
On Minimum Delay Duty-Cycling Protocol in
Sustainable Sensor Network

Shaojie Tang∗† Jie Wu† Guihai Chen‡ Cheng Wang§ Xuefeng Liu¶ Tao Li¶ Xiang-Yang Li∗
∗Illinois Institute of Technology † Department of CIS, Temple University § Tongji University

‡ State Key Lab of Novel Software Technology, Nanjing University ¶ Hong Kong Polytechnic University

Abstract—To ensure sustainable operations of wireless sensor
networks, environmental energy harvesting has been well recog-
nized as one promising solution for long-term applications. Unlike
in battery-powered sensor networks, we are targeting a duty-
cycle adjustment to optimize the network performance, e.g., delay
minimization, with full harvested energy utilization. In this paper,
we introduce a set of duty-cycle adjustment schemes that will
minimize cross traffic delay (CTD) in energy-harvesting sensor
networks. We first present an offline solution by assuming that
the link reliability and traffic distribution are known a priori.
Based on the submodular property of the CTD function, we
theoretically prove that a simple greedy algorithm can achieve
constant approximation. We next propose a class of online
algorithms that do not require the knowledge of link reliability
and traffic distribution. For each of these algorithms, we give a
theoretical bound on the performance. We have evaluated our
design with a TelosB-based implementation and experimental
results corroborate our theoretical analysis.

Index Terms—Wireless sensor networks, solar powered, duty-
cycle, submodular.

I. INTRODUCTION

The wireless sensor network (WSN) is demonstrated to
be a promising technology due to the rapid development
in micro-electronics and sensor technology, and WSNs are
widely used in field monitoring, military surveillance, as-
sisted living, and scientific research [21] [20]. Among those
applications, many of them require the system to remain
stable over time. To support those long-term applications,
sustainable sensor networks, which harvest energy from their
surrounding environment, have been recognized as a promising
solution. It is possible to extract energy from several sources,
and some of the available harvesting technologies include
solar, thermal, optical, and kinetic energies. Among these,
solar energy harvesting through photovoltaic conversion and
vibrational energy through piezoelectric elements are able to
provide relatively higher power densities, which make them
more suitable in WSNs that consume power on the order of
mW .

In most previous works, when adjusting the duty-cycle in
wireless sensor networks in order to minimize the delivery
delay, researchers have to take into account the very limited
resources of the nodes. While many researchers assume that
all nodes in a sensor network are battery-driven, as discussed
in this work, nodes can also be powered by other energy
sources such as solar power. Due to the varying environment
conditions, the energy supply to individual nodes may change

dramatically over time [10]. This makes the design of a duty-
cycle adjustment scheme more complicated by the fact that the
energy source is not permanent. For nodes in sustainable sen-
sor networks, their duty-cycle has to be adjusted continuously
with a varying energy supply, and we would like to make full
use of harvested energy while maintaining the sustainability
of the whole network. As is pointed out in [8], [13], [23], the
harvested energy from solar panels is often not able to power
the sensors continually. Thus, nodes have to work in low duty-
cycle [14], e.g., each node has to stay in a dormant state for
most of the time.

Recently, several important works [8], [10], [9] put their
focus on dynamically adjusting the duty-cycle for sustainable
or low duty-cycle sensor networks in order to minimize the
communication delay. In this work, we study the problem that
is initially proposed and studied in [10]. Basically, we aim to
dynamically adjust each node’s activity pattern with available
energy budgets, in order to minimize the communication delay
at individual nodes. The major contributions of this paper are
summarized as follows:

I We first show that the cross traffic delay function is
submodular, which has several very nice tractability properties;

I Under the assumption that the link reliability and traffic
distribution are known, we theoretically prove that a simple
greedy algorithm provides constant approximation in terms of
cross traffic delay minimization. To the best of our knowledge,
this is the first theoretical bound on this greedy algorithm
under a general problem setting;

I Without knowing the link reliability and traffic distribu-
tion, we propose a class of online algorithms. The key idea
of these algorithms is learning/exploiting. On one hand, these
algorithms try to learn the performance of different activity
patterns, and on the other hand, they are able to stick to a
“good” activity pattern after a sufficiently large number of
rounds;

I We have extensively evaluated our design on a real test-
bed consisting of 40 sensors, spanning 30 days, to verify the
effectiveness of our design in practice.

The rest of this paper is organized as follows: Section II
discusses the related work. Section III articulates the network
model and related assumptions and formalizes the problem
studied in this paper. We propose an offline greedy algorithm
in Section IV and a set of online algorithms in Section V. We
conduct extensive experiments in Section VI and conclude this
paper in Section VII.978-1-4673-2447-2/12/$31.00 c© 2012 IEEE

II. RELATED WORK

A number of approaches have been proposed to provide
timely data communications in sensor networks. Gu et al.
[7] introduce a dynamic switch-based forwarding scheme
to minimize the impact of sleep latency in low duty-cycle
networks. Gu et al. [8] present an adjustment protocol to
consume a minimum amount of energy while satisfying a E2E
delay bound specified by application requirements. Su et al.
propose both on-demand and proactive routing algorithms for
intermittently connected networks due to duty-cycling [18].
Gu et al. propose a centralized spatiotemporal delay control
scheme for battery powered low duty-cycle networks [9].

Energy harvesting for sensor networks has been widely
studied recently. However, most previous works put their focus
mainly on the hardware design element [13], [12], [23]. Few
prior works study how to adjust node duty-cycles to minimize
the communication delay in energy harvesting networks. Most
recently, ESC protocol introduces transparent middleware for
minimizing network-wide delays with a varying energy budget
over time in energy-harvesting sensor networks [10]. Unlike
previous works, in this work, we theoretically prove that a
simple greedy algorithm provides constant approximation in
a general problem setting, e.g., a general number of active
instances could be available at given time slot. Most im-
portantly, we take a first try on implementing a class of
online algorithms on duty-cycle adjustment. At the heart of
our online approach is a modified algorithm for multi-armed
bandit (MAB) problems [6], [17].

III. SYSTEM MODEL

We first briefly introduce the network model, and the
basic assumptions made in this work; we then formulate our
problem.

A. Network Model

As in most existing works [10] [19], we assume that (i)
neighboring nodes are synchronized in the unit of a time
instance, and (ii) there is at most one packet transmission
within such a time instance. At a given time instance t, a sensor
node is either in an active or a dormant state. When a node
is in the active state, it can sense the environment and receive
packets from neighboring nodes. A dormant node turns all of
its function modules off except for a timer to wake itself up.
Each node in the network has its own working schedule, and
all neighboring nodes know each other’s schedule [3], [10],
[8]. A dormant node will wake up either if it is scheduled to
wake up, or if it has some packets to send to a neighboring
node that is active at that time. Therefore, a node can wake-up
and transmit a packet when its receiver is in the active state,
but it can only receive a packet when itself is in the active
state.

B. Working Schedule and Sleep Latency

The working schedule of a sensor node is defined as the
active/dormant pattern of the sensor node during its lifetime.
It contains a set of active instances, during which a node

can receive packets. The node working schedules usually are
periodic [22], [11]. Consequently, let the duration of a period
be T time instances. The working schedule of any node
therefore can be represented by a set of time instances at
which the node is in the active state. Let Γ denote the working
schedule; we can have Γ = {t1, t2, t3, · · · , tn}, where ti is the
time instance at which the node is active, and we call ti its
active instance.

a

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

b c d

Fig. 1. A Linear Network.

For transmission in low duty-cycle sensor networks, the
sender may have to wait for its receiver to become active.
For any pair of transceivers, we define the sleep latency as
the time duration from the moment when a packet is ready at
the sender to the moment when the receiver becomes active.
For example, in a linear network, shown in Figure 1, let the
working schedule for four nodes a, b, c, and d be {2}, {5},
{3}, and {2}. Assume node that a has a packet that is destined
for node b and is ready at time 2, then the sleep latency is 3.
Sleep latency is usually orders of magnitude longer than other
delivery latencies such as processing delay and transmission
delay. We thus only consider sleep latency for measuring the
cross traffic delay in the rest of this work.

C. Cross Traffic Delay

The detailed description for cross traffic delay (CTD) can
be found in [10]. For completeness of presentation, we give
a brief introduction to some key definitions. In low duty-
cycle networks, a packet can be transmitted only when the
receiver is active; thus, nodes in such networks will stay in
the dormant state for the majority of time. Here, we assume
that data traffic/congestion is low, which is shown to be true
for existing low duty-cycle sensor networks.

For a node b in the network, there may be a set of
predecessors of b that forward packets to node b. Similarly,
node b would forward its packets to some nodes, which are
successors of node b. Then the cross traffic delay on node b is
defined as the expected delays for packets from all predecessor
nodes of b to corresponding successor nodes through b. We
use pab to denote the success ratio of transmissions between
a and b. Denote the maximum retransmission times as K;
the probability that the packets (transmitted to node b from
node a) arrive at the k-th attempt, under the condition that
the packet is delivered within K attempts, can be expressed
as Pab(k) = (1−pab)k−1pab

1−(1−pab)K
.

Delay Over a Single Link: The expected transmission delay
of a packet (transmitted to node b from node a) that is ready
at time t can be formulated as: Dab(t) =

∑K
k=1 Pab(k)Lbt(k)

where Lbt(k) denotes the sleep latency for k-th attempt.

Delay from One Predecessor to One Successors: The
expected delay of the packet (from predecessor pi to suc-
cessor sj) ready at time t at predecessor pi is expressed as:
Dpisj (t) =

∑K
k=1 P

pib(k)(Lbt(k) +Dbsj (t+ Lbt(k))).
Delay from Multiple Predecessors to Multiple Succes-

sors: We next calculate the expected CTD at node b from
multiple predecessor nodes to multiple successor nodes. As-
sume that the number of active instances of a predecessor node
pi is Npi ; during each active instance tpik , we use W pisj

k to
represent the percentage of arriving traffic that is originated
at pi, and destined to a successor node sj . Let the number
of predecessor nodes and successor nodes at node b be Np

and Ns, respectively. Then the expected CTD at node b under
schedule Γi is:

DΓi
=

Np∑
i=1

Ns∑
j=1

Npi∑
k=1

W
pisj
k Dpisj (tpik) (1)

D. Problem Formulation

The harvested energy may vary significantly over time at a
sensor node. In order to make full use of the available energy
supply, we need to decrease duty-cycles with a minimum
increased delay when there is a shortage in the power supply,
and we need to increase the duty-cycle with a maximum
decreased delay when there is abundant energy. As in [10],
we assume that the working schedules of the predecessors
and successors of a node are known and up-to-date. For a
given node b, assume that its previous working schedules
Γ = {t1, t2, · · · , tm}, and its current energy supply can afford
m + k active instances to guarantee the sustainability of the
node. In order to utilize those k additional active instances, in
this work, node b can add those active instances on top of its
previous working schedules.

For ease of analysis, assume that Dmax is the largest
possible CTD, e.g., Dmax can be chosen as T ×K. We define
the reduced CTD (RCTD) of working schedule Γi as:

g(Γi) = Dmax −DΓi

Basically, g(Γi) describes the reduced delay under working
schedule Γi. Our goal is then to find a working schedule Γi
to maximize the RCTD. Formally, given the number of extra
active instances k, we aim to find a schedule Γ with maximum
RCTD:

Γ = arg max
Γi

{g(Γi)}

Notice that k could be negative when the current energy
supply cannot afford m active instances, in this case, our
problem lies in removing k active instances from the previous
schedule in order to maximize the resulting RCTD. As we
will discuss later, this can also be solved easily based on the
solution for the first case.

IV. OFFLINE DUTY-CYCLE ADJUSTMENT

In this section, we study the offline case under the assump-
tion that (1) the link reliability and (2) the traffic distribution

are pre-known. For ease of explanation, we first introduce a
basic operation in our duty-cycle adjustment.

Augmenting Single Active Instance: The operation “Aug-
menting Single Active Instance” basically aims at augmenting
exactly one active instance of a previous schedule in order
to maximize the resulting RCTD. To make this paper self-
containing, we briefly introduce the algorithm proposed in
[10]: For a given node b, we can divide its period time
into multiple intervals according to active instances of its
predecessors and successors. For example, assume that the
predecessor and successor of node b are node p and node s, and
the working schedule of node p and node s are {1, 5}, {3, 7}.
According to their locations on the cyclic working schedules,
we can easily obtain four intervals: (1, 3), (3, 5), (5, 7), (7, 1).
Then, instead of performing an exhaustive search on all time
instances within a period time T and choosing the time
instance that yields a maximum RCTD, we only need to try
those four intervals due to the fact that the resulting RCTD is
the same among the same interval.

In a real implementation, a node may need to increase (or
decrease) multiple active instances at the same time, e.g.,
when the harvested energy changes dramatically. We next put
our focus on finding an efficient and effective schedule scheme
for the bursty augmentation and decrement case. Essentially,
we propose a simple Hill-Climbing algorithm for augmenting
and decreasing multiple active instances. We theoretically
prove that the work schedule generated from our algorithm
can achieve constant approximation of the optimal schedule
in terms of maximizing the RCTD, e.g., the RCTD resulting
from our schedule is no smaller than a constant multiplied that
of an optimal schedule.

For simplicity of analysis, we next use bursty augmentation
as an example to show how the algorithm works and how to
derive the performance guarantee for that algorithm. Both the
algorithm and proof can work in a similar way for the bursty
decrement case.

The Hill-Climbing Algorithm works as follows: Assume at
time t, node b can afford k additional active instances. Then,
we recursively apply the “Augmenting Single Active Instance”
operation to schedule those k active instances one by one.

To provide a performance bound on the generated sched-
ule, we begin by introducing a concept called submodular.
Consider an arbitrary function f(A) that maps subsets of a
finite ground set U to non-negative real numbers. We say that
f is submodular if it satisfies a natural “diminishing returns”
property: the marginal gain from adding an element to a set
S is no lower than the marginal gain from adding the same
element to a superset of S. Formally, a submodular function
satisfies: f(S ∪ {v}) − f(S) ≥ f(T ∪ {v}) − f(T) for all
elements v and all pairs of sets S ⊆ T . Submodular functions
have several very nice tractability properties; the one that may
help us here is described in the following. Suppose we have a
function f that is submodular, takes only nonnegative values,
and is monotone in the sense that adding an element to a
set cannot cause f to decrease: f(S ∪ {v}) ≥ f(S) for all
elements v and sets S. We wish to find a k-element set S for

which f(S) is maximized. This is an NP-hard optimization
problem (it can be shown to contain the Hitting Set problem
as a simple special case), but a result of Nemhauser, Wolsey,
and Fisher [4], [15] shows that the following greedy Hill-
Climbing algorithm approximates the optimum to within a
factor of (1−1/e), where e is the base of the natural logarithm:
start with the empty set, and repeatedly add an element that
gives the maximum marginal gain.

Theorem 1: ([4], [15]) For a non-negative, monotone sub-
modular function f , let S be a set of size k obtained by
selecting elements one at a time, each time choosing an
element that provides the largest marginal increase in the
function value. Let S∗ be a set that maximizes the value of
f over all k-element sets. Then, f(S) ≥ (1 − 1/e)f(S∗); in
other words, S provides a (1− 1/e)-approximation.

In order to utilize the result from the previous theorem, we
next prove that the RCTD function g() is indeed submodular.

Lemma 2: Given node b, assume that the work schedule of
all its predecessors and successors is fixed, and the function
g(Γi) is non-negative, monotone, and submodular.

Proof: Please refer to the Appendix for the detailed proof.

Theorem 1 and Lemma 2 together imply the following
theorem.

Theorem 3: For node b, assume that Γi is the work schedule
resulting from Hill-Climbing algorithm, we have:

g(Γi) ≥ (1− 1

e
)g(Γi

∗)

where Γi
∗ denotes the optimal schedule. In other words, it

provides a (1− 1/e)-approximation.
When k is negative where we need to remove k active

instances from previous schedule, we can simply remove
those k active instances which are last added to the previous
schedule by the Hill-Climbing algorithm. Based on the fact
that the remaining schedule is still obtained from the Hill-
Climbing algorithm, we have the same performance guarantee
shown in Theorem 3.

V. ONLINE DUTY-CYCLE ADJUSTMENT

In the previous section, we present a duty-cycle adjustment
under the assumption that both the link quality and the traffic
distribution is pre-known. In real scenarios, since the link
quality and data arrival rate are not always known a priori, we
next combine several learning techniques with the previous
scheme in order to relax those two constraints. We seek to
develop a protocol for selecting the schedule Γi at each round
r, such that, after a small number of rounds, the average
performance of our online algorithm converges to the same
performance of the offline strategy (which knows the objective
functions, link reliability, and traffic distribution). In this work,
we set the duration of one round r as one period, e.g., T time
instances. We define the stable time of one duty-cycle as the
duration for which the same duty-cycle can last, e.g., if the
energy supply can support 20% of the duty-cycle from 10:00
AM to 11:00 AM, we say that the stable time for this duty-
cycle is 1 hour. As verified by our experiment, it is reasonable

to assume that the stable time is usually much longer than one
transmission period. In our experiment, we set T = 1 minute,
and the average stable time of one duty-cycle is around 40
minutes, that is, 40 times of T , and it is even longer on cloudy
or rainy day. This ensures that the online algorithm has enough
time to find a good schedule when searching space, which is
the decided total number of possible schedules, is bounded.

The main idea of our algorithm is learning/exploit, which
is initially proposed for the Multi-Armed Bandits problem [2].
Inspired by their ideas, we present three methods by extending
their results to fit our problem setting. The online algorithm is
parameterized by a learning rate γ, an exploration probability
1−γ, and the number of runs R. With exploitation probability
1−γ, we adopt the schedule used in the previous round. Here,
γ is a relatively small parameter that depends on the number
of total rounds R. This enables our schedule to get close to the
static optimal. With probability γ, our algorithm explores and
estimates the RCTD of each possible work schedule with the
same probability. Since we never know whether our current
schedule is already the best, our algorithm will also consider
more exploitation on other schedules to find other, possibly
better schedule. The number of runs R denotes the total
number of rounds the learning/exploit operation needs to take,
e.g., after learning/exploit for R rounds, our algorithm will
stick to the best schedule in the rest of stable time. Intuitively,
the larger R is, the closer our final schedule will be to the
optimal schedule. As a tradeoff, more explorations lead to
more frequent adjustments, which will increase the message
complexity, e.g., share the current schedule with all neighbors.
Thus, we must carefully decide the value of R in order to well
balance the control overhead and performance.

In the offline case, based on the pre-known link reliability
and traffic distribution, g(Γi) can be calculated directly. When
this information is unknown, we can only get the RCTD of Γi
used in the previous round r, denoted by g(Γi)(r): g(Γi)(r) =
Dmax −DΓi

(r), where DΓi
(r) is the CTD of Γi at round r;

this can be obtained after transmission. For ease of analysis,
we normalize g(Γi)(r) into range [0, 1] by defining a scaled
RCTD xi(r) as: xi(r) = g(Γi)(r)/Dmax.

For any algorithm A and for any R > 0, let XA(R) =∑R
r=1 xir (r) be the return at time horizon R of algorithm A

choosing schedule Γi1 ,Γi2 , · · · ,ΓiR . In what follows, we will
write XA instead of XA(R) whenever the value of R is clear
from the context.

Our measure of performance for an algorithm A is the
weak regret; given any time horizon R, the weak regret
of algorithm A is defined by Xmax(R) − XA(R), where
Xmax(R) = maxi

∑R
r=1 xi(r).

We thus compare our protocol against all strategies that
can select a fixed schedule for use over the entirety of stable
time, e.g., the previous offline Hill-Climbing algorithm is one
such strategy, the best such strategy obtains Xmax(R). The
difference between this quantity and what our protocol obtains
is known as its weak regret, and an algorithm is said to be no-
regret if its average regret tends to be zero (or less) as R goes
to infinity.

Algorithm 1 Online Algorithm 1(OL-1)
Parameters: real number γ < 1/2, number of extra active
instances k, rounds R.
Initialization: Set wi(0) = 1 for all 1 ≤ i ≤ nk.

1: At the r-th round, randomly select a schedule Γ(r) = Γi
according to the following distribution pi(r)
∀i ∈ [1, nk]: pi(r) = (1− γ) wi(r)∑nk

i wi(r)
+ γ

nk

2: Assume that Γi is the schedule selected in round r, get
the scaled RCTD xi(r): xi(r) = g(Γi)(r)/Dmax

3: Calculate the virtual RCTD x′j(t) for all possible sched-
ules:

x′j(r) =

{
xj(r)
pi(r)

if j = i

0 otherwise.

4: Update the weights: wi(r + 1) = wi(r) · exp(γxi(r)
pi(r)n

k)
5: After R rounds, select the schedule with the highest pi as

the schedule for the rest of stable time;

In our study, we propose three versions of online algorithms:

A. Method 1: Try k Active Instances Together At The Same
Time

Given k additional active instances, assume that there are n
possible intervals that can be augmented, then the total number
of possible assignments(schedule) of those k active instances
is nk. Our algorithm maintains a set of weights wi, one for
each schedule Γi, initialized to 1. At every round r, it will
select each assignment Γi with probability:

pi(r) = (1− γ)
wi(r)∑nk

i wi(r)
+

γ

nk

It is with probability γ that it learns, picking schedule
uniformly at random 1

nk . In addition, with probability 1−γ it
exploits, picking schedule Γi with a probability proportional
to its weight wi(r). Once a schedule has been selected and
implemented, feedback xi(r), denoting the scaled RCTD from
the previous round r by using Γi, is obtained, and the weight
wi(r + 1) is updated to:

wi(r + 1) = wi(r) · exp(
γxi(r)

pi(r)nk
)

Then, we have the following performance guarantee.
Theorem 4: [1] For any R > 0 and γ =

min{1,
√

nk lnnk

(e−1)R },

1

R
(Xmax −XOL−1) ≤ Θ(

√
nk lnnk

R
),

i.e., the average regret 1
R (Xmax−XOL−1) converges to zero.

When k is negative, we can simply remove those active
instances that have the lowest probability from the current
schedule.

Algorithm 2 Online Algorithm 2(OL-2)
Parameters: real number γ < 1/2, number of extra active
instances k, rounds R, .

1: l← k;
2: while l > 0 do
3: Reset pi and wi;
4: Apply algorithm OL-1 for R/k rounds for one active

instance based on the current schedule;
5: Assign the active instance to the interval with the high-

est pi (we choose the second highest one if occupied);
6: l← l − 1;
7: end while

B. Method 2: Online version of Hill-Climbing Algorithm

One problem with Method 1 is that the searching space
grows exponentially with k, which makes it not scale, in
contrast to the traditional MAB problem, where the arms
are assumed to have independent feedback. In the duty-cycle
adjustment problem, the utility function is submodular, and
thus the feedback is correlated across different schedule. The
key idea behind our second algorithm is to turn the offline
greedy algorithm into an online algorithm by replacing the
greedy assignment of each active instance that maximizes the
RCTD by a bandit algorithm. Basically, we spend R/k rounds
(by assuming that R/k is an integer, otherwise we spend
bR/kc rounds) for each of those k active instances; after every
R/k rounds, we assign one active instance to the interval with
the highest probability. Clearly, since we only need to consider
schedule one active instance at each round, the search space
is reduced from O(nk) to O(nk).

We next provide a theoretical bound on the performance
of Method 2. In Section IV, we show that for the models
we are considering, the resulting RCTD function g(Γi) is
submodular. A potential challenge lies in the fact that the result
of Nemhauser et al. [4] assumes that the greedy algorithm can
evaluate the underlying function exactly, which may not be
the case for our model. However, by applying algorithm OL-1
for a sufficiently large number of rounds, we are able to find
the interval with the maximum RCTD with high probability.
Furthermore, one can extend the result of Nemhauser et al. to
show that for any c > 0, there is a ε > 0, such that by using
(1 + c)-approximate values for the function to be optimized,
we obtain a (1− 1/e− ε)-approximation.

Theorem 5: When R → ∞ and γ = min{1,
√

n lnn
(e−1)R},

we obtain a (1− 1/e− ε)-approximation.
When k is negative, we can simply remove those k active

instances that were last added to the previous schedule.

C. Method 3: Mixed Online Strategy

We first give a brief review of the previous two methods:
Method 1 does not scale since the number of possible sched-
ules grows exponentially with k. For Method 2, in order to test
single active instances one by one, it sacrifices the utilization

of current resources. Therefore compared with Method 1,
the convergence time of Method 2 is dramatically reduced
due to its significantly smaller searching space, e.g., linearly
grows with k. However, Method 2 experiences the risk of
wasting a large number of active instances at the end. For
instance, assume that the current energy supply supports k = 6
additional active instances, and the stable time is 100 rounds. If
Method 2 takes R/k = 20 rounds for each active instance (in
total R = 120 rounds), at the end of 100 rounds, we never have
the chance to utilize all 6 active instances together. Especially
when the harvested energy changes frequently, Method 2 may
not provide a satisfying solution.

To tackle those issues, we propose a mixed online strategy
by balancing the trade-off between Method 1 and Method 2.
On one hand, we try to utilize the fact that the resulting
RCTDs are correlated across different schedules to reduce
the searching space. On the other hand, we intend to reduce
the risk of wasting too many available resources. The key
idea is to treat k rounds as one super round. At each super
round, our algorithm assigns all k active instances one by one
according to the choices of the k bandit algorithms, much
like Method 2 does. Once the i-th active instance has been
scheduled, the i-th bandit algorithm receives the incremental
RCTD as feedback based on already assigned instances. This
method is more like a combination of Method 1 and Method
2. Essentially, we try different assignments of k instances
together at each super round, which is similar to Method 1, we
assign k instances one by one during each super round which
works like Method 2. Notice that after every super round, we
will keep the updated pi and wi from the previous super round.
By applying Method 3, the searching space is still as low as
O(nk). More importantly, we are able to fully utilize all k
active instances every super round.

Algorithm 3 Online Algorithm 3(OL-3)
Parameters: real number γ < 1/2, number of additional
active instances k, rounds R.

1: for each super round R ≤ R/k do
2: Clear the previous schedule but keep the updated prob-

ability distribution pi(r + 1);
3: for each round r ∈ {r1, · · · , rk} do
4: Apply algorithm OL-1(for 1 round) to assign one

active instance;
5: Update corresponding probability pi(r+ 1) for each

interval;
6: end for
7: end for

The proof for the following theorem is omitted here to save
space:

Theorem 6: When R → ∞ and γ = min{1,
√

n lnn
(e−1)R},

then OL-3 obtains a (1− 1/e− ε)-approximation on average
RCTD.

Similar as for Method 2, we remove those active instances

which have the lowest probability from current schedule when
k is negative.

(a) (b)

Fig. 2. (a) Solar motes used in our experiment; (b) The outdoor testbed.

VI. IMPLEMENTATION AND EVALUATION

In order to validate the performance and feasibility of all
the proposed algorithms in practice, we implement them on a
real testbed consisting of 40 sensors. Our outdoor experiment
lasts for 30 days, and we compare the performance of each
algorithm in terms of the average CTD under various weather
conditions, e.g., sunny, rainy, and cloudy.

A. Experimental Setup

The solar powered mote used in our experiment contains
three main parts: solar panel, Li-ion Battery, and TelosB
sensor node. The solar motes and outdoor testbed are shown
in Figure 2. The reasons why we chose the Li-ion battery
are as follows: (1) high open circuit voltage, (2) extremely
low self-discharge rate, (3) no memory effect, and (4) high
power density. The internal protection circuit is equipped
to protect the battery from over-charging and discharging.
We adopt the TelosB Mote [16] with a MSP430 processor
and CC2420 transceiver. It integrates humidity, temperature,
and light sensors, and provides flexible interconnection with
peripherals. We randomly deploy 40 sensors in the outdoor
field to test our protocol, and we run our outdoor experiment
for a period of 30 days from June 1st to June 30th, during
which the average harvested energy was 20Ah. The range of
the duty-cycle varies from around 2% to 25%. Each sensor
will dynamically adjust its duty-cycle and schedule according
to the current energy supply and our algorithms. For fairness,
we chose the same routing protocol, link-quality-based ETX
[5], for all algorithms in this work.

B. Experimental Results

1) Impact of Weather Conditions: First of all, we are
interested in how the duty-cycle changes during one day for
each node under different weather conditions. We select eight
days worth of data from one sensor node to report here. As
illustrated in Figures. 3(a)-(d), (i)-(l), these eight days almost
cover all of the typical weather conditions, e.g., sunny, cloudy,
and rainy. From the duty-cycle change, it is not hard to observe
that: (1) The average duty-cycle heavily depends on current
weather conditions. Under a sunny day, the average duty-
cycle is much higher than rainy and cloudy. Specifically, the

7 9 11 13 15 17
0

5

10

15

20

25

Time (Hour)

D
ut

y
C

yc
le

 (%
)

June 4th Sunny

7 9 11 13 15 17
0

5

10

15

20

25

Time (Hour)

D
ut

y
C

yc
le

 (%
)

June 7th Sunny

7 9 11 13 15 17
0

5

10

15

20

25

Time (Hour)

D
ut

y
C

yc
le

 (%
)

June 30th Rainy

7 9 11 13 15 17
0

5

10

15

20

25

Time (Hour)

D
ut

y
C

yc
le

 (%
)

June 19th Cloudy

(a) Duty-cycle(Sunny) (b) Duty-cycle(Sunny) (c) Duty-cycle(Rainy) (d) Duty-cycle(Cloudy)

0 200 400 600
0

200

400

600

800

1000

Time (min)

A
ve

ra
ge

 C
ro

ss
−T

ra
ffi

c
D

el
ay

 (m
s)

HC
OL−1
OL−2
OL−3

0 200 400 600
0

200

400

600

800

1000

1200

Time (min)

A
ve

ra
ge

 C
ro

ss
−T

ra
ffi

c
D

el
ay

 (m
s) HC

OL−1
OL−2
OL−3

0 200 400 600
500

1000

1500

2000

2500

3000

3500

Time (min)

A
ve

ra
ge

 C
ro

ss
−T

ra
ffi

c
D

el
ay

 (m
s)

HC
OL−1
OL−2
OL−3

0 200 400 600
0

500

1000

1500

2000

2500

3000

3500

Time (min)

A
ve

ra
ge

 C
ro

ss
−T

ra
ffi

c
D

el
ay

 (m
s)

HC
OL−1
OL−2
OL−3

(e) CTD(Sunny) (f) CTD(Sunny) (g) CTD(Rainy) (h) CTD(Cloudy)

7 9 11 13 15 17
0

5

10

15

20

25

Time (Hour)

D
ut

y
C

yc
le

 (%
)

June 15th Sunny

7 9 11 13 15 17
0

5

10

15

20

25

Time (Hour)

D
ut

y
C

yc
le

 (%
)

June 24th Sunny

7 9 11 13 15 17
0

5

10

15

20

25

Time (Hour)

D
ut

y
C

yc
le

 (%
)

June 29th Rainy

7 9 11 13 15 17
0

5

10

15

20

25

Time (Hour)

D
ut

y
C

yc
le

 (%
)

June 11th Cloudy

(i) Duty-cycle(Sunny) (j) Duty-cycle(Sunny) (k) Duty-cycle(Rainy) (l) Duty-cycle(Cloudy)

0 200 400 600
0

200

400

600

800

1000

Time (min)

A
ve

ra
ge

 C
ro

ss
−T

ra
ffi

c
D

el
ay

 (m
s) HC

OL−1
OL−2
OL−3

0 200 400 600

200

400

600

800

1000

1200

Time (min)

A
ve

ra
ge

 C
ro

ss
−T

ra
ffi

c
D

el
ay

 (m
s)

HC
OL−1
OL−2
OL−3

0 200 400 600
1000

1500

2000

2500

3000

3500

4000

4500

Time (min)

A
ve

ra
ge

 C
ro

ss
−T

ra
ffi

c
D

el
ay

 (m
s)

HC
OL−1
OL−2
OL−3

0 200 400 600

500

1000

1500

2000

2500

3000

3500

Time (min)

A
ve

ra
ge

 C
ro

ss
−T

ra
ffi

c
D

el
ay

 (m
s)

HC
OL−1
OL−2
OL−3

(m) CTD(Sunny) (n) CTD(Sunny) (o) CTD(Rainy) (p) CTD(Cloudy)
Fig. 3. (a)-(d), (i)-(l): duty-cycle change during one day under different weather conditions; (e)-(h), (m)-(p): cross traffic delay of four algorithms on each
day.

average duty-cycle under sunny day is 15%, rainy day is 7%,
and cloudy day is 10%; (2) the variance of the duty-cycle
change during one day under different weather conditions also
varies significantly. For a sunny day, the duty-cycle increas-
es/decreases dramatically when approaching/leaving the peak,
and it stays stable at noon for around 2− 3 hours. For cloudy
weather, the duty-cycle changes around every 1 hour point, but
the variance is much smaller. For rainy weather, the variance
is even smaller, and the duty-cycle keeps stable around the
average level.

2) Cross traffic delay: In this section, we compare the
CTD for the offline greedy algorithm and the three online
algorithms. To ensure fairness, we implement four algorithms
at the same time to minimize the impact of environmental

energy supply variation. We partition 28 sensors into 4 groups,
each group has the exact same topology: three successors, one
relay node, and three predecessors. Each successor generates
a packet every 30 seconds and sends it to a randomly selected
destination node (with the same probability). In a later stage,
we can easily calculate the traffic distribution based on the
above setup. Then, we implement four algorithms on different
groups starting at the same time.

To reveal the relation between the duty-cycle change and the
CTD, we still choose the eight days worth of data to report
here. In Figures 3(e)-(h), (m)-(p), we plot four lines, each of
which stands for the CTD resulting from one algorithm. For
all three online algorithms, we set R = 10 and γ = 0.2. By
comparing Figures 3(a)-(d), (i)-(l) and Figures 3(e)-(h), (m)-

(p), we have the following insights:
I The CTD matches the available duty-cycle well, e.g., the

minimum delay occurs when the node duty-cycle increases to
the peak, no matter which algorithm we are implementing.

I Compared with the other three online algorithms, the
offline Hill-Climbing (HC) algorithm has the most stable
performance. Although the average performance of OL-3 is
very close to or even better than HC, it suffers from a larger
variance. The larger variance mainly comes from the penalty
of failed explorations, as HC is able to pre-compute a “good”
schedule (with a performance guarantee as shown in Theorem
3) based on pre-known traffic distribution and link reliability.
For online algorithms, they must try enough possible choices
before finding a good schedule.

I When the duty-cycle changes significantly and frequent-
ly, the performance of the online algorithm becomes worse
compared with HC. This is because the more frequently the
duty-cycle changes, the less time online algorithm can afford
on exploration. In an extreme case when the duty-cycle keeps
changing every one period, the online algorithm starts to
always randomly choose a schedule at each period, which
surely leads to a poor performance.

I Among the three online algorithms, OL-3 has the best
performance. This is because the search space of OL-3 is
reduced from O(nk) to O(nk) compared with OL-1, which
dramatically reduces its exploration time. Compared with OL-
2, OL-3 will utilize all available active instances every k
rounds; this makes a significant difference when the duty-cycle
changes very frequently and dramatically.

By summarizing above discussions, we find that offline HC
has the most stable performance due to its pre-known knowl-
edge of both the link reliability and the traffic distribution.
Surprisingly, the average CTD resulting from OL-3 is very
close to the offline one. Especially in cloudy or rainy days
when the duty-cycle changes less frequently, OL-3 performs
even better. The average performance of the other two online
algorithms OL-1, OL-2 is less sufficient. OL-1 mainly suffers
from its huge searching space, and OL-2 needs to take the risk
of wasting available resources.

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

E2E Delay (ms)

C
D

F

HC
OL−1
OL−2
OL−3

Fig. 4. Cumulative distribution function (CDF) of average end to end delay.

3) End to End Delay: In this section, we study the average
end to end delay of the four algorithms over 30 days. The

results are illustrated in Figure. 4, similar to the results shown
in the cross traffic delay evaluation, Offline HC performs better
than the online algorithms, 90% of HC packets reach their
destinations within 800 ms; the same percentile for OL-1 is
1800 ms, for OL-2 is 2200 ms, and for OL-3 is 1000 ms. Due
to the random characteristic of online algorithms, they have a
longer tail than the offline algorithm.

VII. CONCLUSION

In this paper, we first present an offline duty-cycle ad-
justment by assuming that the link reliability and traffic
distribution is known a priori. We then propose a class of
online algorithms without requiring any knowledge regarding
the link reliability and traffic distribution. For each of them, we
give a theoretical bound on the performance. Our experimental
results over a real world testbed confirm the efficiency of the
proposed methods.

VIII. ACKNOWLEDGEMENT

The research of Xiang-Yang Li is partially support-
ed by NSF CNS-0832120, NSF CNS-1035894, Nation-
al Natural Science Foundation of China under Grant No.
61170216, No. 61228202, China 973 Program under Grant
No.2011CB302705. The work of Jie Wu is partially supported
by NSF grants ECCS 123182, CNS 1138963, ECCS 1128209,
CNS 1065444, and CCF 1028167. The work of Guihai Chen is
partly supported by China NSF grants (60825205, 61073152,
61133006) and China 973 project (2012CB316200). The work
of Cheng Wang is partly supported by National Natural
Science Foundation of China under grant No. 61202383.

REFERENCES

[1] AUER, P., CESA-BIANCHI, N., FREUND, Y., AND SCHAPIRE, R. The
nonstochastic multiarmed bandit problem. SIAM Journal on Computing
32, 1 (2003), 48–77.

[2] BERRY, D., AND FRISTEDT, B. Bandit problems: sequential allocation
of experiments. Routledge, 1985.

[3] CAO, Q., ABDELZAHER, T., HE, T., AND STANKOVIC, J. Towards
optimal sleep scheduling in sensor networks for rare-event detection. In
IPSN 2005.

[4] CORNUEJOLS, G., FISHER, M., AND NEMHAUSER, G. Location
of bank accounts to optimize float: An analytic study of exact and
approximate algorithms. Management Science 23, 8 (1977), 789–810.

[5] COUTO, D., AGUAYO, D., BICKET, J., AND MORRIS, R. A high-
throughput path metric for multi-hop wireless routing. Wireless Networks
11, 4 (2005), 419–434.

[6] FOSTER, D., AND VOHRA, R. Regret in the on-line decision problem.
Games and Economic Behavior 29, 1-2 (1999), 7–35.

[7] GU, Y., AND HE, T. Data forwarding in extremely low duty-cycle sensor
networks with unreliable communication links. In SenSys 2007.

[8] GU, Y., AND HE, T. Bounding communication delay in energy
harvesting sensor networks. In Distributed Computing Systems (ICDCS),
2010 IEEE 30th International Conference on (2010), IEEE, pp. 837–847.

[9] GU, Y., HE, T., LIN, M., AND XU, J. Spatiotemporal delay control for
low-duty-cycle sensor networks. In 2009 30th IEEE Real-Time Systems
Symposium (2009), IEEE, pp. 127–137.

[10] GU, Y., ZHU, T., AND HE, T. ESC: Energy Synchronized Communica-
tion in Sustainable Sensor Networks. ICNP.

[11] HE, S., CHEN, J., YAU, D., SHAO, H., AND SUN, Y. Energy-efficient
capture of stochastic events by global-and local-periodic network cov-
erage. In MobiCom 2009.

[12] KANSAL, A., HSU, J., ZAHEDI, S., AND SRIVASTAVA, M. Power
management in energy harvesting sensor networks. ACM Transactions
on Embedded Computing Systems (TECS) 6, 4 (2007), 32.

[13] KANSAL, A., POTTER, D., AND SRIVASTAVA, M. Performance aware
tasking for environmentally powered sensor networks. In Proceedings
of the joint international conference on Measurement and modeling of
computer systems (2004), ACM, pp. 223–234.

[14] LI, Z., MO, L., AND LIU, Y. Towards energy-fairness in asynchronous
duty-cycling sensor networks. In INFOCOM, 2012 Proceedings IEEE
(2012), IEEE, pp. 801–809.

[15] NEMHAUSER, G., WOLSEY, L., AND FISHER, M. An analysis of ap-
proximations for maximizing submodular set functionsłI. Mathematical
Programming 14, 1 (1978), 265–294.

[16] POLASTRE, J., SZEWCZYK, R., AND CULLER, D. Telos: Enabling
ultra-low power wireless research. In IPSN (2005), IEEE Press, p. 48.

[17] ROBBINS, H. Some aspects of the sequential design of experiments.
Bulletin of the American Mathematical Society 58, 5 (1952), 527–535.

[18] SU, L., LIU, C., SONG, H., AND CAO, G. Routing in intermittently
connected sensor networks. In ICNP 2008.

[19] TANG, S., LI, X., SHEN, X., ZHANG, J., DAI, G., AND DAS, S. Cool:
On coverage with solar-powered sensors. In Distributed Computing
Systems (ICDCS), 2011 31st International Conference on (2011), IEEE,
pp. 488–496.

[20] TANG, S., MAO, X., AND LI, X. Efficient and fast distributed top-
k query protocol in wireless sensor networks. In Network Protocols
(ICNP), 2011 19th IEEE International Conference on (2011), IEEE,
pp. 99–108.

[21] WANG, J., TANG, S., YIN, B., AND LI, X. Data gathering in wireless
sensor networks through intelligent compressive sensing. In INFOCOM,
2012 Proceedings IEEE (2012), IEEE, pp. 603–611.

[22] WU, Y., FAHMY, S., AND SHROFF, N. Energy efficient sleep/wake
scheduling for multi-hop sensor networks: Non-convexity and approxi-
mation algorithm. In IEEE INFOCOM 2007. 26th IEEE International
Conference on Computer Communications (2007), pp. 1568–1576.

[23] ZHU, T., ZHONG, Z., GU, Y., HE, T., AND ZHANG, Z. Leakage-aware
energy synchronization for wireless sensor networks. In MobiSys (2009),
ACM, pp. 319–332.

IX. APPENDIX

A. Proof for Lemma 2:

Proof: Firstly, it is easy to prove that g(Γi) = Dmax −
DΓi

is non-negative and monotone. This is simply because
Dmax ≥ DΓi

and DΓi∪{t} ≤ DΓi
, where Γi ∪ {t} denotes

the work schedule by augmenting an active instance into Γi
at interval t.

In order to prove that g(Γi) is submodular, it is equivalent
to prove the following property:

DΓS
−DΓS∪{t} ≥ DΓT

−DΓT∪{t} (2)

where ΓS ⊆ ΓT . To establish this result, we need to look,
implicitly or explicitly, at the expression DΓS

−DΓS∪{t} for
arbitrary work schedule ΓS and interval t. In other words,
what decrease do we get in the expected expected CTD when
we add an active instance into the current work schedule at
interval t. This decrease is very difficult to analyze directly,
because it is hard to work with quantities of the form Equation
1. Our proof deals with this difficulty by formulating an
equivalent view of the process, which provides an alternate
way to reason with the submodularity property.

For a given node b, consider only one packet, and assume
that its predecessor is p and successor is s; the schedule for
nodes p and s is fixed. Consider a point in the transmission
process when the packet has just arrived at p. Then p attempts
to send it to node b, succeeding with probability ppb. We can
view the outcome of this random event as being determined
by flipping a coin of bias ppb. From the point of view of the
process, we can in fact create a graph with nodes p, b, and s,

by adding an “edge” from p to b for each possible attempted
transmission (we thus have infinity edges), and each edge is
associated with a weight indicating the sleep latency of this
attempt. Similarly, we create set of weighted “edges” from b
to s.

For ease of analysis, we decompose node b into T virtual
nodes, each of which stands for an interval in period T . We
further distribute the edges from p to b to corresponding virtual
nodes at which the attempted transmission happens. Similarly,
we assign the edges from b to p to corresponding virtual nodes
at which the packet is ready at b. Then, for any schedule
Γi, we have an induced subgraph by excluding those nodes
(intervals) that are not contained in Γi. A coin of bias ppb
is flipped at the very beginning of the process on each edge
from p to any of b’s virtual nodes. Assume that all the coins
are flipped in advance, the process can be viewed as follows.
The edges for which the coin flip indicated a transmission will
be successful are declared to be live; the remaining edges are
declared to be blocked. If we fix the outcomes of the coin flips
and then initially assign b a schedule Γi, it is clear how we
can determine the CTD the end of the process:

Claim 1: The CTD is the weight of the (weighted) shortest
path from p to s consisting entirely of live edges in the reduced
graph of Γi.

Consider the probability space in which each sample point
specifies one possible set of outcomes for all of the coin flips
on the edges. Let Y denote one sample point in this space,
and define DY (Γi) to be the CTD of the process when Γi is
the schedule for node b, and Y is the set of outcomes of all
coin flips on edges.

First, we claim that for each fixed outcome Y , the function
DY (Γi) satisfies Equation 2. To see this, let ΓS and ΓT be
two schedules such that ΓS ⊆ ΓT , and consider the quantity:
DY (ΓT)−DY (ΓT ∪ {t}). This is the difference between the
weight of shortest path in DY (ΓT) and in DY (ΓT ∪{t}); then,
there are two possible cases:
I DΓT

−DΓT∪{t} > 0: it indicates that a new shortest path
can be found from p to s through t. Together with S ⊆ T , we
have DY (ΓT∪{t} = DY (ΓS∪{t}), e.g., the new shortest path
also has the smallest weight in DY (ΓS ∪{t}). Due to the fact
that DY (ΓT) ≤ DY (ΓS), we get DY (ΓS)−DY (ΓS ∪{t}) ≥
DY (ΓT)−DY (ΓT ∪ {t}).
I DΓT

−DΓT∪{t} = 0: it implies that the original shortest
path in DΓT

still has the smallest weight after adding t.
Since DY (ΓS) − DY (ΓS ∪ {t}) ≥ 0 always holds, we have
DY (ΓS)−DY (ΓS ∪ {t}) ≥ DY (ΓT)−DY (ΓT ∪ {t}).

This finishes the proof for DY (ΓS) − DY (ΓS ∪ {t}) ≥
DY (ΓT)−DY (ΓT ∪ {t}) for a fixed outcome Y . We finally
have:

DΓS
=

∑
outcomes Y

Prob[Y] ·DY (ΓS)

Since the expected CTD is just the weighted average over
all outcomes, because a non-negative linear combination of
DY (ΓS) still satisfies Equation 2, hence Equation 2 also holds.
Continuing this reasoning, we can extend the result to multiple
packets and predecessor-successor pairs.

