Protecting Resources Against Volumetric and Non-volumetric Network Attacks

Rajorshi Biswas
Information Sciences and Technology,
Penn State Berks, Reading, PA, USA

Jie Wu
Department of Computer and Information Sciences,
Temple University, Philadelphia, PA, USA
Outline

• Volumetric and Non-volumetric Attacks
• Filter Router and Moving Target Defense
• Problem Definitions
• Greedy and Dynamic Programming Solutions
• Simulation Results
• Q&A
Volumetric and Non-volumetric Attacks

• Volumetric
 • The damage of victim depends on the amount of attack traffic.
 • Example: DDoS, LFA
 • Does not require to block all traffic
 • Defense: Filter router and filter

• Non-volumetric
 • The damage of victim does not depend on the amount of traffic.
 • Example: password stealing
 • Requires to block all paths to the resources
 • Defense: Moving target defense
Filter Router and Moving Target Defense

• Filter
 • Simple blocking rules
 • Source-based, dest-based
 • “if source=X, drop the packet”
 • “if dest=Y, drop the packet”

• Filter Router
 • Accepts filters
 • Drop packets according to filters

• Each filter costs a certain amount to the victim.

• Moving Target Defense
 • Change the system parameters dynamically so that the attacker needs to start over on each change.
 • IP, port, password, system settings, etc.
Problem: Find K number of nodes to apply Filters

• Minimize:
 • Traffic reaching the resources.

• Constraints:
 • The number of filters cannot be more than K.

• Greedy Solution:
 • Combine resources and attackers.
 • Find all min-cuts using Kanevsky methods.
 • Calculate contribution of each node in max flow.
 • Pick the most contributed node.

• Complexity: $O(|S_c||V| (|V|+|E|f))$

• Approximation Ratio: $1 - \frac{1}{e}$

Volumetric attack
Problem: Find K number of MTD deployments

• Minimize:
 • Damage: the amount of steps passed by the attackers.

• Constraints:
 • The attacker must be blocked before reaching resources.
 • The number of deployed MTD must be less than budget K.

• Solution: Dynamic Programming
A Dynamic Programming Solution

Tree topology: No overlap

Tree topology: overlap

Solution: Keep tracking of, protected and damaged nodes

Protected + Unprotected = Protected

Complexity: $O(|V|^2K^2\Delta)$
Simulation Results

Volumetric

Non-volumetric
Thank You !!

Please send your questions to
rajorshi@temple.edu