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Abstract. Traditional utility-based data-gathering models consider the maximiza-
tion of the gathered information and the minimization of energy consumption in
WSNs with reliable channels. In this paper, we extend the model to include re-
transmissions caused by link failure to improve network utility. The challenge
lies in balancing two competing factors: energy loss (and hence utility) through
retransmissions and increased reliability (and hence utility) through retransmis-
sions. We adopt a utility-based metric proposed in our previous work [9] and show
the NP-hardness of the problem, regardless of the number of source sensors. We
design several approximation heuristics for either case and compare their per-
formances through simulation. We also study the impact of retransmissions on
the maximization of network utility. Extensive simulations through a customized
simulator are conducted to verify our results.

Keywords: Data-gathering, heuristic solution, network utility, routing, stability,
wireless sensor networks (WSNs).

1 Introduction

A typical data-gathering wireless sensor network (WSN) consists of one or more sinks
which subscribe specific data by expressing interests. Many sensors act as data sources
that detect environmental events and push the relevant data to the subscriber sinks.
We consider a general many-to-one (one sink and many sensors) WSN with unstable
wireless links, where the sink assigns different weights (benefit) to different types of
events according to their importance. Sensors periodically sense the subscribed events
and send data through a data-gathering tree to the sink in each round of communication.

Since the wireless channels are unstable, the reliability of data delivery from sensors
to the sink cannot be guaranteed. This unreliability causes data loss and energy waste,
and in turn decreases the amount of information collected by the sink and increases
the total energy consumption by the sensors. To address the inefficiency caused by the
unreliability, we integrate the energy consumption, the instability of wireless channels,
and the benefit of sensed data (to the sink) into a single metric-network utility-which
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is the same as social welfare [11], which studies the efficient allocation of limited re-
sources in a society to optimize the resource utilization. It is well known that a system
is efficient if and only if the system’s social welfare is maximized. The social welfare
of a system= the system benefit− the system cost. Because the systems we study
are the data-gathering WSNs and the purpose of the data-gathering WSNs is to collect
sensed data, the system benefit (callednetwork benefit) is the total amount of weighted
(non-redundant) information gathered by the sink in a round, and the system cost (called
network energy consumption) is the the total energy consumed by all sensors in a round.

The challenges in maximizing network utility in data-gathering WSNs are as fol-
lows. First, the selection of the path from any sensor to the sink depends not only on
the network topology (including the energy consumption and the instability of wireless
channels), but also the benefit value for each operation (collection of a particular type
of data). Second, data from different sensors can share the same path (to the sink) in
order to save energy, but this also introduces additional problems as it is vulnerable to
link failure since multiple data share the same path/link. Third, there is a question as
to whether the number of sensors that have data to send affects the complexity of the
problem. Lastly, retransmission can increase the delivery ratio for a path/link, but can
also increase transmission delay and energy consumption.

To assess the complex trade-offs one at a time, we assume the availability of a
sufficient bandwidth for each channel so that contention for the channel is not an issue.
Moreover, we assume that sensors are static and the benefit values for different data
are predetermined. Under these assumptions, we can focus on the determination of the
optimal reverse broadcast/multicast trees (in terms of maximum network utility).

2 Preliminaries

We first consider the path selection problem, i.e., choosing a path for any sensor to the
sink according to the network topology and the benefit value. A network is modeled
as an undirected disk graph. Each link(i, j) has two properties: link costci,j and link
stability pi,j . Link costci,j is nodei’s minimal transmission cost to send a packet to
nodej in a single transmission attempt. Link stabilitypi,j is the ratio of received packets
by nodej to transmitted packets by nodei in a single transmission attempt. The costs
and stabilities of all links compose the topology information of the network.

To illustrate the basic idea of the expected utility, we first consider a single-link
route(i, j), wherej is the sink. We assume thati has data with benefitv to send. Since
the data will be delivered toj with probability pi,j , the expected benefit isv × pi,j .
Because sensori will consume energy costci,j regardless whetherj receives the data
or not, the expected utility of this data delivery is:

v × pi,j − ci,j . (1)

We observe that the above calculation of the expected utility can extend to the case of a
multi-hop route. For example, consider a routeR =< 1, · · · , i, i + 1, · · · , r >, where
node1 is the source sensor (the sensor with data to send), and noder is the sink. We can
pretend noder− 1 is also a source sensor; thus, according to Formula (1), the expected
utility from noder − 1 to the sinkr is v × pr−1,r − cr−1,r. For simpler presentation,



we denote it as the residual expected utilityur−1. Similarly, the expected utility from
noder − 2 to the sinkr is ur−2 = ur−1 × pr−2,r−1 − cr−2,r−1. In general, we have

ui = ui+1 × pi,i+1 − ci,i+1. (2)

By applying Formula (2) recursively, we obtain the expected utilityU = u1 = u2 ×
p1,2 − c1,2.

We observe that the value ofui − uj can be regarded as thedistancebetween node
i and nodej. Therefore, the distance between each two neighboring nodes can be re-
garded as the weight of the link connecting the two nodes, and hence, the weight in-
formation composes the topology information of WSNs with unstable links. Based on
this topology information, it is straightforward to apply a Dijkstra-based algorithm to
select the best path in terms of the shortest distance. However, the tricky part is that
this topology information changes with the change of the benefit value, and therefore,
different benefit values cause different topologies. Moreover, the weights of different
links are interdependent, which complicates the construction of the data-gathering tree.

3 The Model

In this work, our main consideration is WSNs, where sensors periodically sense the en-
vironment and have data to send in each round (period) of communication. The problem
lies in finding a routing scheme to deliver collected data from the designated sensors to
the sink so that the expected network utility (in a round) is maximized. We assume that
each sensor has only one unit of data to send in each round.

We consider path-sharing to save energy because each packet has a minimum fixed
overhead provided by the sequence number, the radio header and CRC, etc. This cost
is fixed and independent of the size of the packet payload. Path-sharing can improve
transmission efficiency by having proportionally less overhead per useful bit transmitted
in the payload. Without loss of generality, we assume that the size of the fixed overhead
is 1 and the size of one unit of data isα. Hence, the packet size of transmittingk units
of aggregated data is1 + kα.

Formally, in our model, a WSN is modeled as an undirected disk graph(N ∪
{d}, E), whereN = {1, 2, · · · , N} is the set of sensor nodes,d is the sink, andE
is the set of links connecting the sensors. A subsetS ⊆ N consists of all source sen-
sors, each of which has1 unit of data to send in each round. Letpi be the delivery ratio
from source sensori to the sinkd along the path in a spanning treeT , andci be the ex-
pected cost of nodei in T .

∑
i∈S v × pi and

∑
i∈T ci are the expected network benefit

and the expected network consumption, respectively. Thus, our data-gathering problem
can be defined as follows: find a spanning treeT rooted as the sinkd that maximizes
the expected network utility,

∑

i∈S

v × pi −
∑

i∈T

ci, (3)

with the constraint that the cost ofk units of data transmitted through linkci,j is (1 +
kα)ci,j .
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Fig. 1. An example of utility-based data-gathering tree.

Through a simple example shown in Fig. 1(a), we can see that the optimal data-
gathering tree depends not only on the topology information but also on the benefit
value and the value ofα. There is one sink and two sources (nodes1 and4) in Fig. 1(a).
In the gathering tree described by the flows in solid lines in Fig. 1(b), the expected
utility is 0.8×2v−10× (1+α)×2−0.8×40× (1+2α) = 1.6v−52−84α because
path< 1, 3, d > and path< 4, 3, d > share link(3, d). In the gathering tree described
by the flows in dashed lines in Fig. 1(b), the expected utility of path< 1, 2, d > is
0.9v − 84(1 + α). Because path< 1, 2, d > and path< 4, 5, d > are symmetrical and
do not share a path, the expected utility is[0.9v− 84(1+α)]× 2 = 1.8v− 168(1+α).
Comparing the expected utilities from the two data-gathering trees, their difference is
0.2v − 116 − 84α. Note thatα ≥ 0. If v = 100, the optimal data-gathering scheme is
path-sharing. Ifα = 0.1 andv = 630, the optimal scheme is to not share a path.

Both the reverse broadcast tree problem and the reverse multicast tree problem are
NP-hard. If all of the links’ stabilities are1, the reverse broadcast tree problem can be
reduced to the correlated data gathering problem [5], which has been proven to be NP-
hard. Similarly, if all links’ stabilities are1 and the data cost is excluded, i.e.,α = 0, the
reverse multicast tree problem can be reduced to the geometric spanning tree problem,
which is also NP-hard. Therefore, our reverse broadcast/multicast tree problem is NP-
hard. If we restrict the overhead cost, the data costα, the link stability, the benefitv, and
the source sensor setS, the problem can be reduced to different well-known or solved
subproblems. For example, if the overhead cost is not counted, the problem is reduced to
the maximum expected utility path tree problem, whose special case that|S| = 1 (only
one source sensor) has been studied in our prior work [9] and an optimal algorithm with
complexity ofO((|E|+ |N |)log|N |) was designed to solve the problem. Furthermore,
if all links are reliable, the problem is reduced to the shortest-path tree problem. If link
stability is not1 but the benefitv → ∞ and |S| = 1, it is equal to the most reliable
path problem, i.e. find the path with the highest delivery ratio froms to d. On the other
hand, if only the overhead cost is considered (α = 0), all links’ stabilities are1, and the
source setS = N , the problem is the standard broadcast tree problem, which can be
solved via the Prime algorithm to construct a minimum spanning tree.



4 The Construction of The Data-Gathering Tree

4.1 Build The Reverse Broadcast Tree

Maximum Expected Utility Path Tree A nave method of constructing the reverse
broadcast tree is to build the maximum expected utility path for each sensor, i.e. build
the maximum expected utility (MEU) path tree. This heuristic is similar to the shortest-
path tree. The difference is that in a MEU path tree, a sensor’s distance to the sink
depends not only on the link cost, but also on the link stability and the data’s benefit to
the sink. Different benefit values usually cause different MEU path trees.

Algorithm 1 MEUPT(N , d, v)

1: Initialize;
2: while N 6= ∅ do
3: Find the maximum EU sensori fromN ;
4: Removei fromN to T ;
5: For eachi’s neighborj not inT , Relax(i, j);

Relax(i, j)
1: if i can increasej’s utility then
2: uj ← ui · pj,i − δ · cj,i;

The formal description of this heuristic is given in Algorithm MEUPT. The input
of this algorithm is the sensor setN , the sinkd, and the benefitv. The link costci,j

and link stabilitypi,j for each link(i, j) are also given. Initially, the sink’s expected
utility is v, if a sensorj can directly communicate with the sink, its expected utility
is v · pj,d − δ · cj,d, and all the other sensor’s expected utilities are−∞. The reverse
broadcast treeT first contains only the sink. In each iteration of the construction phase,
the algorithm chooses a link that connects a frontier node (node inT ) with a node not
in T and has the maximum expected utility, and removes the node from the sensor set.
Then, the sensor relaxes its neighbors that are still in the sensor set.

The relaxation consists of two steps. First, the chosen node calculates the expected
utility of each neighbor according to the recursive definition of the expected utility
(Formula (2)) with a small modification because of the consideration of the data cost
and overhead cost. Second, the node compares each neighbor’s calculated expected
utility with its original expected utility and saves the larger value as the neighbor’s new
expected utility. This procedure repeats until all sensor nodes are included inT .

Note that in line 2 of the Relax(i, j) function, the coefficient of the costδ can be
either1+α or α. If δ = α, it means the overhead cost is excluded from the energy cost,
and hence, there is no need for path-sharing. Ifδ = 1 + α, it means that data flows do
not share paths. Without path-sharing, the MEU path tree is the optimal data gathering
tree. Thus, the expected network utilities of the MEU path tree withδ = α and the
MEU path tree withδ = 1 + α can be used as an upper bound and a lower bound of the
optimal data-gathering tree, respectively.



To illustrate the algorithm, we describe the execution of the algorithm on the simple
example given in Fig. 1(a). Assume that the benefit is200 andδ = α = 1. Amongd’s
three neighbors2, 3, and5, node3 has the maximum expected utility160 while both
node2 and node5’s expected utilities are140. Thus, link(3, d) is first added intoT ,
and then node1 and4’s expected utilities are both relaxed through node3 from −∞
to 160 × 0.8 − 10 = 118. Since both node2 and node5’s expected utilities are larger
than node1 and node4’s expected utilities, node2 and node5 are selected earlier than
node1 and4. Node2 (5) will try to relax node1 (4) but fails to improve nodes1 and
4’s expected utilities. Finally, node1 and4 will be selected, and the MEU path tree
consists of link(1, 3), (4, 3), (3, d), (2, d) and(5, d). If the overhead is not counted,
the expected network utility is160 + 140 × 2 + 118 × 2 = 676. The actual expected
network utility of the MEU path tree is676− 180 = 496, where180 is the overhead of
the entire MEU path tree.

Maximum Incremental ENU Link First Although the nave method is simple, it
does not take advantage of path-sharing. Therefore, we propose a greedy-based heuris-
tic, MIENULF, to utilize path-sharing. In each iteration of the construction phase, the
MIENULF heuristic selects a link that can increase the expected network utility the
most. The only difference between the MIENULF heuristic and the MEUPT heuristic
is the relaxation part.

Algorithm 2 MIENULF(N , d, v)

1: The main part is the same as Algorithm MEUPT;

Relax(i, j)
1: if i can increasej’s utility then
2: pj ← pi · pj,i;
3: cj ← ci · pj,i + cj,i;
4: uj ← v · pj − α · ci · pj,i − (1 + α)cj,i;

Besides the expected utility from each sensor, algorithm MIENULF has to mem-
orize the delivery ratio and the expected cost from each sensor to the sink. Therefore,
the algorithm maintains two additional variables for each node:pi andci - the current
delivery ratio and the current expected cost from nodei to the sink along the current
path, respectively. Initially,pi = 0 andci = 0 if i 6= d; otherwise,pd = 1 andcd = 0.
The reason to maintainpi andci for each node is that the expected cost consists of two
parts: the first part is the cost of the new relaxed link, i.e.,(1 + α)cj,i, which consists
of the data cost and the overhead; the second part is the cost shared with other sensors,
i.e.,α · ci · pj,i, in which the overhead has been included in other nodes’s expected cost.

We illustrate algorithm MIENULF by running the example given in Fig. 1(a) and
still setv = 200 andα = 1. After d’s relaxation, node2, 3, and5’s expected utilities are
80, 120, and80, respectively. Then link(3, d) is selected and node3 will relax node1
and node4, whose expected utilities will change to200×0.8−40×0.8−2×10 = 108.



Therefore, in MIENULF, nodes1 and4 are selected before nodes2 and5, whose orders
are different from the execution of MEUPT, although the final trees are the same.

Spanning Tree-Based Heuristic The spanning tree-based method builds the data-
gathering tree by applying the Prime algorithm to construct the minimum spanning
tree. The reason is that if we omit the data cost, and hence the utility, the weigh of each
link (i, j) is just−ci,j , i.e., the negative value of the overhead. Therefore, finding a
data-gathering tree that maximizes the weight of the tree is equal to finding the minimal
spanning tree. For the example in Fig. 1(a), the minimum spanning tree, which is dif-
ferent from the MEU path tree, consists of links(3, d), (1, 3), (4, 3), (1, 2), and(4, 5).
The cost of the overhead is120, and the expected network utility is160 + 118 × 2 +
76.2× 2− 120 = 428.4.

SLT-Based Approximation Algorithm The SLT-based heuristic utilizes the property
that the expected utility of a tree rooted at the sink can be separated into two parts: the
expected utility excluding the overhead energy cost and the overhead energy cost. Each
part alone can be optimized by a polynomial algorithm. This heuristic is inspired by the
shallow light tree (SLT) [5, 8]. The SLT is a spanning tree that has two properties: the
cost of the SLT is no more than1+

√
2

γ times the cost of the minimal spanning tree, and
the cost of the path from any node to the sink in the SLT is no more than1+

√
2γ times

the cost of the shortest path, whereγ can be any positive constant. But our SLT-based
heuristic cannot have the approximation ratio because the metrics for the overhead cost
and the modified expected utility are different, unlike those for the MST and the shortest
path.

The construction of the SLT-based approximation algorithm is as follows. First, a
minimum spanning tree is constructed. Starting from the sink, a depth-first-search of the
tree is made. When a node is visited the first time, its expected utility is compared to its
maximum expected utility (along the maximum expected utility path). If its expected
utility is less thanθ (θ < 1) times its maximum expected utility, the link connecting its
parent node will be removed, and the maximum expected utility path from the node to
the sink is added.

For the example in Fig. 1(a), assume thatv = 200, α = 1, andθ = 0.75. First,
the MST is constructed. When searching the MST from the sink in the depth first order,
since the expected utilities for nodes3, 1, and4 are equal to their maximum expected
utilities, links (3, d), (1, 3), and(3, 4) remain the same. However, when nodes2 and5
are visited, their expected utilities are76.2 < 0.75 × 140, where140 is the maximum
expected utility. Thus, links(1, 2) and(4, 5) are removed, and links(2, d) and(5, d) are
inserted. In this example, the data-gathering tree produced by the SLT-based algorithm
is the same as the MEU path tree.

4.2 Build The Reverse Multicast Tree

All the algorithms used in building the reverse broadcast tree can be used to build the
reverse multicast tree by pruning the redundant, useless branches in order to connect



source sensors to the sink. Besides these algorithms, we propose an algorithm that
builds the reverse multicast tree directly.

Maximum Incremental ENU Path First The maximum incremental ENU path first
(MIENUPF) approach is similar to the MIENULF heuristic. The difference is that in-
stead of adding one link at each iterative step, the MIENUPF inserts a path that connects
an unconnected source to the currentT . After the selection of the new branch, each node
in the new branch will relax the remaining source sensors. This procedure repeats until
all required source sensors are included inT .

The MIENUPF heuristic uses a modified MIEUIF heuristic as a building block. In
the modified MIEUIF heuristic, line 2 (the loop termination condition) changes from
N 6= ∅ to S

⋂N 6= ∅ because we intend to build a reverse multicast tree instead of
the reverse broadcast tree. After the selection of the maximum expected utility nodei,
besides removingi fromN , nodei should also removed fromS if i ∈ S.

Initially, only the expected utility of the sink is set tov, and the expected utilities
of all the other nodes are set to−∞. At each iterative step, after the execution of the
modified MIEUIF heuristic, the MIENUPF heuristic will select an unconnected source
sensor with the maximum expected utility and add the branch that connects the source
sensor toT . Although a lot of nodes’ expected utilities were updated in the execution
of the modified MIEUIF heuristic, only the expected utilities of the nodes on the new
branch will be kept.

Algorithm 3 MIENUPF(N , S, d, v)

1: Initialize;
2: while S

T
T 6= ∅ do

3: MIENULF(N , S, d, v);
4: Find the maximum EU sensori from S;
5: Removei from S;
6: Insert intoT the branch connectingi to T ;
7: Keep theuj of each nodej on the new branch;

For the example in Fig. 1(a), assume thatv = 200, α = 1. After the first round of
the MIENULF, all five nodes have been relaxed, and path< 1, 3, d > (or < 4, 3, d >,
depending on the tie-breaking rule; here we adopt the smallest node ID) is inserted into
T . The expected utilities of nodes2, 4, and5 change back to−∞ at the end of this
round. In the next round,T starts with the path< 1, 3, d > and link (3, 4) will be
inserted in the end.

5 Simulation

All approaches are simulated on our customized simulator. We empirically study the
performance of different heuristics for the reverse broadcast/multicast tree and the ef-
fect of various network parameters on the performance of the proposed heuristics. The
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Fig. 2. Simulation results of the heuristics in building the reverse broadcast/multicast tree.

network parameters include the network densityn (i.e., node population), the size of
a unit data (α), link stability, the value of the benefitv, the source sensor setS, the
local quota, and the parameterθ in SLT-based heuristic. The simulation is set up in a
100m×100m area, where all sensors are homogeneous and can be deployed in this area
arbitrarily. The energy cost between any two nodes is proportional to their distance. The
stability of each link is randomly generated (uniform distribution) in the range[β, γ],
where0 ≤ β ≤ γ ≤ 1.

5.1 Simulation Results

First, we study the effect ofθ on the performance of the STL-based algorithm.θ is the
control coefficient in the SLT-based heuristic, in which the value ofθ controls whether
a node’s maximum expected utility path should be inserted into the existing spanning
tree or not. As shown in Fig. 2 (a), whenθ ≈ 1.1, the SLT-based heuristic has the best
performance. Because the link stability has direct impact on the SLT-based heuristic,



we adopt three different stability low boundsβ = 0.7, 0.8, and0.9 as comparisons. The
three settings show a similar curve, which means the selection ofθ is independent of
the link stability.

In section 4, we argue that the expected network utilities of the MEU path tree with
δ = α and the MEU path tree withδ = 1 + α can be used as the upper bound and the
low bound for the optimal data-gathering tree, respectively. Our claim can be verified
by the simulation results shown in Fig. 2 (b) and (c). In Fig. 2 (b), we study the effect of
α, the size of a unit of data on the performance of the MEUPT algorithm and verify the
lower bound and upper bound. The value ofα ranges from0 to 30 with the increment
being2. The simulation results show that as the value ofα increases, the expected utility
of the MEU path tree, the upper bound, and the lower bound converge. The reason is
that as the value ofα grows, the effect of the overhead decreases. In the extreme case,
asα →∞, the size of the overhead can be omitted, i.e.,1 + α →∞.

In Fig. 2 (c), we compare the four algorithms in building the reverse broadcast tree
(RBT) in the test dimension of network density, and range it from10 to 25 with the
increment being1. As expected, the network density increases the expected network
utility for all the heuristics except the MST-based heuristic, which has the worst perfor-
mance and is even below the lower bound. The reason is that the MST does not take into
account the link stability and benefit issues. The links selected by the MST are close
in geometry but may have a low delivery ratio, and hence, cause a lot data losses. The
expected network utilities of the other three heuristics are close to each other and hard
to compare in Fig. 2 (c). Therefore, we use the lower bound as the base and the expected
network utilities of all the three heuristics are subtracted by the base. The result is shown
in Fig. 2 (d). From Fig. 2 (d), we can conclude that the MIEULF algorithm has the best
performance and the MEUPT algorithm has the worst performance because it does not
take into account path-sharing. Since the MIEULF heuristic has the best performance,
we will use MIEULF in the following simulations.

In Fig. 2 (e), we simulate the effect of the range of link stability on the performance
of the MIEULF heuristic. We increaseβ from 0 to 0.9 with an incremental step of0.1.
As β increases, the links become stable. We compare the MIEULF trees with different
values ofα, the size of unit data. The simulation results show that the more stable the
links, the higher the expected network utility, and the increment of data size decreases
the expected network utility. The simulation results reflect the fact that the expected
network utility can be affected from two causes. On one hand, the expected network
utility increases with the increment of the link stability. On the other hand, the expected
network utility decreases with the increment of the transmission cost.

Fig. 2 (f) shows the results of the simulation on the effect of benefit value. We use
the MIEULF heuristic to simulate and adopt four combinations of stability range and
the value ofα (α = 0, β = 0.5, α = 0, β = 0.8, α = 2, β = 0.5, andα = 0, β = 0.8).
The benefit value varies from500 to 2000 with an increment of100. As expected, the
increment of the benefit improves the expected network utility, the increment of the data
size decreases the expected network utility, and the increment of the stability increases
the expected network utility.

We also study the effect of the local quota on the performance. We use the same
setting as the previous experiment. The local quota increases from1 to 20 with an



increment of1. According to the simulation results shown in Fig. 2 (g), the increment
of the local quota can increase the expected network utility, but as the number of the
local quota reaches6, the impact of the continuous increment of the local quota becomes
less essential. The reason for this is that retransmissions increase the delivery ratio the
most in the first several retry attempts.

Finally, we compare the proposed heuristics for constructing the reverse multicast
tree and study the effect of the size of the source sensor set on the performance. The
simulation results are plotted in Fig. 2 (h) and (i). Because the MIEULF heuristic has the
best performance in building the reverse broadcast tree, we adopt the pruning heuristic
based on the MIEULF heuristic as the representative pruning method. We set the benefit
value to1000, β = 0.9, andα = 2. Because the expected network utilities of the
MIEULF-based heuristic and the MIEUPF heuristic are close, we subtract5000 from
both utilities. Fig. 2 (h) shows that the MIEULF-based pruning heuristic has better
performance. Since the MIEULF-based pruning heuristic has better performance, we
use it as the method to study the effect of the size of the source sensor set. The other
settings are the same. Fig. 2 (i) illustrates that the increment of the number of the source
sensors can increase the expected utilities.

6 Related Work

Many existing data-gathering models [5, 10, 12] assume that wireless channels are reli-
able, or the channels are unstable but the reliability can be achieved through retransmis-
sions. However, wireless communication is unreliable in practice, and100% reliability
is not achievable due to practical issues such as the constraint on the maximum num-
ber of retransmissions in link layer technologies. Therefore, we proposed a new-data
gathering model that takes this unreliability into account.

Existing link reliability models [1, 3, 7] usually adopted the packet-delivery ratio to
define the link reliability, and defined the expected link cost as the link cost divided by
the link reliability. This definition is based on the assumption of unbounded retransmis-
sions. Our previous work [9] proposed a more reasonable definition of the expected link
costs, which does not allow unlimited retransmissions and involves the interdependence
of the stabilities among different links.

Many energy-efficient data-gathering models adopt the reverse broadcast/multicast
tree models [12], which utilizes in-network aggregation and fusion to reduce energy
consumption. To reduce the complexity, the reverse broadcast tree model [12] assumed
the energy consumption of the aggregated data flow is equal to that of a single data flow.
A more reasonable model [4, 5, 6] assumed the existence of data correlation so that the
energy consumption of an aggregated flow from two flows is less than two single flows
and more than one single flow. Our model admits the existence of data correlation, and
adopts a utility metric to balance the reliability and energy cost. Chen and Sha [2] also
adopted the utility-based model in data-gathering WSNs. They assumed that different
data have different levels of importance, and the sink would assign different weights to
different types of data according to their importance.



7 Conclusion

In this paper, we study the data-gathering problem in wireless sensor networks from the
maximization of the expected network utility point of view by considering resource
scarcity and the unstable nature of wireless channels. We model the data-gathering
problem as an optimization problem, prove its NP-hardness, propose several heuris-
tics for both the reverse broadcast tree and the reverse multicast tree problems, and use
simulation to study the effects of different parameters and to compare the performance
of various heuristics. In the future, we will explore the effect of the data redundance on
the evaluation of the network benefit and the effect compression technique on reducing
the energy consumptions, as well as the effect of signal strength on stability.
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