐹 (𝑋 (0)) − 𝐹inf)
𝜂𝑘

+ 𝑙𝜂𝜎2, (20)

where 𝐹inf = inf𝑋 𝐹 (𝑋) is the lower bound of the objective function.

Finally, we conduct a computational complexity analysis of the

MFCP algorithm. The computational complexity has three com-

ponents: (1) Prediction Phase: For𝑀 clusters with feature dimen-

sion 𝑑 , each predictor requires 𝑂 (𝑑2) operations per task, totaling
𝑂 (𝑀𝑁𝑑2). (2) Matching Optimization: Each gradient descent itera-

tion in Algorithm 1 costs𝑂 (𝑀𝑁) operations. Let 𝐾1 be the number

of iterations, total cost is 𝑂 (𝐾1𝑀𝑁). (3) Gradient Estimation: For

𝑆 perturbations and 𝐾2 iterations per perturbation, the forward

gradient in Algorithm 2 requires 𝑂 (𝑆𝐾2𝑀𝑁) operations. Thus the
overall complexity per training epoch is:

C
total

= 𝑂 (𝑀𝑁𝑑2 + 𝐾1𝑀𝑁 + 𝑆𝐾2𝑀𝑁). (21)

4 Evaluation Results
We conduct extensive simulations to demonstrate the effectiveness

of the MFCP method in computing resource exchange platforms.

4.1 Experimental Setup
4.1.1 Dataset. The data utilized in our study was collected from

the computing platform managed by the Xirang. On the clusters of

the platform, we conducted experiments on various CV and NLP

models, and explored different model hyperparameter settings. For

the CV tasks, we used the CIFAR-10 and ImageNet datasets, while

for the NLP tasks, we utilized the Europarl dataset. Specifically,

we monitored and recorded the runtimes of each epoch during

actual execution, as well as the success probability of task com-

pletion. These measurements provide valuable insights into the

performance and reliability of the tested models under practical

conditions. We used a Graph Neural Network (GNN) to transform

these deep learning tasks into features. In the subsequent predictor

training, we only utilized fully connected layers for training.

7

ICPP ’25, September 08–11, 2025, San Diego, CA, USA Da Huo, Zhenzhe Zheng, Xiaoyao Huang, Hao Chen, Jianfeng Hu, Zhiyong Yan, Fan Wu, and Jie Wu

Table 1: The Ablation study of MFCP.

Metric Regret Reliability Utilization

(1) 1.555 ± 0.030 0.878 ± 0.005 0.387 ± 0.002
(2) 1.274 ± 0.035 0.681 ± 0.015 0.430 ± 0.008
(3) 0.937 ± 0.062 0.890 ± 0.0011 0.487 ± 0.007

MFCP 0.894 ± 0.035 0.886 ± 0.006 0.488 ± 0.003

4.1.2 Baselines. We compare the following five methods:

• Task-Agnostic Matching (TAM): This naive method ignores

task variations in execution time and reliability, using average

cluster performance across tasks to solve problem (2).

• Two Stage Method (TSM) [39]: This method independently

trains cluster performance predictors by minimizing MSE loss, then

solves problem (2) using predicted values.

• Upper Confidence Bound-based Method (UCB) [44]: As
another commonly used and competitive approach, we employ a

robust method against prediction errors. In the matching algorithm,

we select the solution with the highest upper confidence bound

rather than the best-performing matching scheme to mitigate the

impact of stochastic environments on matching regret.

•MFCP with Analytical Differentiation (MFCP-AD): When

the cost function is convex, the KKT conditions reveal the relation-

ship between the optimal matching and the predictor variables. We

can directly derive the gradients of the optimal matching leveraging

the analytical differentiation of optimization mappings.

•MFCP with Forward Gradient (MFCP-FG): Another imple-

mentation of MFCP. When the cost function is not convex, we use

a forward gradient propagation approach to estimate the gradients.

4.1.3 Evaluation Metrics. We present the following three metrics

to comprehensively evaluate the effectiveness of the MFCP method.

• Regret: Regret measures the gap in time cost 𝑓 (·) between
prediction-based matching and ground-truth-based matching. A

smaller regret indicates minimal impact of predictor errors on the

matching results. The formal definition of regret is provided in (6)

and is computed on the test set, distinguishing it from the loss.

• Reliability: Reliability reflects the average success probability

of task execution. Since the MFCP method relaxes the reliability

constraint 𝑔(·) into a logarithmic cost, it is necessary to evaluate

the reliability metric alongside the regret.

• Cluster Utilization: Cluster utilization is the total working

time of all clusters divided by their maximum possible working

time. It measures how evenly tasks are distributed across clusters.

Low utilization means some clusters stay idle for long periods while

others finish their tasks.

4.2 Ablation Study
We first demonstrate the effectiveness of the relaxation method

for gradient computation in MFCP through ablation experiments,

specifically including the following three metrics:

(1) Maximum Loss: We simplify the time loss function 𝑓 (·)
used for matching to a linear function. Specifically, 𝑓 (·) is
defined as the sum of execution times across all clusters

rather than the maximum execution time.

(2) Interior-PointMethod: We replace the logarithmic penalty

term for constraint violations with a hard penalty term, i.e.,

𝐹 (𝑋,𝑇 ,𝐴) = ˜𝑓 (𝑋,𝑇) + 𝜆 ·max(0, 𝛾 − 𝑔(𝑋,𝐴)).
(3) Zero-OrderGradient Estimation: In the exclusive case, we

evaluate the performance degradation caused by zero-order

gradient estimation compared to gradient computation.

The experimental results are shown in Table 1. Experiment (1)

demonstrates that using a linear time loss function leads to inac-

curate matching results, which significantly impacts both match-

ing regret and cluster resource utilization. Experiment (2) reveals

that employing hard penalty term reduces training efficiency and

decreases the proportion of samples that ultimately satisfy the re-

liability constraints. Experiment (3) proves that the zeroth-order

gradient estimation method achieves competitive performance com-

pared to gradient computation, enabling the extension of the MFCP

approach to non-convex scenarios. These findings systematically

validate the rationality and effectiveness of the gradient computa-

tion design in MFCP.

4.3 Overall Performance
We first conduct experiments with five deep learning tasks matched

to three heterogeneous clusters. To ensure generalizability, we

perform three experiment sets, each randomly selecting clusters

(settings A, B, C). Results are evaluated using Regret, Reliability,

and Cluster Utilization, as illustrated in Fig. 4.

Among the five methods, MFCP-AD and MFCP-FG consistently

perform best, achieving the lowest regret, indicating more accurate

matching decisions. This also shows that in convex optimization

scenarios, MFCP with forward gradient can achieve performance

comparable to analytical differentiation. TSM has slightly higher

regret, revealing the gap between optimizing MSE loss and direct

regret optimization. UCB’s regret falls between TSM and MFCP, as

it is more robust to prediction errors than TSM but lacks explicit

task modeling. TAM’s performance depends on cluster environ-

ment: it works well when task performance differences are small

but fails reliability constraints under heterogeneity. Owing to the

influence of the interior-point method, the MFCP methods achieve

slightly higher reliability than other algorithms. In terms of cluster

utilization, the MFCP methods attain higher utilization by more

accurately modeling the performance relationships among clusters

during the matching process, thereby also reducing the overall

execution time required for all clusters to complete the tasks.

4.4 Performance under Different Scale Settings
We next evaluate the scalability of cluster-task matching by varying

the number of tasks in a single round.Wemeasure the methods’ per-

formance in terms of Regret and Cluster Utilization under Setting

A, with the results presented in Fig. 5.

As the number of tasks increases, all methods show generally

linear regret growth. Both MFCP-AD and MFCP-FG maintain lower

regret than baselines, demonstrating robust matching decisions

across scales. This confirms the forward-gradient MFCP approach

achieves comparable results to analytical differentiation at varying

scales. For cluster utilization, all methods show increasing trends

with more tasks. TAM, which ignores task heterogeneity by using

training set averages, achieves lower utilization than TSM due to

8

Joint Prediction and Matching for Computing Resource Exchange Platforms ICPP ’25, September 08–11, 2025, San Diego, CA, USA

Setting A Setting B Setting C0

1

2

3

Re
gr

et
Regret

Setting A Setting B Setting C
70

75

80

85

90

Re
lia

bi
lit

y
(%

)

Reliability

Setting A Setting B Setting C

35

40

45

50

Ut
iliz

at
io

n
(%

)

Cluster Utilization

TAM TSM UCB MFCP-AD MFCP-FG

Figure 4: Overall experiment results. The figure illustrates the performance of the three metrics for the five methods under
three cluster combination settings. Error bars represent 10× the actual standard deviation for visibility.

3 4 5 6 7 8
Number of Tasks

0.5

1.0

1.5

2.0

2.5

Re
gr

et

Regret

3 4 5 6 7 8
Number of Tasks

40

42

44

46

48

50

Ut
iliz

at
io

n
(%

)

Cluster Utilization

TAM TSM UCB MFCP-AD MFCP-FG

Figure 5: Experiment results with different number of tasks.
MFCP-AD and MFCP-FG exhibit similar performance.

Table 2: Performance on parallel task execution settings

Method Regret Reliability Utilization

TAM 3.032 ± 0.000 0.759 ± 0.000 0.485 ± 0.000
TSM 2.014 ± 0.035 0.832 ± 0.003 0.547 ± 0.001
UCB 1.835 ± 0.064 0.847 ± 0.003 0.553 ± 0.002
MFCP-FG 1.496 ± 0.081 0.851 ± 0.005 0.560 ± 0.003

poorer task balancing. UCB outperforms TSM through more ac-

curate predictions in stochastic environments. By modeling the

downstream matching algorithm, the MFCP methods consistently

achieve the highest utilization, showing superior workload distri-

bution across clusters.

4.5 Performance on Parallel Task Execution
Settings

We further evaluated the performance of different methods in a

parallel execution setting, where tasks are executed concurrently on

clusters. Compared to the assumption that the total execution time

of tasks is additive when multiple tasks run on a cluster, considering

the acceleration effects introduced by parallel execution in cluster

schedulers is more realistic and important. To model this scenario,

we defined the function 𝜁 as an exponential decay curve from 1 to

0.6, reflecting the diminishing marginal effect typically observed

when clusters handle multiple tasks in parallel. We assume all

clusters share the same scheduling algorithm in this evaluation.

Given that the MFCP-AD method is unsuitable for non-convex

scenarios, we focused on the remaining four methods, with their

results summarized in Table 2.

The experimental results demonstrate that MFCP-FG consis-

tently outperforms baselines in matching regret and cluster uti-

lization, adapting well to parallel task complexities. Specifically,

compared to TSM and UCB, MFCP-FG reduced regret by 25.7% and

18.5%, confirming its superior matching accuracy in real-world par-

allel execution. This improvement highlights MFCP-FG’s practical

applicability in managing resources under challenging conditions,

validating its robustness in diverse cluster environments.

5 Related Works
Predicting the performance of deep learning tasks on hardware

devices primarily revolves around three methodological paradigms.

Configuration-based approaches analyze performance variations of

recurrent computational tasks under different configurations [18,

19, 37], but their neglect of internal model structures limits cross-

task generalization. Another approach decomposes models into

independent operators and estimates total runtime by accumulating

predicted execution times of individual components. This includes

physical modeling based on GPU computational capabilities and

operator workloads [35, 42], as well as data-driven predictions using

convolutional neural networks [25, 36]. However, thesemethods fail

to effectively capture topological dependencies between operators.

Recent advances employ graph neural networks (GNNs) for end-to-

end prediction by directly processing computational graphs [10, 14].

To accelerate training, feature compression techniques have been

proposed, such as Horus that vectorizes computational graphs [41]

and DNNAbacus utilizing network structural matrices [5].

Decision-Focused Learning (DFL) minimizes task regret through

joint optimization of prediction and decision processes. For differ-

entiable strictly convex optimization problems, gradients can be

computed via total differentiation of first-order optimality condi-

tions or KKT conditions [3, 9, 15]. Addressing non-differentiable

combinatorial optimization, research progresses along three main

directions: 1) Introducing smooth analytical terms like regulariza-

tion [38], logarithmic components [29], or entropy functions [4, 7]

to ensure differentiability; 2) Treating optimization as black-box

oracles and estimating gradients through random perturbations, as

exemplified by DBB [34], DPO [6], and I-MLE [32]; 3) Construct-

ing surrogate loss functions to provide meaningful subgradients,

including SPO [11], NCE [31], and LTR [28]. Our work specifically

investigates the scenario of prediction and matching in computing

resource exchange platforms, addressing unexplored challenges

9

ICPP ’25, September 08–11, 2025, San Diego, CA, USA Da Huo, Zhenzhe Zheng, Xiaoyao Huang, Hao Chen, Jianfeng Hu, Zhiyong Yan, Fan Wu, and Jie Wu

in DFL theory regarding multiple optimization variables and pre-

dictive variables within constraints, while proposing an efficient

predictor training framework tailored to practical applications.

6 Conclusion
In this work, We tackled the challenge of using idle computing

resources in deep learning clusters by combining performance pre-

diction and task matching into a single optimization framework.

MFCP solves issues like non-differentiability and gradient compu-

tation in complex scenarios, leading to better resource allocation.

Experiments show that MFCP improves decision accuracy, offering

an effective solution for growing AI computational needs.

Acknowledgments
This work was supported in part by National Key R&D Program of

China (No. 2023YFB4502400), in part by the Fundamental Research

Funds for the Central Universities (project numberYG2022QN039),

in part by China NSF grant No. 62322206, 62132018, 62025204,

62272307, 62372296, U2268204. The opinions, findings, conclusions,

and recommendations expressed in this paper are those of the

authors and do not necessarily reflect the views of the funding

agencies or the government.

References
[1] 2025. Supplementary Material. https://drive.google.com/drive/folders/

1bionk2aooM4q1bHjx9Npqq9AnOBkVI7E?usp=sharing.

[2] Amazon Web Services. 2024. Amazon Web Services (AWS). https://aws.amazon.

com Accessed: 2024-12-06.

[3] Brandon Amos and J. Zico Kolter. 2017. OptNet: Differentiable Optimization as a

Layer in Neural Networks. In ICML. 136–145.
[4] Brandon Amos, Vladlen Koltun, and J. Zico Kolter. 2019. The Limited Multi-Label

Projection Layer. CoRR abs/1906.08707 (2019).

[5] Lu Bai,Weixing Ji, Qinyuan Li, Xilai Yao,Wei Xin, andWanyi Zhu. 2022. DNNAba-

cus: Toward Accurate Computational Cost Prediction for Deep Neural Networks.

CoRR abs/2205.12095 (2022).

[6] Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe

Vert, and Francis R. Bach. 2020. Learning with Differentiable Pertubed Optimizers.

In NeurIPS. 9508–9519.
[7] Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. 2020. Fast

Differentiable Sorting and Ranking. In ICML. 950–959.
[8] Stephen Boyd and Lieven Vandenberghe. 2004. Convex optimization. Cambridge

university press.

[9] Priya L. Donti, J. Zico Kolter, and Brandon Amos. 2017. Task-based End-to-end

Model Learning in Stochastic Optimization. In NIPS. 5484–5494.
[10] Lukasz Dudziak, Thomas Chau, Mohamed S. Abdelfattah, Royson Lee, Hyeji Kim,

and Nicholas D. Lane. 2020. BRP-NAS: Prediction-based NAS using GCNs. In

NeurIPS. 10480–10490.
[11] Adam N. Elmachtoub and Paul Grigas. 2022. Smart "Predict, then Optimize".

Management Science 68, 1 (2022), 9–26.
[12] Equinix, Inc. 2024. Equinix: Global Data Center Solutions and Services. Website.

https://www.equinix.com Accessed: 2024-12-06.

[13] Chengquan Feng, Li Lyna Zhang, Yuanchi Liu, Jiahang Xu, Chengruidong Zhang,

Zhiyuan Wang, Ting Cao, Mao Yang, and Haisheng Tan. 2024. LitePred: Transfer-

able and Scalable Latency Prediction for Hardware-Aware Neural Architecture

Search. In NSDI.
[14] Yanjie Gao, Xianyu Gu, Hongyu Zhang, Haoxiang Lin, and Mao Yang. 2023.

Runtime Performance Prediction for Deep Learning Models with Graph Neural

Network. In ICSE-SEIP. 368–380.
[15] Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa

Cruz, and Edison Guo. 2016. On Differentiating Parameterized Argmin and

Argmax ProblemswithApplication to Bi-level Optimization. CoRR abs/1607.05447
(2016).

[16] Albert G. Greenberg, James R. Hamilton, David A. Maltz, and Parveen Patel. 2009.

The cost of a cloud: research problems in data center networks. ACM SIGCOMM
computer communication review 39, 1 (2009), 68–73.

[17] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeongjae Jeon,

Junjie Qian, Hongqiang Harry Liu, and Chuanxiong Guo. 2019. Tiresias: A GPU

Cluster Manager for Distributed Deep Learning. In NSDI. 485–500.

[18] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej

Wasowski. 2013. Variability-aware performance prediction: A statistical learning

approach. In ASE. 301–311.
[19] Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen, and Tianwei Zhang. 2021.

Characterization and prediction of deep learning workloads in large-scale GPU

datacenters. In SC. 104.
[20] Qinghao Hu, Meng Zhang, Peng Sun, Yonggang Wen, and Tianwei Zhang. 2023.

Lucid: A Non-intrusive, Scalable and Interpretable Scheduler for Deep Learning

Training Jobs. In ASPLOS. 457–472.
[21] Zhiming Hu, James Tu, and Baochun Li. 2019. Spear: Optimized Dependency-

Aware Task Scheduling with Deep Reinforcement Learning. In ICDCS. 2037–2046.
[22] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wen-

cong Xiao, and Fan Yang. 2019. Analysis of Large-Scale Multi-Tenant GPU

Clusters for DNN Training Workloads. In USENIX ATC. 947–960.
[23] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated

Learning: Challenges, Methods, and Future Directions. IEEE Signal Process. Mag.
37, 3 (2020), 50–60.

[24] Chieh-Jan Mike Liang, Zilin Fang, Yuqing Xie, Fan Yang, Zhao Lucis Li, Li Lyna

Zhang, Mao Yang, and Lidong Zhou. 2023. On Modular Learning of Distributed

Systems for Predicting End-to-End Latency. In NSDI. 1081–1095.
[25] Ying-Chiao Liao, Chuan-Chi Wang, Chia-Heng Tu, Ming-Chang Kao, Wen-Yew

Liang, and Shih-Hao Hung. 2020. PerfNetRT: Platform-Aware Performance

Modeling for Optimized Deep Neural Networks. In ICS. 153–158.
[26] Gangmuk Lim, Jeongseob Ahn, Wencong Xiao, Youngjin Kwon, and Myeongjae

Jeon. 2021. Zico: Efficient GPU Memory Sharing for Concurrent DNN Training.

In USENIX ATC. 161–175.
[27] Yizhou Luo, Qiang Wang, Shaohuai Shi, Jiaxin Lai, Shuhan Qi, Jiajia Zhang, and

Xuan Wang. 2024. Scheduling Deep Learning Jobs in Multi-Tenant GPU Clusters

via Wise Resource Sharing. In IWQoS. 1–10.
[28] Jayanta Mandi, Víctor Bucarey, Maxime Mulamba Ke Tchomba, and Tias Guns.

2022. Decision-Focused Learning: Through the Lens of Learning to Rank. In

ICML. 14935–14947.
[29] Jayanta Mandi and Tias Guns. 2020. Interior Point Solving for LP-based predic-

tion+optimisation. In NeurIPS.
[30] Microsoft Azure. 2024. Microsoft Azure Cloud Services. https://azure.microsoft.

com Accessed: 2024-12-06.

[31] Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi,

Victor Bucarey, and Tias Guns. 2021. Contrastive Losses and Solution Caching

for Predict-and-Optimize. In IJCAI. 2833–2840.
[32] Mathias Niepert, Pasquale Minervini, and Luca Franceschi. 2021. Implicit MLE:

Backpropagating Through Discrete Exponential Family Distributions. In NeurIPS.
14567–14579.

[33] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo. 2018.

Optimus: an efficient dynamic resource scheduler for deep learning clusters. In

EuroSys. 3:1–3:14.
[34] Marin Vlastelica Pogancic, Anselm Paulus, Vít Musil, Georg Martius, and Michal

Rolínek. 2020. Differentiation of Blackbox Combinatorial Solvers. In ICLR.
[35] Hang Qi, Evan Randall Sparks, and Ameet Talwalkar. 2017. Paleo: A Performance

Model for Deep Neural Networks. In ICLR.
[36] Chuan-Chi Wang, Ying-Chiao Liao, Ming-Chang Kao, Wen-Yew Liang, and Shih-

Hao Hung. 2020. Toward Accurate Platform-Aware Performance Modeling for

Deep Neural Networks. CoRR abs/2012.00211 (2020).

[37] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang, Jian He,

Yong Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. MLaaS in the Wild: Workload

Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters. In NSDI.
945–960.

[38] Bryan Wilder, Bistra Dilkina, and Milind Tambe. 2019. Melding the Data-

Decisions Pipeline: Decision-Focused Learning for Combinatorial Optimization.

In AAAI. 1658–1665.
[39] Gyeongsik Yang, Changyong Shin, Jeunghwan Lee, Yeonho Yoo, and Chuck Yoo.

2022. Prediction of the Resource Consumption of Distributed Deep Learning

Systems. Proc. ACM Meas. Anal. Comput. Syst. 6, 2 (2022), 29:1–29:25.
[40] Gingfung Yeung, Damian Borowiec, Adrian Friday, Richard Harper, and Peter

Garraghan. 2020. Towards GPU Utilization Prediction for Cloud Deep Learning.

In HotCloud.
[41] Gingfung Yeung, Damian Borowiec, Renyu Yang, Adrian Friday, Richard Harper,

and Peter Garraghan. 2022. Horus: Interference-Aware and Prediction-Based

Scheduling in Deep Learning Systems. IEEE Trans. Parallel Distributed Syst. 33, 1
(2022), 88–100.

[42] Geoffrey X. Yu, Yubo Gao, Pavel Golikov, and Gennady Pekhimenko. 2021. Habi-

tat: A Runtime-Based Computational Performance Predictor for Deep Neural

Network Training. In ATC. 503–521.
[43] Li Lyna Zhang, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting Cao, Yuqing

Yang, and Yunxin Liu. 2021. nn-Meter: towards accurate latency prediction of

deep-learning model inference on diverse edge devices. In MobiSys. 81–93.
[44] Dongruo Zhou, Lihong Li, and Quanquan Gu. 2020. Neural Contextual Bandits

with UCB-based Exploration. In ICML. 11492–11502.

10

https://drive.google.com/drive/folders/1bionk2aooM4q1bHjx9Npqq9AnOBkVI7E?usp=sharing
https://drive.google.com/drive/folders/1bionk2aooM4q1bHjx9Npqq9AnOBkVI7E?usp=sharing
https://aws.amazon.com
https://aws.amazon.com
https://www.equinix.com
https://azure.microsoft.com
https://azure.microsoft.com

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Predict-then-Matching Framework
	2.2 Matching-Focused Prediction Framework

	3 The Design of MFCP
	3.1 The Whole Pipeline
	3.2 Relaxing Optimization Problem
	3.3 End-to-end Training
	3.4 Extension to Parallel Task Execution
	3.5 Algorithm Analysis

	4 Evaluation Results
	4.1 Experimental Setup
	4.2 Ablation Study
	4.3 Overall Performance
	4.4 Performance under Different Scale Settings
	4.5 Performance on Parallel Task Execution Settings

	5 Related Works
	6 Conclusion
	Acknowledgments
	References

