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Abstract—Existing Data Center Network (DCN) architectures
are classified into two categories: switch-centric and server-
centric architectures. In switch-centric DCNs, routing intelligence
is placed on switches; each server usually uses only one port of
the Network Interface Card (NIC) to connect to the network.
In server-centric DCNs, switches are only used as cross-bars,
and routing intelligence is placed on servers, where multiple
NIC ports may be used. In this paper, we formally introduce
a new category of DCN architectures: the dual-centric DCN
architectures, where routing intelligence can be placed on both
switches and servers. We propose two typical dual-centric DCN
architectures: FSquare and FRectangle, both of which are based
on the folded Clos topology. FSquare is a high performance DCN
architecture, in which the diameter is small and the bisection
bandwidth is large; however, the DCN power consumption per
server in FSquare is high. FRectangle significantly reduces the
DCN power consumption per server, compared to FSquare, at
the sacrifice of some performances; thus, FRectangle has a larger
diameter and a smaller bisection bandwidth. By investigating
FSquare and FRectangle, and by comparing them with existing
architectures, we demonstrate that, these two novel dual-centric
architectures enjoy the advantages of both switch-centric designs
and server-centric designs, have various nice properties for
practical data centers, and provide flexible choices in designing
DCN architectures.

Index Terms—Data center network (DCN), dual-centric design,
end-to-end-delay, bisection bandwidth, power efficiency.

I. INTRODUCTION

Nowadays, data centers have become important infrastruc-
tures to support various cloud computing services, varying
from web search, email, video streaming, and social network-
ing, to distributed file systems such as GFS [1], and distributed
data processing engines, such as MapReduce [2]. The Data
Center Networks (DCNs) specify how servers and various
other components are interconnected in data centers. DCNs
have a significant influence on the quality of the services that
data centers provide to various applications.

Existing DCN architectures have been classified into t-
wo categories: switch-centric architectures and server-centric
architectures [3]. In switch-centric designs [4]–[6], routing
intelligence is placed on switches; a server usually uses only
one NIC port, and is not involved in forwarding, or more
accurately, relaying packets for other servers. In server-centric
designs [7]–[12], switches are only used as cross-bars, and
routing intelligence is placed on servers; servers are usually
equipped with multiple NIC ports, and act as both computing
nodes and packet forwarding nodes. Switch-centric architec-
tures enjoy the fast switching capability of switches, but

switches are less programmable than servers; thus, complex
network control and management have to resort to high-end
switches that are not only expansive, but also power hungry.
Server-centric architectures enjoy the high programmability of
servers, but servers usually have larger processing delays than
do switches. Can we achieve the advantages of and mitigate
the drawbacks of both categories? Motivated by this aspect,
we formally introduce a new category of DCN architectures:
the dual-centric DCN architectures, where routing intelligence
can be placed on both switches and servers. By involving both
servers and switches in routing, dual-centric DCNs can enjoy
both the fast switching capability of switches and the high pro-
grammability of servers. With this mixed design philosophy,
dual-centric architectures are expected to provide us with more
flexible choices in designing DCN architectures, and to enjoy
various other advantages of both server-centric and switch-
centric designs. As switches are becoming more programmable
via software defined networking [13], and servers are tending
to utilize specialized hardware for packet forwarding [14],
both switches and servers will carry both packet forwarding
capability and routing intelligence. Thus, the proposed dual-
centric design philosophy will certainly become a potential
candidate in future DCN architecture designs.

We propose two typical dual-centric DCN architectures,
named FSquare and FRectangle. Both of them are based on
the folded Clos topology [6]. FSquare is a two-dimensional
architecture; each dimension is a two-level folded Clos topol-
ogy. FRectanle is also a two-dimensional architecture; in
one dimension, it has a folded Clos topology, while in the
other dimension, it applies sparse interconnection rules to
reduce the number of switches. All servers in FSquare and
FRectangle can help in forwarding packets for other servers.
By comparing them with various existing DCN architecture,
and by investigating themselves, we show that the two newly
proposed architectures have various appealing properties.

Performances and power efficiency are two crucial con-
siderations in designing DCNs. Two important performance
metrics for a DCN architecture are end-to-end delays in the
DCN and the bisection bandwidth of the DCN. End-to-end
delays translate directly or indirectly to applications’ response
times in various situations. Bisection bandwidth provides key
information on the potential throughput that the network can
provide, and also indicates the fault-tolerance capabilities. As
servers in a data center are becoming more and more power
efficient, the DCN tends to consume 50% of the total IT power



[5] of a data center; thus, the DCN power consumption has
also become an important issue.

To characterize the end-to-end delays between two servers
in a DCN, the concept of diameter is usually used, which is
defined as the maximum length of the shortest path between
any pair of two servers. However, for switch-centric and
server-centric architectures, the path lengths are calculated
differently by existing works. For switch-centric architectures,
the length of a path is calculated as the number of links in the
path [15], [16]; for server-centric architectures, the length is
calculated as the number of servers (excluding the source and
the destination) in the path between the two servers, plus 1 [7]–
[12]. A diameter of 6 in Fat-Tree [4] means a totally different
thing than a diameter of 6 in BCube [8]. However, a lot of
works still compare these two different kinds of diameters
[3], [7], [15], [16]. This somewhat confuses the understanding
of the end-to-end delay in a general DCN. Motivated by
this issue, we present a unified path length definition and,
accordingly, a unified diameter definition for a general DCN:
either a switch-centric one, a server-centric one, or a dual-
centric one.

As can be seen, in a general DCN, a server may be involved
in forwarding packets for other servers. In this case, the
power consumption of the server’s packet forwarding engine
should also be included as part of the power consumption
of the DCN. Based on this observation, we present a DCN
power consumption model for general DCNs, which takes into
consideration the power consumption of the server’s packet
forwarding engine.

Our main contributions in this paper are as flows:
• We introduce a new category of DCN architectures, i.e.,

the dual-centric DCN architectures, to complement the
current DCN architecture classifications. To the best of
our knowledge, we are the first to formally introduce
this dual-centric design philosophy. We also propose
two novel typical dual-centric architectures: FSquare and
FRectangle.

• To enable fair and meaningful comparisons among var-
ious existing DCN architectures and our proposed dual-
centric architectures, we propose a unified path length
definition, and, accordingly, a unified diameter definition,
for general DCNs. Also, to characterize the power effi-
ciency of a general DCN, we propose a unified DCN
power consumption model.

• By investigating the two proposed architectures and by
comparing them with existing DCN, we show that dual-
centric architectures can have appealing properties for
practical DCN designs. Also, routing simulations are
conducted for FSquare and FRectangle to justify their
performances under various traffic patterns and loads.

The rest of the paper is organized as follows. Section II
presents the unified path length, DCN diameter definitions, and
DCN power consumption model. We describe our novel DCN
architectures, FSquare and FRectangle, in Section III, where
we also describe their routing schemes and basic properties.
We further investigate properties of FSquare and FRectangle

in Section IV. Supporting simulations are conducted in Sec-
tion V. Additional discussions are provided in Section VI.
Conclusions and future work directions are sketched in Sec-
tion VII.

II. PRELIMINARIES

To scale the data center to a large size, existing works
have chosen to “scale out” the data center, which means
using a large number of low-end Commodity Off The Shelf
(COTS) devices to extend the data center, instead of using
a small number of high-end expansive ones. For the ease of
presentation, we assume that all the switches and servers are
COTS ones, and are homogeneous. Packets on switches and
servers experience three important delays: processing delay,
transmission delay, and queuing delay; we denote them as
dw,p, dw,t, dw,q and dv,p, dv,t, dv,q for switches and servers,
respectively. The processing delay is the time required to
examine the packet’s head and determine where to direct
the packet. Queuing delays largely depend on network traffic
conditions and routing protocols. Currently, our focus is on
the architectures of DCNs; thus, we do not consider the
queuing delay explicitly. Another reason for not considering
the queuing delay is that, under various control mechanisms,
the queuing delay can be significantly reduced to minimal
values; there have been various works on this [17], [18]. For
simplicity, we assume that dw,q=dv,q=0.

Switches can operate in two modes: store-and-forward and
cut-through. In store-and-forward mode, a switch needs to
receive all the flits of the packet before it forwards the
packet to the next device. The total delay on the switch is
dw = dw,p+dw,t. The typical value of dw,p is around 2µs
[19]. dw,t = Spacket/rbit, where Spacket is the size of the
packet and rbit is the data transmission rate. Spacket varies
between 64 bytes and 1514 bytes. Given data transmission
rate rbit = 1Gbps, dw,t varies from about 0.5µs to about
10µs. In cut-through mode, a switch starts forwarding the
packet when it receives the first flit of the packet. Thus, the
transmission delay is negligible, and the total delay is around
dw=dw,p=2µs.

The packet forwarding scheme on a server can be im-
plemented in either software or hardware. In software-based
forwarding, the processing delay on a server is much higher
than that on a switch, with a typical value of about 10µs [19].
Depending on CPU load and NIC configuration, this value
varies significantly. In hardware-based forwarding, dv,p can
be reduced to be close to the processing delay on a switch
[14]. We do not delve into the detailed implementation of the
packet forwarding schemes on servers. The overall delay on a
server is dv=dv,p+dv,t, where dv,t can be calculated in the
same way as dw,t. Based on the typical values, dv is generally
1 to several times of dw.

Network links have propagation delay, dl, which can be cal-
culated by dividing the length of the link (Llink) by the speed
of the signal in the transmission medium: dl = Llink/(ηc),
where η is a constant around 0.7 and c is the speed of light in
a vacuum. Since the length of links in a data center is usually



less than 10 meters, the propagation delay on a link is usually
less than 10/(0.7×3×108)s = 0.048µs. Compared with the
typical delays on switches and servers, the propagation delay
is negligible.

Unified Path Length and Diameter Definitions. In general
DCNs, both switches and servers may be involved in packet
forwarding. Denote the numbers of switches and servers in
a path, P from a source server to a destination server by
nP,w, and nP,v (excluding the source and the destination),
respectively. We define the path length of P as follows:

dP = nP,wdw + (nP,v + 1)dv, (1)

where 1 is added to nP,v, because the delay on the source
server should be included as part of the end-to-end delay. The
above path length definition applies to all general DCNs. If
we assume that dw=dv=1, the above path length definition is
consistent with the path lengths in switch-centric architectures.
If we assume that dv=1 and that dw is negligible, the above
path length definition is consistent with the path lengths in
server-centric architectures. Under this unified path length
definition, we define the diameter of a general DCN as the
maximum path length (based on Eq. (1)) of the shortest paths
between all pairs of servers in the DCN:

d = max
P∈{P}

dP , (2)

where P is the set of shortest paths between all pairs of servers
in the DCN.

DCN Power Consumption Model. We consider the power
consumption of all DCN devices. A switch’s power con-
sumption, pw, is part of the DCN power consumption. For
a server in a switch-centric architecture, only the NIC’s power
consumption, pnic, belongs to the DCN power consumption.
In a DCN where the server can be used for packet forwarding
for other servers, the power consumption of the server’s packet
forwarding engine, either software-based or hardware-based,
should also be included as the DCN power consumption.
We denote pfwd as the power consumption of the server’s
packet forwarding engine (either the CPU core’s power con-
sumption for software-based forwarding [20] or the additional
hardware’s power consumption for hardware-based forwarding
[14]), and denote the extent to which a server is involved in
packet forwarding by α. The overall DCN power consumption
can be calculated as follows: pdcn =Nwpw +nnicNvpnic+
αNvpfwd, where Nw and Nv are the numbers of switches
and servers in the DCN, respectively, and nnic is the average
number of NIC ports used on a server. Since different DCNs
can hold different numbers of servers, we define the DCN
power consumption per server as the power efficiency metric
of a general DCN:

pV = pdcn/Nv = pwNw/Nv + nnicpnic + αpfwd. (3)

For switch-centric architectures, α = 0. For DCNs where
servers are involved in forwarding packets for other servers,
α depends on various factors; for simple and fair comparison,
we can choose α=1. A practical value of pw for a switch
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Fig. 1. FSquare(4). We consistently use rectangles to represent switches and
circles to represent servers, respectively.

with 48 1Gbps ports is about 150 Watts [21]; a practical value
of pnic for 1Gbps NIC port is 2 Watts [22]. As reported in
[20], when software-based forwarding is used, the CPU cores
can be in reserved or shared models, which correspond to
different pfwd values, varying around 5Watts if NIC ports are
10Gbps. The value for pfwd will be lower if NIC ports are
1Gbps. In hardware-based forwarding, pfwd may also have
quite different values [14].

III. DUAL-CENTRIC DCNS: FSQUARE & FRECTANGLE

A. FSquare Construction

An FSquare has two dimensions, which are called rows
and columns, respectively. We denote an FSquare built from
servers with 2 NIC ports and n-port switches by FSquare(n).
Since switches in data centers usually have large switch port
counts, in the rest of the paper, we assume that n is greater
than 4 and is an even number. In each row and in each column,
there are two levels of switches: n/2 level 2 switches and n
level 1 switches; every level 2 switch is connected to every
level 1 switch. In other words, the set of n/2 level 2 switches
and the set of n level 1 switches form a complete bipartite
graph. Then, there are n/2 ports remaining on each of the level
1 switches; we use these ports to connect n/2 servers. As a
result, the switches and servers in each row and each column
form a simple instance of the folded Clos [6] topology. We
denote the server located at the ith row and the jth column by
ai,j (0≤i,j≤n2/2−1). A level 1 switch is also called a Top of
Rack (ToR) switch. We can see that, each server in an FSquare
connects to two ToR switches, one in the row and one in the
column; we call them the row ToR switch and the column
ToR switch of the server, respectively. We number the ToR
switches sequentially, such that ai,j’s row ToR switch is the
bj/(n/2)cth ToR switch in the ith row, and that ai,j’s column
ToR switch is the bi/(n/2)cth ToR switch in the jth column.
The level 2 switches are also called row level 2 switches or
column level 2 switches, depending on whether they connect
to row or column ToR switches. An FSquare(4) is shown in
Fig. 1, where we only draw the zeroth row and the zeroth



column; other rows and columns are represented by grey dash
lines.

B. Routing in FSquare

We consider shortest path routing in FSquare(n). We denote
the source and destination servers by ai,j and ak,l (0 ≤
i, j, k, l ≤ n2/2 − 1), respectively. We first consider how the
shortest path can be constructed, and then discuss how the
routing scheme can be implemented.

If the source and destination servers are in the same row,
i.e., i = k, then the shortest path is within in this row. If
bj/(n/2)c=bl/(n/2)c, i.e., the source and destination servers
are connected to the same row ToR switch, the the shortest
path consists of one switch, i.e., the common row ToR switch;
otherwise, the shortest path consists of three switches: the
source server’s row ToR switch, a randomly chosen row level
2 switch, and the destination server’s row ToR switch. If the
source and destination servers are in the same column, the
shortest path can be constructed similarly.

If i 6=k and j 6= l, we can choose one from two intermediate
servers: ai,l and ak,j . In other words, the first choice is to
traverse along the row, and then along the column; the second
choice is to first traverse along the column, and then along the
row. We can randomly choose one from the two. After that,
the shortest path within the row and the shortest path within
the column will be the same as in the cases when i=k, and
when j= l, respectively.

We let the source server determine the intermediate server
in the shortest path, if there is any, and then push the servers
in the shortest path (including the destination, while excluding
the source) from the last one to the first one into a structure
called server stack, and label the intermediate server as a fake
destination and label the real destination as a true destination.
Then, it sends the packet to the corresponding ToR switch,
using the server at the top of the server stack, as the temporary
destination. When another server receives the packet, it pops
the next server in the server stack, and checks whether itself
is a fake or true destination. If it is a true destination, it
consumes the packet; otherwise, it continues to send the
packet to a corresponding ToR switch using the next server
as the temporary destination. When a switch receives the
packet, it can only see the temporary destination set by the
previous sending server, either the source, or the intermediate
server, and makes routing decision based on the temporary
destination.

Notice that, when multiple intermediate servers are avail-
able, the source server can make a wiser decision on which
intermediate server to use based related information along the
row and/or column, instead of randomly choosing. Also, when
a ToR switch needs to send a packet to a level 2 switch, it
can make a wiser decision on which level 2 switch to send to,
based on related information within the row/column.

Both servers and switches in FSquare have some degree
of routing intelligence, which reflects the dual-centric design
philosophy. Thus, both the fast switching capability of switch-
es and the high programmability of servers can be utilized.

Notice that, in a shortest path, at most one intermediate server
is involved in relaying packets for other servers. This will not
increase the end-to-end delay significantly.

C. FSquare Basic Properties

Property 1. In an FSquare(n), the number of servers is Nv =
n4/4, and the number of switches is Nw = 3n3/2.

Proof: The number of servers in each row and in each
column is n2/2; and the number of switches in each row and
in each column is n+n/2=3n/2. The architecture has n2/2
rows and n2/2 columns. Thus, the number of servers is Nv=
n2/2×n2/2 = n4/4; and the number of switches is Nw =
3n/2×n2/2×2=3n3/2.

Property 2. FSquare(n) has a diameter of d=6dw+2dv .

Proof: Obviously, the longest shortest path in an FSquare
is between two servers that are not in the same row and are not
in the same column. We consider two servers, ai,j and ak,l,
where i 6= k and j 6= l. A shortest path from ai,j to ak,l can be
the shortest path from ai,j to ai,l plus the shortest path from
ai,l to ak,l. Though ai,j and ak,l may connect to the same
switch, in the worst case, the shortest path from ai,j to ai,l
consists of 3 switches. Similarly, in the worst case, the shortest
path from ai,l to ak,l also consists of 3 switches. According
to Eq. (1) and Eq. (2), the diameter of an FSquare(n) is d=
6dw+2dv .

We assume that all the links in a DCN have a unit band-
width, 1. Then, bisection bandwidth of a DCN is the minimal
number of links to be removed to partition the DCN into two
parts of “equal” sizes that differ by at most 1. We conjecture
that FSquare has the following property.

Property 3. The bisection bandwidth of an FSquare(n) is
B=Nv/2.

Illustration: Since FSquare(n) is highly symmetric, we
can cut the architecture into two equal halves through either
all the rows or all the columns. Without loss of generality,
we choose to cut through all the rows. We first consider
cutting one row. Recall that there are n2/2 servers in each
row. The first half (n2/4) of servers can have an exclusive
path to another server in the second half. Thus, cutting one
row of servers into two equal halves requires removing n2/4
links. Notice that there are n2/2 rows in total; to cut the
whole architecture into two equal halve, we need to remove
n2/4× n2/2 = n4/8 links. Thus, the bisection bandwidth of
an FSquare(n) is B = n4/8 = Nv/2.

Property 4. The DCN power consumption per server of an
FSquare(n) is pV=6pw/n+ 2pnic + pfwd.

Proof: The switch-number to server-number ratio in an
FSquare(n) is Nw/Nv=(3n

3/3)/(n4/4)=6/n; in an FSquare,
each server uses 2 NIC ports, and servers may be involved in
forwarding packets for other servers.
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Fig. 2. FRectangle(4)

D. FRectangle Construction

As we can see, the FSquare architecture uses too many
switches, which significantly increases the power consumption
of the DCN. To reduce the power consumption, we aim
to reduce the number of switches in the architecture. A
direct approach is to replace the folded Clos topology in
one dimension with a traditional single-rooted tree topology;
however, the traditional single-rooted tree topology is known
to have a large oversubscription ratio, which generally results
in a low bisection bandwidth. Thus, we adopt another strategy,
which uses two types of simple interconnections to replace the
folded Clos topology in all the rows. The new architecture is
named FRectangle. In FRectangle(n), the interconnections in
all the columns are the same as in FSquare(n). However, in
each row, there are n2 servers. In each row, n switches are
used to interconnect n servers. Each row of the FRectangle
architecture chooses one type of interconnections from the
following:

• Type A interconnections: For servers in the ith row,
ai,j , 0≤j≤n2−1, if kn≤j≤kn+n−1, (0≤k≤n−1),
then ai,j is connected to the kth switch in this row.

• Type B interconnections: For servers in the ith row,
ai,j , 0≤ j≤n2−1, if j%n=k, then ai,j is connected to
the kth switch in this row. Obviously, 0≤k≤n−1.

We let FRectangle choose from the two types of interconnec-
tions in an interleaved fashion; in other words, if i%2 = 0,
the ith row chooses the type A interconnections; if i%2 = 1,
the ith row chooses the type B interconnections. The row ToR
switches, column ToR switches, and column level 2 switches
in FRectangle are similarly defined to those in FSquare.
There are no row level 2 switches in FRectangle. Fig. 2
shows an FRectangle(n). Notice that we only draw the zeroth
column, the zeroth and last rows; other columns and rows are
represented by grey dash lines.

E. Routing in FRectangle
Again, we consider the shortest path routing scheme in

FRectangle. Before presenting the routing scheme, we would
like to introduce some characteristics in FRectangle.

Characteristic 1. For two servers in the same row, commu-
nications among them may or may not be completed in the
current row. For two servers that belong to the same type of
rows, the communication between them may or may not need
a row of a different type to relay.

Illustration: Given two servers in the row, ai,j and ai,l,
we first consider the case when i%2 = 0, i.e., the row is a
type A row. If bj/nc = bl/nc, then ai,j and ai,l are connected
to the same row ToR switch, i.e., the bj/ncth ToR switch in
the row; otherwise, they are not connected in this row. For the
case when i%2 = 1, the discussions are similar. Moreover,
for two servers, ai,j and ak,l that belong to the same type of
rows. The communication between them may need a row of a
different type to relay. Taking i%2 = k%2 = 0 as an example,
if bj/nc 6= bl/nc, without using a type B row, ai,j and ak,l
will never be connected; thus, the communication between ai,j
and ak,l must need server(s) in a type B row to relay.

Characteristic 2. For a rack of n/2 servers that are connected
to the same column ToR switch, there exists at least one server
belonging to a type A row, and at least one server belonging
to a type B row.

Illustration: There are n/2 servers connecting to the kth
column ToR switch in the jth column, i.e., servers akn/2,j ,
akn/2+1,j , · · · , akn/2+n/2−1,j . Since rows choose type A and
type B interconnections in a interleaved fashion, and n/2 ≥ 2,
this characteristic follows directly. Specifically, if n/2 is even,
there will be n/4 servers belonging to the type A row and n/4
servers belonging to the type B row. If n/2 is odd, when k is
even, there will be (n+2)/4 servers belonging to the type A
row and (n−2)/4 servers belonging to the type B row; when
k is odd, there will be (n−2)/4 servers belonging to the type
A row and (n+2)/4 servers belonging to the type B row.

Now, we are ready to consider the detailed shortest path
routing in FRectangle. We denote the source and destination
servers by ai,j and ak,l (0≤ i, k≤n2/2−1 and 0≤j, l≤n2−1),
respectively. Again, we first consider how the shortest path can
be constructed, and then discuss how the routing scheme can
be implemented. If ai,j and ak,l are in the same column, i.e.,
j=l, the shortest path will be within the column. This case is
essentially the same as that in FSquare, and requires no further
explanation.

In the following, we consider the general cases where
ai,j and ak,l are not in the same column. Based on the
characteristics observed before, the types of rows that the
source and destination belong to make the most important
difference. Thus, we classify the cases according to the row
types of the source and destination servers.

If the source, ai,j belongs to a type A row, and the
destination, ak,l belongs to a type B row, i.e., i%2 = 0 and
k%2 = 1, a packet from ai,j to ak,l does not need to traverse



servers in rows other than the ith row and the kth row. Notice
that, ai,j is connected to the bj/ncth row ToR switch in the
ith row; besides, servers, ai,bj/ncn, ai,bj/ncn+1, ai,bj/ncn+2,
· · · , ai,bj/ncn+n−1 are also connected to the bj/ncth row ToR
switch in the ith row. Notice also that, ak,l is connected to
the (l%n)th row ToR switch in the kth row; besides, servers,
ak,(l%n), ak,(l%n)+n, ak,(l%n)+2n, · · · , ak,(l%n)+(n−1)n are
also connected to the (l%n)th row ToR switch in the kth row.
Thus, we can find the column number c∗ = bj/ncn+ (l%n),
such that ai,c∗ is connected to the same row ToR switch as
ai,j , and that ak,c∗ is connected to the same row ToR switch
as ak,l. We use ai,c∗ and ak,c∗ as the first relay server and
the second relay server, to help forward packets from ai,j to
ak,l. Notice that the shortest path from ai,c∗ to ak,c∗ is in the
same column and requires no further explanation. Thus, the
shortest path from ai,j to ak,l consists of three segments: the
path from ai,j to ai,c∗ , which includes the bj/ncth row ToR
switch in the ith row, the shortest path from ai,c∗ to ak,c∗ ,
and the path from ak,c∗ to ak,l, which includes the (l%n)th
row ToR switch in the kth row. Cases where ai,j is identical
to ai,c∗ , and/or ak,c∗ is identical to ak,l, are just special cases
which require no further explanation.

If ai,j belongs to a type B row, and ak,l belongs to a type A
row, i.e., i%2 = 1 and k%2 = 0, the situation is very similar
to the previous one. The shortest path can be constructed by
reversing the source and destinations; thus, we omit further
discussions here.

If ai,j and ak,l both belong to type A rows, i.e., i%2=
k%2=0, we need to consider which columns that the source
and destination are in. Notice that in this case, whether i is or
is not equal to k makes little difference. If bj/nc=bl/nc, then
ai,j is connected to the bj/ncth row ToR switch in the ith row,
and ak,l is also connected to the bj/ncth (bl/ncth) row ToR
switch in the kth row. Thus, we can choose ai,l as the relay
server for forwarding packets from ai,j to ak,l. The shortest
path consists of two segments: the path from ai,j to ai,l, and
the shortest path from ai,l to ak,l in the lth column. Notice that,
we can also choose ak,j as the relay server. If bj/nc6=bl/nc,
according to Characteristic 1, we need servers in a type B row
to relay packets from ai,j and ak,l. We choose a server that
connects to the same column ToR switch as of ai,j’s, and that
belongs to a type B row as the first relay server; we denote the
server as ar∗,j . Notice that, we can always succeed in choosing
ar∗,j according to Characteristic 2. The second relay server is
chosen as ar∗,bl/ncn+j%n, which connects to the same (j%n)th
row ToR switch in the r∗th row, as ar∗,j does. The third
relay server is chosen as ak,bl/ncn+j%n, which connects to
the same bl/ncth row ToR switch in the kth row, as ak,l
does. The shortest path from ar∗,bl/ncn+j%n to ak,bl/ncn+j%n

is within the (bl/ncn+j%n)th column, and requires no further
explanation. Then, the shortest path from ai,j to ak,l consists
of at most four segments: the path from ai,j to the first relay
server, which includes one switch; the path from the first relay
server to the second relay server, which includes one switch;
the shortest path from the second relay server to the third relay
server, which includes at most 3 switches; and the path from

source

first relay server

second relay server third relay server destination

Type A row

Type B row

Type A row

Fig. 3. Shortest path for the case when the source and destination both
belong to type A rows.

the third relay server to ak,l, which includes one switch. Fig. 3
shows an example that illustrates the shortest path construction
in this case.

If ai,j and ak,l both belong to type B rows, the shortest
path construction is similar to the case when they both belong
to type A rows. We omit further discussions here.

We also let the source server determine the intermediate
server(s) in the shortest path, if there is any, and then push the
servers in the shortest path (including the destination, while
excluding the source) from the last one to the first one into
the server stack, and label the intermediate server(s) as fake
destination(s) and label the real destination as a true destina-
tion. When sending the packet to a ToR switch, the source
server sets the next server of the packet as the temporary
destination. When another server in the DCN receives the
packet, it pops the server stack of the packet. If the popped
value is a true destination, the server consumes the packet.
If the popped value is a fake destination, it sends the packet
to a corresponding ToR switch, and sets the next server in
the server stack as the temporary destination. When a switch
receives the packet, only the temporary destination (either
fake or true) set by the previous sending server (either the
source or an intermediate server) is visible to the switch. The
switch makes forwarding decisions based on this temporary
destination.

When multiple choices are available, the source can make
a wiser decision on which set of intermediate server(s) to use
based on related information along the rows and/or columns,
instead of randomly choosing. Also, when a column ToR
switch needs to send a packet to a column level 2 switch, it can
make a wiser decision on which level 2 switch to send to based
on related information within the column. Thus, FRectangle is
also a dual-centric design, which enjoys both the fast switching
capability of switches and the high programmability of servers.

In both FSquare and FRectangle, the basic shortest path
routing schemes can be easily extended to complex routing
designs, where ToR switches can help in load-balancing,
traffic-aware, fault-tolerant, and even multi-path routing within
the row and/or the column, while servers can help in load-
balancing, traffic-aware, fault-tolerant, and even multi-path
routing among the rows and/or the columns.

F. FRectangle Basic Properties

Property 5. In an FRectangle(n), the number of servers is
Nv = n4/2, and the number of switches is Nw = 2n3.



TABLE I
COMPARISON OF VARIOUS DCN ARCHITECTURES

Nv(n=24) Nv(n=48) Nw/Nv d B pV

FDCL(n, 3) 3,456 27,648 5/n 5dw+dv Nv/2 5pw/n + pnic

FDCL(n, 4) 41,472 663,552 7/n 7dw+dv Nv/2 7pw/n + pnic

FBFLY(4, 7, 3) 49,125 — 8/24 8dw+dv Nv/3 8pw/n + pnic

FBFLY(8, 6, 6) — 1,572,864 8/48 7dw+dv Nv/3 8pw/n + pnic

FSquare(n) 82,944 1,327,104 6/n 6dw+2dv Nv/2 6pw/n + 2pnic + pfwd

FRectangle(n) 165,888 2,654,208 4/n 6dw+4dv Nv/4 4pw/n + 2pnic + pfwd

BCube(n, 3) 331,776 5,308,416 4/n 4dw+4dv Nv/2 4pw/n + 4pnic + pfwd

SWCube(r, 4) 28,812 685,464 2/n 5dw+5dv (Nv/8)× r/(r − 1) 2pw/n + 2pnic + pfwd

DPillar(n, 4) 82,944 1,327,104 2/n 6dw+6dv Nv/4 2pw/n + 2pnic + pfwd

DCell(n, 2) 360,600 5,534,256 1/n 4dw+7dv > Nv/(4 logn Nv) pw/n + 3pnic + pfwd

FiConn(n, 2) 24,648 361,200 1/n 4dw+7dv > Nv/16 pw/n + 7pnic/4 + 3pfwd/4

Proof: In an FRectangle(n), there are n2/2 rows and n2

columns of servers. Thus, the total number of servers is Nv=
n2/2 ×n2 =n4/2. In each column, there are 3n/2 switches;
in each row, there are n switches. Thus, the total number of
switches is Nw=3n/2×n2+n×n2/2=2n3.

Property 6. FRectangle(n) has a diameter of d=6dw+4dv .

Proof: According to the shortest path routing scheme
in FRectangle, the maximum length of the shortest path is
achieved in the case when the source and destination belong to
rows of the same type. In this case, the shortest path consists of
at most 4 segments: the paths from the source to the first relay
server, from the first relay server to the second relay server,
from the second relay server to the third relay server, and
from the third relay server to the destination. The first, second,
and the fourth segment each consists of only one switch. The
third segment is a shortest path between two server in the
same column, and thus consists of at most three switches.
According to Eq. (1) and Eq. (2), the diameter of FRectangle
is d=3dw+3dw+(3+1)dv=6dw+4dv.

We conjecture that FRectangle has the following property
on bisection bandwidth.

Property 7. The bisection bandwidth of an FRectangle(n) is
B=Nv/4.

Illustration: Cutting a column of FRectangle into two
halves requires removing n2/4 links, while there are n2

columns. Thus, cutting through columns requires removing
n4/4 links. However, cutting rows is different. Actually, if we
consider a single row each time, no links needs to be removed,
since servers in each row are not fully connected, and they are
already partitioned into two equal halves. Take a look at any
type A row, and it is not difficult to find out. If we consider
a type A row and a type B row together, we can see these
two rows are connected through columns. An intuitive way to
cut rows is to cut through the middle. For a pair of two rows
consisting of one type A row and one type B row, the links to
be removed consist of only links removed in the type B row,
which is n2/2, since each server in the first half of a type B
row has an exclusive path to a server in the second half of
the row. Notice that, we have n2/4 type A rows and n2/4
type B rows; thus, we have n2/4 such two-row pairs. Thus,
cutting FRectangle into two halves through the rows requires
removing n2/2×n2/4=n4/8 links. The bisection bandwidth
is B=min{n4/4, n4/8}=Nv/4.

Property 8. The DCN power consumption per server of an
FRectangle(n) is pV=4pw/n+ 2pnic + pfwd.

Proof: The switch-number to server-number ratio in an
FRectangle(n) is Nw/Nv = 2n3/(n4/2) = 4/n. In an
FRectangle, each server uses 2 NIC ports, and servers may
be involved in forwarding packets for other servers.

IV. MORE ON FSQUARE AND FRECTANGLE

In this section, we investigate more properties of FSquare
and FRectangle by comparing them with typical existing
architectures and by investigating themselves.

A. Typical Existing Architectures
Existing DCN architectures have been classified as switch-

centric architectures and server-centric architectures.
Typical switch-centric architectures include folded-Clos [6],

Fat-Tree [4], Flattened Butterfly [5], and HyperX [6]. We
denote a folded-Clos DCN architecture with l levels of n-
port switches by FDCL(n, l). Fat-Tree is actually a folded-
Clos with 3 levels, i.e., FDCL(n, 3). In a Flattened Butterfly
(FBFLY), switches form a generalized hypercube [23]. Then,
each switch is connected to a set of c servers. An FBFLY
with k dimensions and r switches along each dimension is
denoted by FBFLY(r, k, c). Typical server-centric architectures
include BCube [8], SWCube [12], DPillar [11], DCell [7],
and FiConn [9]. BCube, DCell and FiConn are recursively
defined architectures, they can be represented by BCube(n, k),
DCell(n, k) and FiConn(n, k), respectively, where n is the
switch port number and k is the number of the recursion
levels. SWCube based on a k-dimensional r-ary generalized
hypercube is denoted by SWCube(r, k). DPillar(n, k) is the
architecture built with n-port switches, and in which there are
k server columns and k switch columns.

B. Performance and Power
We compare various DCN architectures, constructed by

the same homogenous servers and switches, with comparable
numbers of servers. For architectures using 24-port and 48-
port switches, basic quantitative comparisons are presented
in Table I. Typical data centers have tens of thousands, or
hundreds of thousands of servers, and the world’s largest data
centers can achieve one or two million. The numbers of servers
in the table meet the needs of practical data centers.

The overall trend in the table can be observed: from the
top ones (switch-centric) to the bottom ones (server-centric),
the DCN power consumption per server of the architectures
is decreasing; however, the performances of the architectures
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Fig. 4. Comparison of various architectures (n = 48). Notice that, some of
the lines are overlapped.

are also decreasing, meaning that the bisection bandwidth is
decreasing, while the diameter is increasing from an overall
view. We regard the delay on a 48-port switch, dw as 1, and
vary the delay on a server, dv from 1 to 5. Fig. 4(a) shows
the diameters of various DCN architectures. For switches with
n= 48 1Gbps ports and 1Gbps NIC ports, we set pw = 150
and pnic=2. We vary pfwd from 1 to 10. Fig. 4(b) shows the
DCN power consumption per server of various architectures.
We can see that FSquare has a lower diameter than all server-
centric architectures and a large bisection bandwidth that is
comparable to switch-centric ones, at the cost of high power
consumption. FRectangle uses less switches, and thus, reduces
its power consumption to a value that is generally less then
switch-centric architectures; at the same time, FRectangle has
a diameter that is less than most of the server-centric archi-
tectures and a bisection bandwidth that is greater then most
of the server-centric architectures. FDCL(n, 3) demonstrates
good performances and satisfiable power efficiency; however,
its number of servers is very limited, compared to all other
ones.

We can see that FSquare and FRectangle reflect two nice
tradeoff designs in the middle and provide DCN designers
more flexible choices.

C. Scalability and Flexibility
Scalability means that the networking devices, typically the

switches, rely on a limited amount of information, which does
not increase significantly with the network size, to implement
efficient routing algorithms. Since modern data centers usually
have large network sizes, scalability is an important require-
ment. Flexibility requires that expanding the network in a fine-
grained fashion should not replace the networking devices or
destroy the original architecture. Data centers require flexible
growth of network size after initial deployment, due to the

rapidly increasing needs. Regular architectures are generally
highly scalable, but do not support flexible growth of the
network size due to their rigid topologies. Some regular ar-
chitectures are able to increase the network size, but have cer-
tain limitations. For example, FiConn supports coarse-grained
growth; because adding one level to the architecture will make
the network size increase by tens, or even hundreds of times,
which does not reflect practical needs; expanding DCell and
BCube requires adding more NIC ports on all of the existing
servers. Recent works have proposed random networks, such
as Jellyfish [24], Scafida [25], and Small-World Data Center
[26], to provide arbitrary-grained flexibility; however, due to
their irregularity, networking devices in these architectures rely
on a large amount of information for efficient routing, making
them unable to scale to a large network size.

We argue that FSquare and FRectangle demonstrate both
scalability and flexibility. Scalability of FSquare results from
their high degree of regularity. We propose to reserve some
ports on the column level 2 switches in FSquare and FRect-
angle for them to achieve flexibility. In this case, the level
2 switches each have n + K ports; n of them are used
to construct the original architecture, while K of them are
reserved for future expansion. Taking FSquare as an example,
if we use k (1 ≤ k ≤ K) reserved ports on all the column
level 2 switches to expand the network, we can add k column
ToR switches to each column. Thus, we are able to add kn/2
rows of servers, i.e., kn3/4 servers to the original architecture.
Different k values provide us the ability to flexibly expand the
network. Similar flexibility can be achieved in FRectanlge in
a similar way.

D. Elasticity
To reduce power consumption in a data center when the

traffic and/or computation load in the data center is low,
network administrators may want to dynamically power off
and on network switches and servers. This requires the DCN to
be elastic, which basically means turning off network switches
and/or servers while maintaining the connectivity in the data
center. We can see that, in FSquare, reducing the topology
of each row and each column to a traditional single rooted
tree still maintains the connectivity. This topology shrinking
leads to about one third ((n− 2)/3n) power reduction if only
switches can be powered off while switch ports cannot be
powered off independently. If switch ports can be powered off
independently, the potential power reduction is even greater.
Further, when all the columns are shrunk to single-rooted
trees, to maintain the connectivity of the entire architecture,
only one row should be connected, to maintain the overall
connectivity. This leads to two thirds power reduction. Thus,
FSquare provides network administrators with great freedom
in powering off and on different numbers of switches, under
different traffic loads in the network.

In FRectangle, elasticity can be achieved similarly. One
difference is, when all the columns are connected by the
shrunk single-rooted tree, to maintain the connectivity of the
entire architecture, only one type A row and one type B row



must be maintained.

V. SIMULATIONS

We conduct routing simulations for both FSquare and
FRectangle in a proprietary simulator. Our main goal is to
investigate the performances of the two proposed architectures
under various traffic conditions.

We build a basic model for store-and-forward switches.
Both switches and servers are assumed to have 1Gbps full
duplex ports. We consider single-packet flows and a fixed
packet size. Thus, we have a fixed transmission delay, which
is considered as one unit of time, i.e., dw,t=dv,t=1. This
time unit has a typical value around 2µs. The switch’s and the
server’s processing delays, dw,p and dv,p are normalized by
this time unit. Queuing delay happens when multiple packets
compete for the same output port (either on a switch or on a
server) simultaneously. For both of the architectures, we only
consider the basic shortest path routing schemes, since our
focus in this paper is on the architectures themselves, instead
of on designing efficient and/or adaptive routing algorithms for
specific traffic patterns. More efficient and/or adaptive routing
algorithm designs are left for future work.

We consider three typical traffic patterns in data centers,
referring to [27].

Random Traffic Pattern, abbreviated as Random: For each
flow, the source and destination servers are randomly chosen
among all of the servers, as long as they are not identical.

Incast Traffic Pattern, abbreviated as Incast: A server
receives traffic flows from multiple random servers in the
network. This traffic pattern simulates the shuffle stage of the
widely-used MapReduce framework. We assume that a server
receives flows from 10 other random servers.

Rack Shuffle Traffic Pattern, abbreviated as Shuffle: Servers
in a rack send traffic flows to servers in several different racks.
This simulates the traffic when the administrator is trying to
balance the load between racks through VM migration. This
traffic pattern is common in elastic data centers, where servers
are turned off at off-peak hours. In our simulations, we assume
that servers in a column rack send traffic flows to servers in
other column racks.

In all of the traffic patterns, we generate different numbers
of flows, to reflect different traffic loads in the network. All
flows are generated and pushed to the network at the same
time. We calculate the Aggregate Throughput (AggTh), the
Average Path Length (APL) and the Average Delivery Time
(ADT) for the two architectures. Aggregate throughput is
defined as the average amount of data transmitted in one unit
of time when all the flows are delivered to their destinations,
i.e., the number of flows divided by the maximum delivery
time among all flows. For APL, the path lengths are calculated
based on our unified definition in Eq. (1).
A. Simulation Settings

We choose switch port number, n=12. We set the switch’s
processing delay dw,p = 1, and set the server’s processing
delay dv,p=4. In an FSquare(12), the number of servers is
Nv=(12

4)/4=5, 184. We vary the number of flows from 1,000
to 550,000. Step sizes are different during different ranges. For
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Fig. 5. APL, ADT and AggTh vs. No. of flows in FSquare.
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Fig. 6. APL, ADT and AggTh vs. No. of flows in FRectangle.

each number of flows and each traffic pattern, we randomly
generate several different sets of flows. Then, the APL, ADT
and AggTh for each traffic pattern given the number of flows
is calculated as the average APL, ADT, and AggTh of the
corresponding sets of flows. In an FRectangle(12), the number
of servers is Nv = 10, 368. We vary the number of flows
from 1,000 to 1,100,000. We also randomly generate several
different sets of flows for each number of flows and each traffic
pattern, and then calculate and compare the average values.

B. Simulation Results

Fig. 5 and Fig. 6 show the performances of FSquare and
FRectangle in various traffic conditions, respectively. When
the number of flows is small, the AggTh values under all traffic
patterns increase almost linearly. When the number of flows is
large, the increasing rates of the AggTh becomes smaller and
smaller. This means that the network is becoming more and
more congested. As the number of flows increases significantly
and become congested, the ADTs in FSquare and FRectangle
only increase linearly. We can see that both architecture can
achieve satisfyingly large AggThs. Random traffic is expected
to achieve the best performances in all cases, because it
automatically balances the traffic among the network. Shuffle
traffic achieves performances comparable to Random traffic.
We can see that, both FSquare and FRectangle do not place
extra bottlenecks on the Shuffle traffic. In the Incast traffic, a
server received 10 flows from 10 different other servers. Thus,
the server NIC ports themselves become the congested points,
and the performances of Incast traffic are always the worst
among the three. We can see the performances of Incast are
quite close to those of Random and Shuffle in FRectangle. The
reason is that in FRectangle, the reduced row switches place
greater bottlenecks for all traffic patterns. The influence of the
Incast traffic’s own congestion points is less significant.

We can see that, FSquare can achieve very good perfor-
mances under various traffic conditions, while FRectangle’s
performances are worse than those of FSquare.



VI. ADDITIONAL DISCUSSIONS
Designing DCN architectures is never a simple task. Various

issues should be addressed. We briefly discuss other issues
related to our designs.

Floor Planning. Both FSquare and FRectangle are two-
dimensional architectures. Since practical data centers usually
have two-dimensional floor planning, both FSquare and FRect-
angle can fit into practical data centers quite well.

New Technologies. Recently, two important new technolo-
gies have been introduced into DCNs: the 60 GHz wireless
technology and the optical switching technology. In this paper,
our default settings are in traditional electrical switching
technology; however, the dual-centric design philosophy can
certainly be applied to hybrid DCNs, where new technologies
are used.

Various Other Issues. Actually, the dual-centric design
is a mix of switch-centric and server-centric designs. We
expect that various related issues in dual-centric designs can
be addressed by existing works on both switch-centric and
server-centric designs, after minimal or moderate adaptations
and modifications.

VII. CONCLUSION AND FUTURE WORKS
In this paper, we formally introduce a new category of

DCN architectures: the dual-centric DCN architectures, where
routing intelligence can be placed on both switches and server-
s. We propose two typical dual-centric DCN architectures:
FSquare and FRectangle. By comparing them with existing
architectures and by investigating themselves, we show that
these two dual-centric DCN architectures have various nice
properties for practical data centers, and provide flexible
choices in designing DCN architectures. As switches are be-
coming more programmable via software defined networking,
and servers are tending to utilize specialized hardware for
packet forwarding, both switches and servers will carry both
packet forwarding capability and routing intelligence. The
proposed dual-centric design philosophy will certainly become
a potential candidate in future DCN architecture designs.

Future works can be cast in, but are not limited to, the
following directions: 1.) designing efficient and/or adaptive
routing schemes for FSquare and FRectangle; 2.) exploring
other possible dual-centric architectures that also have appeal-
ing properties; 3.) designing dual-centric architectures where
each server uses more than 2 NIC ports; and 4.) exploring the
limitations of the dual-centric design philosophy, and how to
control and apply them in practical DCN designs.
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