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Abstract—Mobile crowdsensing is a new paradigm by which a platform can recruit mobile workers to perform some sensing tasks by
using their smart mobile devices. In this paper, we focus on a privacy-preserving unknown worker recruitment issue. The platform
needs to recruit some workers without knowing the qualities of them completing tasks. Meanwhile, these quality information also needs
to be protected from disclosure. To tackle these challenges, we model the unknown worker recruitment as a Differentially Private
Multi-Armed Bandit (DP-MAB) game by seeing each worker as an arm of DP-MAB and the task completion quality contributed by each
worker as the reward of pulling arm. Then, recruiting workers is equivalent to designing a bandit policy of pulling DP-MAB arms. Under
this model, we propose a Differentially Private ε-First-based arm-pulling (DPF) algorithm and a Differentially Private UCB-based
arm-pulling (DPU) algorithm, which can achieve the nearly optimal expected accumulative rewards under a given budget. We also
analyze the regrets of the DPF and DPU algorithms and prove that both of them are δ-differentially private on the task completion
qualities (δ>0). Finally, we conduct extensive simulations to verify the significant performances of DPF and DPU based on both the
real-trace and synthetic datasets.

Index Terms—Differential privacy, mobile crowdsensing, multi-armed bandit, worker recruitment
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1 INTRODUCTION

WITH the explosive spread of smart mobile devices,
Mobile CrowdSensing (MCS) has become an attrac-

tive paradigm for collecting sensing data. A typical MCS
system consists of a platform residing on the cloud and a
collection of mobile workers. The platform produces some
sensing tasks and recruits mobile workers to perform these
tasks by using their smart mobile devices. After completing
the tasks, the workers will return the corresponding results
to the platform. Since MCS can employ a lot of workers to
complete a large task via their mobile devices, it has brought
considerable flexibility to many applications, such as traffic
information collection, noise pollution monitoring, indoor
location, etc.

Worker recruitment is one of the most important issues
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in MCS systems. Existing worker recruitment mechanisms
can be simply categorized into two models: the passive
model and the proactive model. In the passive model, all
tasks are publicized on the platform and workers directly
apply for their preferred tasks to be performed. In the
proactive model, the platform proactively recruits suitable
workers to conduct the produced tasks. Since the platform
in the proactive model can manipulate the worker recruit-
ment process to optimize some metrics as it wants (e.g., to
maximize the rewards, minimize the costs, etc.), this model
attracts much research effort. Consequently, many worker
recruitment algorithms have been proposed for various
MCS systems [1]–[5]. At the same time, privacy-preserving
issues and incentive mechanism design of worker recruit-
ment have also been studied, e.g., [6]–[18].

In this paper, we focus on the issue of recruiting un-
known workers for MCS systems. Although existing work-
er recruitment algorithms can deal with many MCS ap-
plications, most of them assume that the platform knows
each worker’s ability of performing diverse tasks, such
as the successful probability of performing the task, the
corresponding completion quality, and so on. Nevertheless,
real MCS systems often do not support this assumption.
Actually, it is difficult for a worker to evaluate its work skill
and quality by itself in most cases. Thus, it is not realistic
for the platform to know workers’ Qualities of Completing
tasks (QoCs) in advance. On the other hand, workers in
most MCS systems are not familiar with each other, but
they might compete for the same tasks. The workers are
generally not willing to disclose their QoCs to others, since
some sensitive private information might be revealed [7].
Therefore, for the unknown worker recruitment issue, we
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not only need to select appropriate workers without any
prior knowledge on their QoCs, but also need to protect the
privacy of each worker’s sensitive information from being
revealed to other workers.

A Toy Example. Assume that an MCS platform produces
a task to collect some location-aware noise pollution data by
using mobile devices. The task will last for a long period of
time and thus is divided into many rounds. There are two
workers (A and B) in the MCS system competing for the
task. The objective is to achieve a better QoC performance.
However, the platform does not know workers A and B be-
fore, so there is no prior knowledge about their QoCs. Thus,
the platform needs to strategically select A or B to conduct
each round of data collection task. During the process, the
platform will repeatedly and randomly select A and B in
order to learn their true QoC values and discover the better
worker. Meanwhile, it will also leverage the knowledge (i.e.,
the QoCs of A and B) it has learnt to select the worker who
is potentially the better worker for this task. That is to say,
designing a worker recruitment strategy needs to take learn-
ing workers’ QoC values into consideration. In addition,
another worker C might pretend to participate in the task
and eavesdrop the QoC values of other workers, which can
reveal their sensitive information, such as their locations,
professions, hobbies, etc. Besides, C can manipulate its own
QoC and observe the corresponding sequential recruitment
results published by the platform to infer the QoC ranges of
other workers. Thus, protecting workers’ QoCs from being
revealed also needs be considered.

To tackle the above challenges, we treat the unknown
worker recruitment of MCS as an online reinforcement
learning process. On one hand, the platform repeatedly
estimates workers’ QoCs by recruiting them to perform
some tasks, generally called the exploration process; on the
other hand, based on the estimated QoCs, the platform
continuously adjusts the recruitment policy to improve the
total task completion quality, also known as the exploitation
process. Since Multi-Armed Bandit (MAB) is an efficient
reinforcement learning model to handle this kind of explo-
ration versus exploitation dilemma [19], [20], we model our
unknown worker recruitment problem as a Differentially
Private MAB (DP-MAB) game, where each worker is seen
as an MAB arm, recruiting a worker means pulling the
corresponding arm, and the task completion quality con-
tributed by the worker is seen as the reward of pulling the
arm. Meanwhile, we treat the rewards of pulling arms (i.e.,
the recruited workers’ QoCs) as a series of sensitive data,
and adopt the differentially private mechanism to protect
them from being revealed. The objective is to maximize the
expected value of the accumulative reward (i.e., the total
expected QoC), given a budget of worker recruitment cost.

So far, there have been substantial research on MAB.
However, only a few works have investigated differentially
private MAB problems [21], [22]. Moreover, none of them
involves the costs and budgets of pulling arms. Different
from these existing works, our DP-MAB model is derived
from the unknown worker recruitment problem of MCS
which takes into consideration the differential privacy of the
rewards of pulling arms and the limited budget together.
When introducing the costs and budget constraints into
DP-MAB, our DP-MAB problem contains the 0-1 knapsack

problems, which makes it more challengeable and complete-
ly different from the problems investigated in [21], [22]. To
deal with this novel DP-MAB model, we extend the well-
known ε-First and Upper Confidence Bound (UCB) bandit
(a.k.a., arm-pulling) policies to propose a Differentially Pri-
vate ε-First-based arm-pulling (DPF) algorithm and a Dif-
ferentially Private UCB-based arm-pulling (DPU) algorithm,
by which the platform can recruit suitable workers under a
given budget. More specifically, our major contributions are
summarized as follows:

1) We introduce a privacy-preserving unknown work-
er recruitment problem for MCS systems, where
each worker’s QoC follows an unknown distri-
bution. We model it as a DP-MAB game with a
limited budget, where recruiting unknown workers
is turned to determining a bandit policy with the
maximum expected accumulative reward. Unlike
existing works, we consider the differential privacy
of workers’ QoCs and the recruitment budget simul-
taneously in our DP-MAB model.

2) We propose a budget-feasible ε-First differentially
private bandit algorithm, i.e., DPF, by which the
platform can recruit unknown workers to achieve
a nearly optimal expected accumulative reward.
Moreover, we analyze the corresponding online ap-
proximate performance to derive an upper bound
on the regret (i.e., the expected reward loss). Also,
we prove that the algorithm is δ-differentially pri-
vate (δ>0).

3) We also propose a budget-feasible differentially pri-
vate UCB-based bandit algorithm, i.e., DPU, for the
platform recruiting unknown workers. Likewise, D-
PU can achieve the δ-differential privacy on worker-
s’ QoCs. Moreover, we also derive an upper bound
on the regret of DPU.

4) We conduct extensive simulations on synthetic and
real traces to evaluate the proposed DPF and DPU
algorithms. Both of them demonstrate the signifi-
cant performances. Moreover, when the budget of
recruiting workers is small, DPF can obtain a better
QoC performance than DPU; otherwise, if the bud-
get becomes large, DPU will achieve a better QoC
performance.

The remainder of the paper is organized as follows. We
introduce the models and the problem in Section 2. The
DPF and DPU algorithms are proposed in Sections 3 and
4, respectively. We evaluate their performances in Section 5.
After reviewing the related works in Section 6, we discuss
the possible extensions of our system in Section 7. The
conclusion of this paper is presented in Section 8.

2 MODELS AND PROBLEM

2.1 System Overview
In this paper, we leverage an MCS system to continuous-
ly collect information for a period of time under a fixed
monetary budget B, such as collecting daily noise pollution
information in a month, or collecting real-time road-side
parking availability information, etc. The system includes a
platform and a collection of mobile workers who are willing
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to perform the information collection task, denoted by a set
N def

= {1, · · · , i, · · · , N}. The information collection task is
conducted periodically according to the following mode:

Definition 2.1 (Periodical MCS Information Collection
Mode). Time is divided into a series of equal-length time
slots, denoted by T def

={1, · · · , t, · · · }. According to different
realistic applications, a time slot might be one hour, one
day, and so on. At the beginning of each time slot, the
platform recruits a worker. Then, the worker performs the
task and returns the corresponding results before the end
of the time slot. The collected information will bring a
reward to the MCS system. Hence, the platform will pay a
certain monetary remuneration for the worker. This process
will be continuously conducted until the given budget B is
exhausted.

In the MCS system, workers’ QoCs are unknown to the
platform. We call them unknown workers:

Definition 2.2 (Unknown Worker and QoC). For each
worker i ∈ N , we use a normalized nonnegative random
variable Qi,t∈ [0, 1] to denote its Quality of Completing the
task (QoC) in an arbitrary time slot t ∈ T . Moreover, Qi,t

follows an unknown distribution with an unknown mean
qi, which is determined by the worker’s ability. Since the
distribution and mean are unknown, we call these workers
unknown workers, or workers for short.

In addition, we also define the notations of cost and
reward for each worker completing the task:

Definition 2.3 (Cost, Reward, and Accumulative Reward).
When worker i∈N is recruited by the platform to perform
the task at time slot t, the worker will incur a cost, and the
platform will produce a reward. The cost and the reward
are denoted as ci and Xi,t, respectively. In this paper, the
reward contributed by each worker is actually the worker’s
QoC. Then, Xi,t =Qi,t. When worker i is not recruited, we
have Xi,t = 0. Moreover, we define �Xt

def
= (X1,t, · · · , XN,t)

and let the sequence of the rewards contributed by worker
i up to time slot t be denoted as Xi,1:t = {Xi,1, · · · , Xi,t}.
Additionally, the total reward contributed by worker i from
time slot 1 to t is called the accumulative reward, denoted by
ri,t=

∑t
j=1 Xi,j .

Remark: Here, we assume that the reward contributed
by a worker is equivalent to the QoC of this worker. This
is reasonable since each worker will report the results of
performing the task to the platform, and the platform can
evaluate the QoC of the worker and represent it by using the
reward contributed by the received results. Additionally, the
objective of the platform is to recruit appropriate workers
to maximize the expected accumulative reward. It is actually
equivalent to maximizing the total expected QoC of all
recruited workers.

2.2 Differentially Private Multi-Armed Bandit Model
MAB is a reinforcement learning model which is widely
used to make a series of online decisions in an uncertain
environment [19], [20]. A typical MAB model includes a
slot machine with multiple arms. Each arm is associated
with a reward drawn from an unknown distribution. A
player will continuously pull the arms according to some

DP

Platform Player

Workers Arms

Worker recruitment 

QoCs

Budget-feasible bandit policy

Rewards

Fig. 1: The DP-MAB model
strategy, called bandit policy, so as to maximize the expected
accumulative reward.

In our MCS system, the platform sequentially recruits
unknown workers to perform the information collection
task under the budget B, while protecting the privacy of the
recruited workers. Taking the privacy and the budget into
consideration, we model the unknown worker recruitment
as a DP-MAB game, illustrated in Fig. 1. In the DP-MAB
model, the platform is seen as a player, each worker in N is
an arm, and the QoC of each recruited worker is seen as the
reward of pulling the corresponding arm. In addition, the
rewards of pulling arms are sensitive data to be protected
via the differentially private mechanism. The objective of
the platform is to sequentially pull the arms according
to a budget-feasible bandit policy, so as to maximize the
accumulative reward, while protecting the privacy of the
rewards of pulling arms (i.e., workers’ QoCs). Let at ∈ N
denote the arm that the platform pulls in time slot t. Then,
the bandit policy can be defined as follows:

Definition 2.4 (Budget-Feasible Bandit Policy). A bandit
policy Ψ is a sequence of maps: {Ψ1, · · · ,Ψt, · · · }, each of
which specifies the arm that the platform will pull under
the historical records, i.e., at =Ψt( �X1:t−1), where �X1:t−1 =
( �X1, · · · , �Xt−1). Moreover, the total cost is no larger than
the given budget, i.e.,

∑
t cat ≤B.

While applying a bandit policy to pull the arms, we
adopt the differential privacy mechanism to protect the
values of reward of each arm in the whole process. The
differential privacy can be formally defined as follows:

Definition 2.5 (δ-Differential Privacy( [21], [23])). A bandit
policy Ψ is δ-differentially private if and only if over all time
slots in T , for all sequences �X1:t−1 and �X ′

1:t−1 differing in
at most one time slot, and for any set S⊆N we have

P{Ψt( �X1:t−1)∈S}≤eδ · P{Ψt( �X
′
1:t−1)∈S}. (1)

Here, δ > 0 is a small constant, indicating the privacy level
that the policy provides.

Then, the accumulative reward ri,t which is manipulated
by a differentially private mechanism is called the disguised
accumulative reward. To make a distinction, we use r̂i,t to
denote the disguised accumulative reward.

Remark: Intuitively, for an arbitrary time slot t and a
pair of reward sequences �X1:t and �X ′

1:t with at most one
different reward vector, there at most exists one time slot
j ≤ t such that �Xj = (X1,j , · · · , Xi,j , · · · , XN,j) is changed
to �X ′

j = (X ′
1,j , · · · , X ′

i,j , · · · , X ′
N,j). Definition 2.5 means

that if we change any reward vector �Xj to �X ′
j , the worker

recruited by the bandit policy Ψ will not change too much
at time slot j+1 or later on. This also indicates that an
adversary will not be able to distinguish between the p-
resence or absence of the reward vector �Xj from the output
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TABLE 1: Description of major notations
Variable Description

i, N the i-th worker, and the set of all workers.
T ,
1 : t,
t+

the set of all time slots (T def
= {1, · · · , t, · · · }), the

time slots from 1 to t, and the time slots from t to
the end time slot.

ci, B,
Bt

worker i’s cost, the total budget of recruiting
workers, and the residual budget at time slot t.

Qi,t, qi worker i’s Quality of Completing the task in time
slot t, and the mean of Qi,t (Def. 2.2).

Xi,t,
Xi,1:t,
�Xt,
�X1:t−1

the reward contributed by worker i in time slot
t, the sequence of these rewards until time slot
t (Def. 2.3), �Xt

def
= (X1,t, · · · , XN,t), and �X1:t−1 =

( �X1, · · · , �Xt−1).
zi,t,
zi,t+

the total number of times that worker i has been
recruited from time slot 1 to t and from t to the
end time slot (Sec. 2.3).

ri,t, r the accumulative reward contributed by worker
i until time slot t (Def. 2.3), and the accumula-
tive reward contributed by all workers until the
budget expires.

r̂i,t the disguised accumulative reward contributed
by worker i until time slot t which computed by
a hybrid mechanism.

(i.e., a recruited worker) of the differentially private bandit
policy. In addition, malicious workers might eavesdrop the
QoC values of others for the sake of acquiring their private
information, and the QoC of a worker is equivalent to the
reward of this worker which is contributed to the platform.
Therefore, we mainly protect the differential privacy of
the QoC sequence of each worker (i.e., the corresponding
reward vector) from being revealed to other workers, except
for the platform.

2.3 Problem Formalization

Under the DP-MAB model, the platform recruits the work-
ers according to a bandit policy. The policy needs to i) satisfy
δ-differential privacy over the whole recruitment process, as
shown in Def. 2.5, ii) maximize the expected accumulative
reward, and iii) guarantee that the total cost of pulling arms
is no more than the given budget B. We use zi,t and zi,t+
to denote the total number of times that the i-th arm has
been pulled from time slot 1 to t and from t to the end time
slot, respectively. Now, let r denote the accumulative reward
that the platform obtains. Then, the expected accumulative
reward E[r] can be calculated as follows:

E[r]=
∑

i∈N qiE[zi,1+ ]. (2)

And, the privacy-preserving unknown worker recruitment
problem can be formulated as:

Maximize : E[r] (3)
Subject to :

∑
i∈N cizi,1+ ≤B (4)
Eq. 1 holds. (5)

For ease of reference, we list the main notations in Table 1.

3 THE DPF BANDIT ALGORITHM

In this section, we propose a budget-feasible differentially
private ε-First-based bandit algorithm, i.e., DPF, to solve
the unknown worker recruitment problem. First, we model
the unknown worker recruitment as a series of arm-pulling
operations for a DP-MAB game. Under this model, the DPF
algorithm adopts a budget-feasible ε-First bandit policy to

determine workers, where the ε ratio of total budget is
invested for learning the workers’ QoCs (i.e., exploration)
and the residual budget is used to select the best worker
(i.e., exploitation). Meanwhile, the DPF algorithm leverages
the hybrid differentially private mechanism to protect the
privacy of workers’ QoCs during the whole recruitment
process. In the following subsections, we elaborate the main
technologies, present the detailed algorithm, and proceed
with the performance analyses.

3.1 The Hybrid Differentially Private Mechanism

Under the DP-MAB model, the platform conducts a series of
arm-pulling operations for worker recruitment. In each time
slot, the platform will determine an arm to pull according
to the accumulative reward of each arm. If an arm is pulled,
the corresponding worker’s QoC will be added to the ac-
cumulative reward of this arm; otherwise, the correspond-
ing accumulative reward will remain unchanged, which is
equivalent to being added by 0. During this process, we
apply the hybrid differentially private mechanism to protect
the workers’ QoCs from being revealed [24]. When the
platform updates the accumulative reward of each arm, this
mechanism will generate a Laplace noise for each incremen-
tal value (even though the incremental value might be 0).
More specifically, we consider an arbitrary worker i∈N , the
rewards contributed by whom are Xi,1+ = {Xi,1, Xi,2, · · · ,
Xi,t, · · · }. Based on the hybrid differentially private mech-
anism, we introduce a function Hi(·), which maps a series
of rewards to a disguised accumulative reward by adding
Laplace noises. Let Lap(λ) denote a Laplace distribution
with mean zero and scale λ, where the probability density
function is denoted by f(x)|Lap(λ) =

1
2λ exp(− |x|

λ ). Then,
when inputting Xi,1:t = {Xi,1, · · · , Xi,t}, Hi(·) can be
calculated as follows:

Hi(Xi,1:t)=
t∑

j=1

Xi,j+Lap(
2N

δ
)+(k−1)Lap(

2N�logt�
δ

). (6)

Here, k is the number of 1’s in the binary expression of t, and
the k Laplace noises are added at the time slot t. Moreover,
we let the disguised accumulative reward of pulling the i-th
arm be

r̂i,t=Hi(Xi,1:t). (7)
Then, for each arm, the platform can compute the corre-
sponding disguised accumulative reward. In this way, the
true value of each Xi,t is protected from being revealed.

3.2 The Budget-Feasible ε-First Bandit Policy

In the DP-MAB model, the whole arm-pulling (i.e., the
unknown worker recruitment) process is divided into the
exploration and exploitation phases. To deal with the explo-
ration versus exploitation dilemma, we propose a budget-
feasible ε-First bandit policy. First, the platform determines
a real number ε from the open interval (0, 1) according to
its historical experience. Then, it divides the budget B into
two parts: εB for the exploration phase and (1−ε)B for the
exploitation phase.

In the exploration phase, the platform estimates the
mean reward of each arm (i.e., the mean QoC of the cor-
responding worker) by recruiting the worker to perform
the task. Since there is no prior knowledge on workers’
QoCs, we let each arm be tested equally. Without loss of
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generality, we assume that the costs of all arms in N satisfy
c1 ≤ · · · ≤ cN . Then, the platform pulls the arms in N
one by one in the non-decreasing order of their costs until
the budget εB runs out. Let τ be the end time slot of the
exploration phase, which satisfies:

τ=argmax
t

∑t

j=1
caj ≤εB. (8)

Let zi,τ denote the total number of times that the i-th
arm has been pulled in this phase and let r̂i,τ denote the
corresponding disguised accumulative reward. Then, they
satisfy:

zi,τ ≥� εB∑N
i=1 ci

�, r̂i,τ =Hi(Xi,1:τ ). (9)

Here, �·� is the floor function. Based on Eqs. 8-9, the platform
can estimate the mean value of the worker i’s QoC, denoted
by q̂i, satisfying q̂i= r̂i,τ/zi,τ .

In the exploitation phase, the platform conducts arm-
pulling operations according to the means of workers’ QoCs
(i.e., the estimated rewards of arms) that are estimated in
the exploration phase. In order to maximize the expected
accumulative reward within the budget constraint, we mod-
el the arm-pulling in this phase as a knapsack problem to
be solved, where each arm is an item, the estimated mean
reward of pulling an arm is the value of the item, the cost of
pulling the arm corresponds to the weight of the item, and
the budget (1−ε)B is seen as the capacity of the knapsack.
Let zi,(τ+1)+ denote the total number of times that the i-th
arm is pulled in the exploitation phase. Then, the problem
can be formulated as follows:

maximize :
∑N

i=1 q̂izi,(τ+1)+ (10)

subject to :
∑N

i=1 cizi,(τ+1)+ ≤(1−ε)B (11)

Since this knapsack problem is a well-known NP-hard
problem, we adopt a greedy strategy to solve it. First, the
platform computes the value per weight for each item, i.e.,
q̂i
ci

, which is called the density of the i-th arm. Then, the
platform sorts the arms in the non-decreasing order of their
densities. Next, in each time slot, the platform continuously
pulls the arms with the highest density values until the
budget (1− ε)B is exhausted. Each arm is allowed to be
repeatedly pulled.

For better understanding, we follow the example in Sec-
tion 1 to illustrate the budget-feasible ε-First bandit policy,
as shown in Fig. 2. In this example, the monetary budget
is 200, and three workers compete for the task, whose costs
are {c1 = 2, c2 = 4, c3 = 5}. Assume that the QoC of each
worker follows the uniform distribution on [0,1], and the
corresponding means are q1 = 0.4, q2 = 0.6, q3 = 0.8, as
shown in Figs. 2(a)-2(b). Let ε= 0.1. Then, the budgets for
exploration and exploitation are 20 and 180, respectively.
Note that c1 < c2 < c3. According to the budget-feasible
ε-First bandit policy, in the exploration phase, the three
workers will be recruited in the order of 〈1, 2, 3, 1, 2, 1〉
until the residual budget exhausts. At the end of explo-
ration, we can compute the estimated QoC means for three
workers: r1,6

z1,6
= 0.6+0.3+0.5

3 = 1.4
3 , r2,6

z2,6
= 0.7+0.5

2 = 0.6,
r3,6
z3,6

= 0.9
1 = 0.9. Accordingly, the estimated densities are

r1,6
c1z1,6

= 1.4
6 ,

r2,6
c2z2,6

= 0.15,
r3,6

c3z3,6
= 0.18. Then, in the 7th

day, the exploitation phase starts and the budget is 180,
i.e., B7 = 180. Since r1,6

c1z1,6
>

r2,6
c2z2,6

>
r3,6

c3z3,6
, worker 1 will
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(b) More information about the three workers

B1=20 B2=18 B3=14 B4=9 B5=7 B6=3 B7=180 B7=178

(c) The worker recruitment process

Fig. 2: An illustration of the budget-feasible ε-First bandit
policy

be always recruited until the residual budget becomes 0.
Then, the whole recruitment process terminates and the
recruitment order is 〈1, 2, 3, 1, 2, 1, 1, 1, · · · , 1〉, as shown in
Fig. 2(c). Here, for simplicity, we remove the Laplace noises
produced by the hybrid differentially private mechanism.

3.3 The Detailed DPF Algorithm
The detailed DPF algorithm is shown in Algorithm 1. In
Steps 3-8, we conduct the exploration process. More specif-
ically, in Steps 5-6, we sequentially recruit the workers in
N . Whenever recruiting a worker, we judge whether the
residual budget Bt is enough to recruit this worker. The
exploration process terminates when the residual budget is
less than the minimal cost c1. In Step 8, we compute the
disguised accumulative reward and the disguised estimated
QoC mean of each worker. More specifically, if t can be rep-
resented as an integer power of 2, r̂i′,t= r̂i′,t−1+Lap(2N/δ);
Otherwise, r̂i′,t= r̂i′,t−1+(k−1)Lap(2N�log t�/δ). Here, k is
the number of 1’s in the binary expression of t. In Steps 12-
20, we conduct the exploitation process, in which we recruit
workers according to the greedy solution to the problem
shown in Eqs. 12-13. That is, we greedily pull the arm with
the highest value of q̂i/ci under the residual budget. In Step
18, we compute the disguised accumulative reward of each
worker as in Step 8. The accumulative reward r over the
whole process is computed in Step 21.

3.4 Performance Analysis
In this subsection, we prove the security, and analyze the
regret performance and computation complexity of DPF.

Theorem 3.1. The DPF algorithm is δ-differentially private.

Proof: Consider an arbitrary time slot t and a pair of
reward sequences �X1:t and �X ′

1:t with at most one different
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Algorithm 1 The DPF Algorithm
Input: N , {Xi,t, ci|i∈N , t∈T }, B, ε, δ
Output: r

1: Initialization: t=0; ∀i∈N : zi,t=0;
2: Exploration phase:
3: t= t+1; Let Bt=εB be the residual budget; Let t′= t;
4: while Bt≥c1 do
5: while i= t′ modN and Bt≥ci do
6: at= i; Pull the at-th arm;
7: ∀i′∈N : zi′,t=zi′,t−1; zat,t=zat,t−1+1;
8: ∀i′∈N : r̂i′,t=Hi′(Xi′,1:t); q̂i′ =

r̂i′,t
zi′,t

;
9: Bt+1=Bt−cat ; t= t+1; t′= t′+1;

10: t′=1;
11: Exploitation phase:
12: Let Bt=(1−ε)B be the residual budget;
13: Let N ′=N be the workers that have not been recruited;
14: while Bt≥c1 do
15: while at=argmaxi∈N ′

q̂i
ci

and Bt≥cat do
16: Pull the at-th arm;
17: ∀i′∈N : zi′,t=zi′,t−1; zat,t=zat,t−1+1;
18: ∀i′∈N : r̂i′,t=Hi′(Xi′,1:t);
19: Bt+1=Bt−cat ; t= t+1;
20: N ′=N ′ − {at};
21: r=

∑
i∈N r̂i,t−1;

reward vector. That is, there at most exists one time slot
j≤ t such that �Xj =(X1,j , · · · , Xi,j , · · · , XN,j) is tampered
to �X ′

j = (X ′
1,j , · · · , X ′

i,j , · · · , X ′
N,j). Then, for any worker

i, Xi,1:t and X ′
i,1:t differ in at most one reward record. Let

Δ=maxj∈[1,t] |Xi,j−X ′
i,j |. Since all rewards belong to [0,1],

we have Δ≤ 1, and |∑t
j=1Xi,j −

∑t
j=1X

′
i,j | ≤Δ≤ 1. Then,

for ri∈R, according to [23] and Eq. 6, we have:
P{Hi(Xi,1:t)=ri}
P{Hi(X ′

i,1:t)=ri}

=
P{ri−

∑t
j=1 Xi,j=Lap( 2Nδ )+(k − 1)Lap( 2N�log t�

δ )}
P{ri−

∑t
j=1 X

′
i,j=Lap( 2Nδ )+(k − 1)Lap( 2N�log t�

δ )}

=

f(ri−
t∑

j=1
Xi,j)|Lap(2Nδ ) ·[f(ri−

t∑
j=1

Xi,j)|Lap(2N�log t�
δ )

](k−1)

f(ri−
t∑

j=1
X ′

i,j)|Lap(2Nδ ) ·[f(ri−
t∑

j=1
X ′

i,j)|Lap(2N�log t�
δ )

](k−1)

≤e
δ

2N (1+ k−1
�log t� )|

∑t
j=1 Xi,j−

∑t
j=1 X′

i,j |

≤e
δΔ
N ≤e

δ
N

Here, k is the number of 1’s in the binary expression of
t. Thus, k − 1 ≤ �log t�. Therefore, for each worker, the
hybrid mechanism can guarantee that its reward sequence is
δ
N -differentially private. Now, we consider all workers. Ac-
cording to the composition property of differential privacy,
for some a∈N we have:

P{Ψ(X1:t)=a}
P{Ψ(X ′

1:t)=a} ≤
∏N

i=1 P{Hi(Xi,1:t)=ri}∏N
i=1 P{Hi(X ′

i,1:t)=ri}
≤eδ. (12)

Therefore, we can conclude that the DPF algorithm is δ-
differentially private. �

Now, we derive an upper bound on regret of the DPF
algorithm. Essentially, the regret is the expected loss of the
reward achieved by DPF, compared to an optimal algorithm.

TABLE 2: Description of major formulas for DPF and DPU
Variable Description

vt the upper bound of the sum of noises (Lemma
3.2).

i∗, i� the arm with the maximal density and the arm
the minimal density (Lemma 3.4).

σ, σi the distance between the maximal density and
the minimal density (Lemma 3.4), and the dis-
tance between the maximal density and the den-
sity of the i-th arm.

Ii,t the UCB index of the i-th arm (Def. 4.1).
c∗, c� the maximal cost and the minimal cost (Sec. 4.3).

Here, the optimal algorithm assumes that the platform has
known the true QoC of each worker in advance and no
privacy-preserving mechanisms are employed, so that it
can make the optimal worker recruitment decision. Before
the detailed theoretical analysis, we list the frequently used
notations in Table 2 for clarity.

First, we introduce two lemmas which will be used in
the derivation of regret bound:

Lemma 3.2 ( [21], [24]). Consider an arbitrary worker’s accu-
mulative reward ri,t (=

∑t
j=1Xi,j) and the accumulative reward

r̂i,t disguised by using hybrid differentially private mechanism.
Denote vt=

√
8
δ log ( 4γ )(log t+1). Then, for any time slot t∈T

and any 0<γ≤ t−b (b>0), we have
P{|r̂i,t−ri,t|≥vt}≤γ.

Here, |r̂i,t−ri,t| equals to the sum of Laplace noises added to the
accumulative reward ri,t. And, vt indicates an upper bound on
the total Laplace noises with a high probability. According to [21],
[24], we have vt=

√
8
δ log ( 4γ )(log t+1).

Lemma 3.3 (Chernoff-Hoeffding bound). Suppose that Y1,
Y2, · · · , Yt are t random variables in the same range [0, 1],
satisfying E[Yj |Y1, · · · , Yj−1] = μ for ∀j ∈ [1, t]. Then, for any
η≥0, we have:

P{
∑t

j=1
Yj≥ tμ+η}≤e−

2η2

t , P{
∑t

j=1
Yj≤ tμ−η}≤e−

2η2

t .

Based on the two lemmas, we have:

Lemma 3.4. Denote the total accumulative reward produced by
DPF at time slot t as rt=

∑N
i=1 ri,t, and denote the corresponding

optimal total accumulative reward as r∗t . Let τ (τ <t) be the end
time slot of the exploration phase and vt=

√
8
δ log ( 4γ )(log t+1).

Then, for any η≥0 and 0<γ≤ t−b (b>0), with the probability
at least 1−(e− 2η2

t +γ), the expected regret E[r∗t ]−E[rt] satisfies:

E[r∗t ]−E[rt]≤2+εσB+
4(η+vt)

∑N
i=1 ci

ci∗
(
1

ε
−1), (13)

where i∗=argmax
i∈N

qi
ci

, i�=argmin
i∈N

qi
ci

, and σ=
qi∗
ci∗

− qi�
ci�

.

Proof: First, according to the DPF algorithm, the total
accumulative reward in the exploration phase satisfies:

E[rτ ]≥�εB qi�
ci�

�≥εB
qi�
ci�

−1. (14)

Second, we consider the exploitation phase. Note that
at the end of the exploration phase, we have obtained
the disguised estimated QoC q̂i of each worker i, i.e.,
q̂i =

r̂i,τ
zi,τ

. Based on this, we can capture the worker with

the largest disguised QoC per cost. Let î∗ be this worker,
i.e., î∗ =argmaxi∈N

q̂i
ci

. Then, according to the greedy arm-
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pulling strategy in the exploitation phase, the expected
accumulative reward produced by DPF, denoted by rτ :t,
satisfies:

E[rτ :t]≥� (1− ε)B

cî∗
�qî∗ ≥(1−ε)B

qî∗
cî∗

−1. (15)

Next, we focus on the difference between the true value of
an arbitrary QoC mean qi and the corresponding disguised
estimated value q̂i produced by DPF. Since ri,t=

∑t
j=1 Xi,j

denotes the sum of QoCs that worker i actually contributes
to the platform, according to Lemma 3.2, we have:

P{|q̂i−
ri,t
zi,t

|≥ vt
zi,t

}=P{|r̂i,t−ri,t|≥vt}≤γ. (16)

At the same time, note that zi,tqi denotes the expected value
of accumulative reward ri,t, i.e., E[ri,t] = E[

∑t
j=1 Xi,j ] =

zi,tqi. Then, according to Lemma 3.3, we have:

P{|ri,t
zi,t

−qi|≥
η

zi,t
}=P{|ri,t−zi,tqi|≥η}≤e

− 2η2

zi,t . (17)

Combining Eqs. 16-17, we can obtain:

P{|q̂i−qi|≤
vt + η

zi,t
}≥1−(e

− 2η2

zi,t +γ). (18)

Note that t ≥ zi,t ≥ zi,τ ≥ � εB∑N
i=1 ci

� ≥ εB
2
∑N

i=1 ci
. Thus, we

have:
P{|q̂i−qi|≤

vt + η

εB/2
∑N

i=1 ci
}≥1−(e−

2η2

t +γ). (19)

Finally, according to Eqs. 14-15, we have:

E[r∗t ]−E[rt]≤B
qi∗
ci∗

−E[rτ ]−E[rτ :t]

≤εσB+(1−ε)B(
qi∗
ci∗

−
qî∗
cî∗

)+2. (20)

Further, according to Eq. 19, we can get:

P{|q̂i∗−qi∗ |≤
vt + η

εB/2
∑N

i=1 ci
}≥1−(e−

2η2

t +γ), (21)

P{|q̂î∗−qî∗ |≤
vt + η

εB/2
∑N

i=1 ci
}≥1−(e−

2η2

t +γ). (22)

Note that
q̂î∗
cî∗

≥ q̂i∗
ci∗

. Then, combining Eqs. 20-22, we have

E[r∗t ]−E[rt]≤ 2+εσB+2(1−ε)B
η+vt

ci∗ · εB/2
∑N

i=1 ci

≤ 2+εσB+
4(η+vt)

∑N
i=1 ci

ci∗
(
1

ε
−1)

with the probability of no less than 1−(e− 2η2

t +γ). Therefore,
the lemma holds. �

Based on Lemma 3.4, we can set ε as a specific value
which can minimize the upper bound in Eq. 13. Then, we
have the following theorem:

Theorem 3.5. When we set γ = t−2 and ε =

(
4
∑N

i=1 ci
σBci∗

(
η+

√
8
δ log( 2Bc1 )(log

B
c1
+1)

)) 1
2

, the upper bound on the regret shown

in Eq. 13 can be tightened to O(B
1
2 log(B

c1
)).

Proof: Let T be the end time slot when the DPF algo-
rithm terminates. Then, T ≤ B

c1
. Since γ = t−2, we have

vT ≤
√
8
δ log(2T )(log T +1) =

√
8
δ log( 2Bc1 )(log

B
c1
+1). Then,

according to Lemma 3.4, till the end time slot, we have
E[r∗T ]−E[rT ]≤2+εσB

+
4
∑N

i=1 ci
ci∗

(
η+

√
8

δ
log(

2B

c1
)(log

B

c1
+1)

)
(
1

ε
−1).

Finally, let ε=
(

4
∑N

i=1 ci
σBci∗

(
η+

√
8
δ log( 2Bc1 )(log

B
c1
+1)

)) 1
2

, the

above upper bound can achieve a minimal value:

2+2

(
4σB

∑N
i=1 ci

ci∗

(
η+

√
8
δ log( 2Bc1 )(log

B
c1
+1)

)) 1
2

− 4
∑N

i=1 ci
ci∗

(
η+

√
8
δ log( 2Bc1 )(log

B
c1
+1)

)
. (23)

Here, Eq. 23 is dominated by the second item, i.e.,

2B
1
2

(
4σ

∑N
i=1 ci

ci∗

(
η+

√
8
δ log( 2Bc1 )(log

B
c1
+1)

)) 1
2

, the order of

which is O(B
1
2 log(B

c1
)). Therefore, the upper bound on the

regret of DPU is tightened to O(B
1
2 log(B

c1
)). The theorem

holds. �
The above regret analysis shows that the reward loss of

the DPF algorithm is mainly composed of two parts. One is
due to the reason that the platform does not know the QoC
of each worker. Another is incurred by the application of
the differential privacy mechanism. When eliminating the
effect of differential privacy from the above analysis, we can
derive that the first part of reward loss will be bounded by
O(B

2
3 ), which is aligned with the state-of-the-art results of

similar MAB problems (e.g., [25], [26]). In other words, due
to the application of the differential privacy mechanism, the
regret bound of DPF changes from O(B

2
3 ) to O(B

1
2 log(B

c1
)).

Despite this, it is still a sub-linear regret bound.
Theorem 3.6. The DPF algorithm has a polynomial-time com-
putational complexity.

Proof: The computation overhead of Algorithm 1 is
dominated by Steps 8, 15 and 18. In Steps 8 and 18, it needs
to compute each worker’s disguised accumulative reward
by using the hybrid mechanism. According to [24], the
corresponding computation overhead is O(NB/c1). Then,
the computation overheads of Steps 8 and 18 are both
O(NB2/c21). In addition, in Step 15, we need to find the
worker with the maximal density value, the overhead of
which is O(N logN). Then, the computation complexity of
Algorithm 1 is O(N · max{B2/c21, logN}). Therefore, the
theorem holds. �

4 THE DPU BANDIT ALGORITHM

In this section, we propose a budget-feasible differentially
private UCB bandit algorithm, i.e., DPU. In DPU, we extend
the traditional UCB policy to be budget-feasible by taking
the costs and budget of pulling arms into consideration
simultaneously. In addition, the DPU algorithm also applies
the same hybrid differentially private mechanism as in DPF
to protect the privacy of workers’ QoCs. Compared with
the DPF algorithm in Section 3, DPU utilizes not just the
estimated average workers’ QoCs during the arm-pulling
process, but also the upper confidence bounds of the es-
timated average QoCs. Moreover, DPU is more applicable
to the scenarios where the budget B is large. The budget-
feasible UCB policy, the detailed DPU algorithm and the
performance analyses are presented as follows.

4.1 The Budget-Feasible UCB Policy
The traditional UCB policy computes an UCB index for each
arm, which is composed of the current average reward and
an upper bound of the corresponding confidence (of using
the current value to estimate the true reward) [20]. The arm
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with the maximal UCB index value will be pulled in each
time slot. In this paper, we take the privacy into considera-
tion, and thus define a novel concept, called the differentially
private UCB index. This UCB index not only includes the
average reward and the confidence upper bound, but also
contains a corresponding Laplace noise. Besides, we take the
costs and budget of pulling arms into consideration. Instead
of just selecting an arm with the maximal differentially
private UCB index value, we select multiple best arms
within the budget constraint. This is formalized as a series
of knapsack problems to be solved.

First, we assume that the platform has calculated the
current accumulative reward contributed by each worker
i ∈ N and has utilized the hybrid differentially private
mechanism to disguise the value to get r̂i,t. Based on the
disguised accumulative reward, we can define the differen-
tially private UCB index as follows.

Definition 4.1 (Differentially Private UCB Index of Arm).
The differentially private UCB index of the i-th arm, denoted
by Ii,t, indicates the disguised expected average reward
(i.e., the estimated QoC) and the size of the corresponding
confidence interval, satisfying:

Ii,t=
r̂i,t
zi,t

+

√
2 ln t

zi,t
+

vt
zi,t

, (24)

where zi,t is the total number of times that the i-th arm
has been pulled until time slot t, vt =

√
8
δ ln 4

γ (log t+1),

and
√

2 ln t
zi,t

+ vt
zi,t

is an upper bound of confidence for the
disguised accumulative reward.

Next, the platform seeks for the optimal bandit policy
under the remaining budget as a reference for determining
the arm to be pulled in the current time slot. This is also
modeled as a knapsack problem, where the residual budget
is the capacity of the knapsack, each arm is an item, and
the pulling cost is seen as the weight. Moreover, based on
the idea of the budget-feasible UCB policy, the differentially
private UCB index of each arm is seen as the value of the
corresponding item. Denote the remaining budget at time
slot t by Bt. Then, the problem is formulated as follows:

maximize :
∑N

i=1 zi,t+Ii,t−1 (25)

subject to :
∑N

i=1 cizi,t+ ≤Bt (26)

Finally, the platform solves the above problem to pro-
duce a solution {z1,t+ , · · · , zN,t+} by using a greedy strate-
gy. Based on the solution, the platform selects an arm i∈N
to be pulled with the following probability:

P{at= i}= zi,t+∑N
i=1 zi,t+

. (27)

In order to better understand the budget-feasible UCB
bandit policy, we leverage the same example in Subsection
3.2 for illustration, as shown in Fig. 3. In the first three days,
the MCS platform recruits the three workers one by one.
Then, we can compute the UCB index of each worker as
Ii,t =

ri,t
zi,t

+
√

2 ln t
zi,t

and compute the density as Ii,t
ci

, i.e.,
I1,3
c1

= 0.6+
√
2 ln 3
2 , I2,3

c2
= 0.7+

√
2 ln 3
4 , I3,3

c3
= 0.9+

√
2 ln 3
5 . Since

I1,3
c1

>
I2,3
c2

>
I3,3
c3

, the solution to the knapsack problem in
Eqs. 25-26 will be {94, 0, 0}. Then, in the 4th day, worker

X i t
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Fig. 3: An illustration of the budget-feasible UCB bandit
policy

1 will be recruited with probability 1. Next, after observing
the value of X1,4, we recompute the UCB index densities
of the three workers: I1,4

c1
= 0.45+

√
ln 4

2 , I2,4
c2

= 0.7+
√
2 ln 4
4 ,

I3,4
c3

= 0.9+
√
2 ln 4
5 . Since I1,4

c1
>

I2,4
c2

>
I3,4
c3

, the solution to
the knapsack problem will be {93,0,0}. Worker 1 will be still
recruited with probability 1 in the 5th day, and the densities

are updated as I1,5
c1

=
(1.1/3)+

√
(2 ln 5)/3

2 , I2,5
c2

= 0.7+
√
2 ln 5
4 ,

I3,5
c3

= 0.9+
√
2 ln 5
5 . Since I2,5

c2
>

I1,5
c1

>
I3,5
c3

, the solution to
the knapsack problem will become {1, 61, 0}. Then, in the
6th day, worker 1 will be recruited with probability 1

62 , and
worker 2 will be recruited with probability 61

62 . The above
operations will terminate until the budget exhausts.

4.2 The Detailed DPU Algorithm
The detailed DPU algorithm is shown in Algorithm 2. In
Step 3, we judge whether the residual budget Bt is enough
for pulling an arm. When it is feasible, in Steps 4-6, we
sequentially pull all arms in N once. Then, in Steps 8-9,
we compute the value of Ii,t−1 for each arm. Based on this
value, we solve the problem presented at Eqs. 25-26. That
is, we greedily select the arm that has the largest value of
Ii,t−1/ci under the residual budget. When obtaining the
greedy solution {z1,t+ , · · · , zN,t+}, in Step 11, we select
and pull an arm according to the probability distribution
P{at = i}= zi,t+∑N

i=1 zi,t+
. When the budget is not enough to

pull any arm, the algorithm terminates and releases the dis-
guised accumulative reward. The disguised accumulative
reward of each worker is computed in Step 13, which is the
same as Steps 8 and 18 in Algorithm 1.

4.3 Performance Analysis
Since the DPU algorithm adopts the same hybrid differential
private mechanism as DPF and the bandit policy cannot af-
fect the privacy, we can directly get the following conclusion
without any proof:

Theorem 4.2. The DPU algorithm is δ-differentially private.

Now, we analyze the regret performance of DPU by
deriving an upper bound on the regret. To this end, we
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Algorithm 2 The DPU Algorithm
Input: N , {Xi,t, ci|i∈N , t∈T }, B, δ, c�=mini ci
Output: r

1: Initialization: t=0; ∀i∈N : zi,t=0;
2: t= t+1; Let Bt=B be the residual budget;
3: while Bt≥c� do
4: if t≤N then
5: at= t; Pull the at-th arm;
6: ∀i∈N : zi,t=zi,t−1; zat,t=zat,t−1+1;
7: else
8: for each i∈N do
9: Compute Ii,t−1 according to Def. 4.1;

10: Solving the problem shown in Eqs. 25-26 to get
{z1,t+ , · · · , zN,t+};

11: Pull the at-th arm with probability shown in Eq. 27;
12: ∀i∈N : zi,t=zi,t−1; zat,t=zat,t−1+1;
13: ∀i∈N : r̂i,t=Hi(Xi,1:t);
14: Bt+1=Bt−cat ; t= t+1;
15: r=

∑
i∈N r̂i,t−1;

assume that DPU terminates in time slot T . Under this
assumption, we first calculate the probability of pulling an
arbitrary arm (See Lemma 4.3). Then, with this probability,
we analyze the expected value of the total number of times
of pulling the arm (See Lemma 4.4). Next, we derive a lower
bound on the total time slots of running DPU: T (See Lemma
4.5). Finally, based on the above lemmas, we can derive the
expected regret produced by DPU.

For simplicity, we let i∗=argmaxi
qi
ci

, ît=argmaxi
Ii,t−1

ci
,

c∗=maxi ci, and c�=mini ci. Then, we have:

Lemma 4.3. Suppose that DPU terminates in time slot T . Then,
for any k∈N , and any 0<t≤T , we can get

P{at=k|T}≤P{̂it=k|T}+(
c∗
c�

)2
1

T−t+1
. (28)

Proof: For simplicity, we drop the conditional of T in
this proof and will add it in the end. First, we consider a
particular value of the residual budget Bt.

According to the greedy selection strategy, DPU will
first select the ît-th arm at most �Bt

cît
� times. After this

operation, the residual budget is at most cît . Then, we have∑
i	=ît

zi,t+ ≤ cît
c�

. If DPU only selects the arm with the
largest cost, then

∑N
i=1 zi,t+ ≥ Bt

c∗
. Therefore, combining

these two inequalities, we have∑
i	=ît

zi,t+∑N
i=1 zi,t+

≤
cît
c�
Bt

c∗

≤(
c∗
c�

)2
c�
Bt

.

Additionally, given the end time slot T , the DPU algorithm
can still pull T − t + 1 arms from time slot t, which means
Bt≥cat+cat+1+· · ·+caT ≥(T − t+1)c�. Then, we can obtain
c�
Bt

≤ 1
T−t+1 . Further,∑

i	=ît
zi,t+∑N

i=1zi,t+
≤(c∗

c�
)2

1

T − t+ 1
.

Since DPU pulls the k-th arm with probability P{at=k}=

zi,t+∑N
i=1 zi,t+

, we have

P{at=k|Bt}
=P{at=k, ît=k|Bt}+P{at=k, ît �=k|Bt}

≤
zît∑N

i=1 zi,t+
P{̂it=k|Bt}+

∑
i	=ît

zi,t+∑N
i=1 zi,t+

P{̂it �=k|Bt}

≤P{̂it=k|Bt}+
∑

i	=ît
zi,t+∑N

i=1 zi,t+

≤P{̂it=k|Bt}+(
c∗
c�

)2
1

T−t+1
.

Next, for all possible values of the residual budget Bt,
we have

P{at=k|T}≤
∑

Bt

P{at=k|T,Bt}P{Bt|T}

≤
∑

Bt

(
P{̂it=k|T,Bt}+(

c∗
c�

)2
1

T − t+ 1

)
P{Bt|T}

≤P{̂it=k|T}+(
c∗
c�

)2
1

T − t+ 1
.

Therefore, the lemma holds. �

Lemma 4.4. Given that the DPU algorithm terminates in time
slot T , for any 0<δ, ρ<1, we have

E[zk,T |T ]≤1+
2π2

3
+max{αk lnT, βk ln(4T

4)(log T+1)}

+(
c∗
c�

)2 lnT, (29)

where αk=
8

ρ2σ2
kc

2
k

, βk=
2
√
8

δ(1−ρ)σkci∗
, σk=

qi∗
ci∗

− qk
ck

.

Proof: We assume that T is given in advance. For sim-
plicity, we drop the conditional of T in this proof and will
add it in the end. According to Lemma 4.3, for any l≥1, we
have

E[zi,T ]=1+
∑T

t=N+1
P{at=k}

≤1+
∑T

t=N+1
P{̂it=k}+

∑T

t=N+1
(
c∗
c�

)2
1

T − t+ 1

≤ l+
∑T

t=N+1
P{̂it=k, zk,t≥ l}+

∑T

t=N+1
(
c∗
c�

)2
1

T − t+ 1
.

For the second item in above equation, we have

∑T

t=N+1
P{̂it=k, zk,t≥ l}

=
∑T

t=N+1
P{Ii∗,t

ci∗
≤Ik,t

ck
,zk,t≥ l}

≤
∑T

t=N+1
P{ min

1≤zi∗,t≤t

Ii∗,t
ci∗

≤ max
l≤zk,t≤t

Ik,t
ck

}

≤
∑T

t=1

∑t

zi∗,t=1

∑t

zk,t=l
P{Ii∗,t

ci∗
≤ Ik,t

ck
}.

Note that Ii,t =
r̂i,t
zi,t

+
√

2 ln t
zi,t

+ vt
zi,t

. Let bt,n =
√

2 ln t
n . We

can observe that if Ii∗,t

ci∗
≤ Ik,t

ck
holds, then at least one of the

following inequalities must hold:

Ii∗,t
ci∗

≤ qi∗
ci∗

;
Ik,t
ck

≥ qk
ck

;
qi∗
ci∗

<
qk
ck

+
2bt,zk,t

ck
+

2vt
zi∗,tci∗

. (30)
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For the first inequality in Eq. 30, we have

P{Ii∗,t
ci∗

≤ qi∗
ci∗

}

=P{r̂i∗,t≤ri∗,t−vt or ri∗,t≤zi∗,tqi∗−zi∗,tbt,zi∗,t}
≤P{r̂i∗,t≤ri∗,t−vt}+P{ri∗,t≤zi∗,tqi∗−zi∗,tbt,zi∗,t}.

Here, according to Lemmas 3.2 and 3.3, we have P{r̂i∗,t ≤
ri∗,t − vt} ≤ γ, and P{ri∗,t ≤ zi∗,tqi∗ − zi∗,tbt,zi∗,t} ≤
e
−2b2t,zi∗,t

zi∗,t = t−4. Thus, we can obtain P{ Ii∗,t

ci∗
≤ qi∗

ci∗
} ≤

γ+t−4.
Similarly, for the second inequality in Eq. 30, we have

P{ Ik,t

ck
≥ qk

ck
}≤γ+t−4. Let γ= t−4. Then, we can conclude

P{Ii∗,t
ci∗

≤ qi∗
ci∗

}≤2t−4, and P{Ik,t
ck

≥ qk
ck

}≤2t−4. (31)

For the third inequality in Eq. 30, we need to find the
minimum values of zk,t and zi∗,t such that it is false. Let
σi=

qi∗
ci∗

− qi
ci

. The event that the third inequality in Eq. 30 is

false is equivalent to σk≥
2bt,zk,t

ck
+ 2vt

zi∗,tci∗
. For any 0< ρ<1,

if the following two conditions hold:

ρσk≥
2bt,zk,t

ck
, (32)

(1−ρ)σk≥
2vt

zi∗,tci∗
, (33)

then σk≥
2bt,zk,t

ck
+ 2vt

zi∗,tci∗
is true. From the first condition in

Eq. 32, we can obtain

zk,t≥
8 ln t

ρ2σ2
kc

2
k

. (34)

From the second condition in Eq. 33, we have zi∗,t ≥
2vt

(1−ρ)σkci∗
. Since vt =

√
8
δ ln 4

γ (log t+1), and we have set
γ= t−4, we can obtain

zi∗,t≥
2
√
8 ln (4t4)

δ(1− ρ)σkci∗
(log t+1). (35)

Thus, under these two conditions Eqs. 34-35, the third
inequality in Eq. 30 is false.

Let αk=
8

ρ2σ2
kc

2
k

, and βk=
2
√
8

δ(1−ρ)σkci∗
. We have

l+
∑T

t=N+1
P{̂it=k, zk,t≥ l}

≤
max{αk lnT, βk ln(4T
4)(log T+1)}�+

T∑
t=1

t∑
zi∗,t=1

t∑
zk,t=l

4t−4

≤1+max{αk lnT, βk ln(4T
4)(log T+1)}+2π2

3
.

Since
∑T

t=N+1 (
c∗
c�
)2 1

T−t+1 ≤( c∗c� )
2 lnT , we can conclude

E[zk,T |T ]≤1+max{αk lnT, βk ln(4T
4)(log T+1)}+2π2

3

+ (
c∗
c�

)2 lnT.

Therefore, Lemma 4.4 holds. �
Next, we derive an upper bound on the executive time

slots T of DPU, which is shown as follows:

Lemma 4.5. The total time slots of running the DPU algorithm,
i.e., T , is bounded by

E[T ]>B−c�
ci∗

−∑k:ck>ci∗
ck−ci∗
ci∗

(1+ 2π2

3 +( c∗c� )
2 ln( B

c�
)

+max{αk ln(
B
c�
), βk ln (

B
c�
)(log ( B

c�
)+1)}).

Proof: The DPU algorithm terminates if the residual bud-
get is no more than the minimal cost, i.e., B−∑T

t=1 cat <c�.
By using Lemma 4.4, we have

B−c�<E

[∑T

t=1
cat |T

]
≤E

[
{
∑T

t=1
ci∗+

∑
k:ck>ci∗

(ck−ci∗)P{at=k|T}}|T
]

≤E[T ]ci∗+
∑

k:ck>ci∗
(ck−ci∗)E

[
E[zk,T |T ]

]
≤E[T ]ci∗+

∑
k:ck>ci∗

(ck−ci∗)E
[
(1+

2π2

3
+(

c∗
c�

)2 lnT

+max{αk lnT, βk lnT (log T+1)})
]
.

Since T ≤ B/c�, by substituting T = B/c� into the above
equation we can directly prove that Lemma 4.5 holds. �

Based on the above lemmas, we derive an upper bound
on the regret of DPU, which is presented as follow:

Theorem 4.6. For any budget B > 0, the upper bound on the
expected regret of the DPU algorithm is O(log2 (B/c�)).

Proof: The expected regret can be computed as follows:

E[r∗]−
∑N

k=1
qkE[zk,1+ ]

≤B
qi∗
ci∗

− qi∗
∑N

k=1
E[zk,1+ ]+

∑N

k=1
(qi∗−qk)E

[
E[zk,T |T ]

]
≤qi∗(

B

ci∗
−E[T ])+

∑
k:qi∗>qk

(qi∗−qk)E
[
E[zk,T |T ]

]
≤
(qi∗
ci∗

∑
k:ck>ci∗

(ck−ci∗)+
∑

k:qi∗>qk
(qi∗−qk)

)
(1+

2π2

3

+(
c∗
c�

)2 ln(
B

c�
)+ max{αk ln(

B

c�
), βk ln (

B

c�
)(log (

B

c�
)+1)}).

Here, Lemmas 4.4-4.5 are used in the last step. Moreover,
the final result is in the order of O(log2 (B/c�)). Therefore,
the theorem holds. �

Here, when ignoring the influence of the differential
privacy mechanism in the above analysis, we can derive
a regret bound O(logB), which corresponds to the reward
loss only incurred by the platform not knowing the true
QoC of each worker. It means that due to the application
of the differential privacy mechanism, the regret bound of
DPU increases from O(logB) to O(log2 (B/c�)). This is still
a sub-linear regret bound.

Note that we have obtained the upper bounds of regrets
with regard to the DPF and DPU algorithms, which are
shown in Theorems 3.5 and 4.6, respectively. By comparing
the two regret bounds, we can infer that when the budget B
is small, the regret of DPF will be smaller than that of DPU.
However, when the budget B becomes larger, the regret of
DPF will be more than that of DPU with a high probability.
Therefore, we can conclude that when the budget B is small,
the DPF algorithm can achieve a better QoC performance;
otherwise, the DPU algorithm will be more suitable to
obtain higher workers’ QoCs. In Section 5, we will also
verify this observation through sufficient simulations.
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TABLE 3: Parameter Settings
Parameter name Values

the budget of recruiting workers: B 1000 - 10000
the parameter in DPF: ε 0.01, 0.05, 0.1
the security parameter: δ 0.1 - 1.0

Finally, we consider the computational complexity of
DPU.

Theorem 4.7. The DPU algorithm has a polynomial-time com-
putational complexity.

Proof: The computation overhead of Algorithm 2 is
dominated by Steps 10 and 13. In Step 10, we solve
the knapsack problem, whose computation overhead is
O(N logN · B2/c2�). The computation overhead of Step
13 is the same as that of Steps 8 and 18 in Algorithm 1,
which is O(NB2/c2�). Then, the computation complexity of
Algorithm 2 is O(N logN · B2/c2�). Therefore, the theorem
holds. �

5 EVALUATION

In this section, we conduct extensive simulations on real-
trace and synthetic datasets to evaluate the performances of
the DPF and DPU algorithms.

5.1 Evaluation Methodology
Algorithms for Comparison: In the simulations, we com-
pare DPF and DPU with several representative algorithm-
s, including εt-Greedy [19] and DP-UCB-Bound [21]. In
each time slot t, εt-Greedy pulls an arm with the highest
current estimated average reward with probability 1 − εt
and selects a random arm with probability εt. Here, εt =
min{1, 5N

t(qi∗−qi� )2
}. The DP-UCB-Bound algorithm pulls the

arm with the maximal value of r̂i,t
zi,t

+
4
√
8 log t(log2 zi,t+1)

δzi,t
.

Since εt-Greedy can not guarantee differential privacy, for
fair comparison, we incorporate the hybrid differentially
private mechanism into εt-Greedy, i.e., using the disguised
average reward as the estimated average reward. Moreover,
since both of εt-Greedy and DP-UCB-Bound do not take the
costs and budget of pulling arms into consideration, we add
a cost to each arm consistently and conduct these algorithms
under the same budget. In addition, we also implement the
optimal (OPT) algorithm without privacy preservation for
comparison. The OPT algorithm has full knowledge of the
QoC value of each worker and recruits the optimal worker
in each time slot.

Simulation Setup: We conduct our proposed algorithms
and the compared algorithms using both the real-trace
dataset and the synthetic datasets. The real-trace dataset
we applied is Chicago Taxi Trips [27]. Due to the data
reporting process, not all trips are reported and not al-
l reported trips are usable. Here, we use the relatively
complete trace reported in Month, 2018, including 317,450
trips. Each trip record is mainly composed of the taxi id,
trip start timestamp, trip end timestamp, trip miles,
pickup/dropoff community area, fare, etc. In the sim-
ulations, we treat the taxi-hailing requests in the trace as
the MCS task, and see the drivers as MCS workers. From
the trace, we can derive that the requests are distributed in
multiple community areas. In order to make it more appli-
cable to our model, we randomly select a community area

and focus on dealing with the taxi-hailing requests whose
pickup community area values are the selected area. Here,
we select the 8th community area, and the number of taxis
and taxi-hailing requests in this community area are 125 and
6349, respectively. Then, the algorithms terminate when the
budget runs out or all taxi-hailing requests are handled out.
Next, we can derive each driver’s travelling distance. Then,
we set the value of each driver’s cost in proportional to its
travelling distance. Finally, since there are no records about
the drivers’ QoCs, we generate the QoC of each driver as a
value randomly sampled from a Gaussian distribution. Each
Gaussian distribution is truncated to the interval [0, 1]. The
corresponding mean and standard deviation are randomly
sampled from the uniform distribution on (0, 1).

In addition, we also use synthetic datasets to test the
performances of the implemented algorithms. In order to
achieve unbiased performance comparison, we generate 200
different synthetic datasets. In each dataset, we first set the
number of workers N as 100. Then, similar to the real-trace
data, we sample the QoC of each worker from a Gaussian
distribution which is truncated to the interval [0, 1]. Besides,
the workers’ costs are randomly sampled from the uniform
distribution on [1, 10]. Then, the algorithms are conducted
1000 times under each synthetic dataset. The outputs are
the average results of the algorithms running on the 200
datasets.

Additionally, in order to evaluate the impact of the
differential privacy security parameter δ and the budget
of recruiting workers B on the performances of the imple-
mented algorithms, we set the values of δ as 0.2, 0.4, 0.6,
0.8 and set B from 1000 to 10000, respectively. Since the
performance of DPF also depends on the value of ε, we
implement the algorithm with ε = 0.01, 0.05 and 0.1 for
comparison. The detailed parameter settings are shown in
Table 3. Furthermore, the algorithms are implemented in
Eclipse IDE for Java Developers, and the simulations are
performed on a Windows machine with 8GB RAM, Intel(R)
Core(TM) i5 2.90GHz CPU.

Performance Metrics: In the simulations, we tracked five
performance metrics: the accumulative reward, the average
regret, the privacy leakage, and the time efficiency. The
average regret is the value of the total regret divided by
the budget B. The privacy leakage of an algorithm is used
to evaluate how well the privacy of workers’ sensitive data
is protected by this algorithm. We use the Kullback-Leibler
(KL) divergence to measure the privacy leakage, which is
defined as follows:

Definition 5.1 (Privacy Leakage). For two input data se-
quences �X1:t−1 and �X ′

1:t−1 which differ in at most one time
slot, the privacy leakage is computed as∑

at∈N
P{Ψt( �X1:t−1)=at} ln

(P{Ψt( �X1:1−t)=at}
P{Ψt( �X ′

1:1−t)=at}
)
.

Finally, the time efficiency performances refer to the
running times of the DPF and DPU algorithms.

5.2 Evaluation Results

Accumulative Reward: The simulation results of evaluat-
ing the accumulative reward performance are plotted in
Fig. 4 and Fig. 6. From the results, we can observe that
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(d) δ=0.8

Fig. 4: Performance comparisons: accumulative reward vs. differential privacy budget δ using the real-trace dataset
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(c) δ=0.6
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(d) δ=0.8

Fig. 5: Performance comparisons: average regret vs. differential privacy budget δ using the real-trace dataset
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(a) δ=0.2
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(b) δ=0.4
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(c) δ=0.6
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(d) δ=0.8

Fig. 6: Performance comparisons: accumulative reward vs. differential privacy budget δ using the synthetic datasets
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(b) δ=0.4
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(c) δ=0.6
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(d) δ=0.8

Fig. 7: Performance comparisons: average regret vs. differential privacy budget δ using the synthetic datasets

the accumulative rewards of all algorithms increase with
the increase of budget B. It is due to the reason that more
workers can be recruited with an increasing budget B.
Meanwhile, we can also find that a larger δ leads to higher
accumulative rewards for all algorithms. This is because
that when δ is small, the algorithms have higher privacy
levels, which means that the algorithms need to spend
more budget identifying the optimal worker. In addition,
since DP-UCB-Bound and εt-Greedy recruit workers with-
out considering their costs, they would recruit workers with
large costs, resulting in the rapid consumption of budget
and less number of recruited workers. Consequently, DP-
UCB-Bound and εt-Greedy produce less rewards than our
proposed algorithms.

Average Regret: The results of evaluating the average
regrets based on real-trace dataset and synthetic datasets are
shown in Figs. 5 and 7, respectively. From the figures, we can
find that when δ increases, the regrets of all implemented
algorithms decrease. The results are consistent with the
evaluation results of the accumulative rewards. In addition,
in most cases, for example, δ > 0.2 and B ≥ 4000, the

average regret performance of DPU is superior to that of
DPF, as shown in Figs. 5(b)-5(d) and 7(b)-7(d). However, in
the cases when δ and B are small, for example, δ≤ 0.2 and
B<4000, a well tuned DPF algorithm outperforms DPU, as
shown in Figs. 5(a) and 7(a). More intuitively, when we fix
the value of δ, we can discover that as the increasing of the
budget B, the DPU algorithm incurs less regret than DPF.
These phenomenons are in accordance with the theoretical
analyses of regrets in Sections 3.4 and 4.3. Consequently, the
MSC platform can choose the suitable algorithm according
to practical scenarios.

Privacy Leakage: To evaluate the privacy leakage, we
set the differential privacy security parameter δ from 0.1 to
1. In addition, we randomly generated 1000 pairs of data
sequences X1:t and X ′

1:t, which differ in at most one record.
The results are shown in Fig. 8. We can observe that a larger
δ leads to a higher privacy leakage. This is consistent with
the definition of differential privacy. Moreover, both of DPF
and DPU have low privacy leakage (no larger than 0.15).
Here, since the evaluation results based on the real-trace
dataset and the synthetic datasets are almost similar, we
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only present the results produced by using the synthetic
datasets.

Time Efficiency: Fig. 9 presents the running time of
executing the DPF algorithm and the DPU algorithm under
different budget values. We can observe that although the
DPU algorithm achieves better performances with regard to
the accumulative reward (and the average regret as well) in
most cases, the DPU algorithm incurs higher running time
compared with DPF. However, the running time of DPU is
still less than 2.5s when the budget of recruiting workers
B equals to 10000. Therefore, the MSC platform can also
take the time efficiency into consideration when choosing
the used algorithms.

Remark: Note that for a long-term continuously task,
larger budget means more executing time slots. In the above
evaluations, we only present the evaluation results of the
performances of the accumulative reward and the average
regret with the variation of budget. In addition, the results
are similar when we increase the executing time slots.

6 RELATED WORKS

Currently, it has attracted considerable attention from a-
cademia with regard to different research problems in mo-
bile crowdsensing/crowdsourcing systems, including work-
er recruitment, task allocation, incentive mechanism design,
and privacy, etc [1]–[12], [14], [18], [28]–[38]. For example,
Z. He et al. in [1] propose a greedy algorithm and a ge-
netic algorithm to solve the worker recruitment problem
in vehicle-based crowdsourcing, aiming at maximizing the
participation coverage and improving the crowdsourcing
quality. L. Yang et al. in [11] develop an auction framework
to recruit workers in MCS, and propose a differentially
private data aggregation scheme to protect the privacy of
workers’ sensed data. Nevertheless, most of these existing
works conduct the worker recruitment procedure based on
the assumption that workers’ QoCs are known as a prior.
None of them discusses the unknown worker recruitment
problem with privacy concern.

So far, MABs have been widely investigated and var-
ious MAB policies have also been proposed and utilized
into many research fields [19]–[22], [25], [26], [39]–[43]. For
instance, [39] has shown that the regret of stochastic MAB
grows at least logarithmically over time. In [19], the authors
have proposed an index-based policy for stochastic MAB
using the UCB policy, and shown that the expected regret
of UCB grows at least logarithmically. S. Kang et al. in
[43] address the user-channel allocation problem in multi-
user multi-channel cognitive radio networks without a prior
knowledge of channel statistics, and develop an MAB-based
learning algorithm to solve the problem. Compared with
our work, the most related works are [21], [26]. In [21], A. C.
Y. Tossou et al. propose three UCB-based algorithms for the
DP-MAB problem. Nevertheless, this paper has not taken
into consideration the costs of pulling arms or budget con-
straint. Actually, when we introduce the costs and budget
constraint into DP-MAB, our DP-MAB problem contains the
0-1 knapsack problems which makes it completely different
from that in [21]. Since the knapsack problem is NP-hard,
our DP-MAB problem is more challenging. In [26], L. Tran-
Thanh et al have propose a budget-limited worker recruit-
ment policy based on MABs. However, they do not take the
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Fig. 8: Privacy leakage vs. δ.
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Fig. 9: Running time vs. B.

privacy issue into consideration, which would also increase
the difficulties of designing algorithms and analyzing theo-
retical performances. Overall, none of these existing works
combines MAB, differential privacy, and limited budget to
solve the unknown worker recruitment problem for MCS
systems.

7 DISCUSSION

In this paper, we mainly focus on handling a single contin-
uous long-term task for the unknown worker recruitment
problem. Actually, it can be extended to support the scenario
of multiple tasks. Suppose that an MCS platform publicizes
some tasks at the same time. First, consider a special case
where these tasks and the sets of workers that are willing
to perform these tasks are independent with each other. For
this case, we can divide the problem into multiple single-
task problems and directly apply our proposed algorithms
to solve them in parallel. Second, we consider a general case
where each of these tasks can be performed by multiple
workers and each worker can perform multiple tasks. For
this case, we need to recruit a set of workers in each time
slot to perform these tasks. This is actually a combinatorial
multi-armed bandit problem, in which a set of arms (called
an arm combination) are pulled simultaneously in each time
slot. To address such a problem, we first construct many
combinations of workers and treat them as a series of can-
didate arm combinations. Then, we take each arm combina-
tion as a whole and conduct our bandit policies to solve the
combinatorial unknown worker recruitment problem. Note
that we only need to select one worker combination in each
time slot. Thus, it is unnecessary to determine all possible
worker combinations. For example, when the UCB policy is
adopted, we only need to determine a worker combination
with the maximal UCB index value in each time slot. This
can be approximately solved by using a greedy selection
strategy.

In our DP-MAB model, the workers are assumed to
truthfully submit their costs to the platform. As we have
not leveraged any auction mechanisms, our algorithms can-
not completely guarantee the workers’ truthfulness. Even
though, this does not mean that the workers can arbitrarily
report their costs. Note that our algorithms recruit workers
in the descending order of the values of QoC per cost.
If a worker increases his/her cost beyond a critical value
(which is equivalent to the critical cost in the Second-Price
auction), he/she might be replaced by the worker with this
critical cost. This implies that the total payment paid by
the platform will be no more than that in the case where a
truthful Second-Price auction is adopted. Further, if seeking
for the complete truthfulness, we must combine our MAB
policies with a truthful auction mechanism. However, the
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UCB bandit policy cannot work in this case, because it has
been proved that the truthful mechanisms must separate
“exploration” from “exploitation” [44]. As for the ε-First
bandit policy, we can directly apply an auction mechanism
to our model by adding a payment computation process
in each time slot. Moreover, we need to guarantee that the
total payment is no more than the budget. It should be
pointed out that when involving the hybrid differentially
private mechanism, we cannot obtain precise QoC values,
and consequently we can only achieve an approximate
truthfulness and individual rationality.

8 CONCLUSION

In this paper, we focus on the differentially private unknown
worker recruitment problem in the MCS system. To address
this problem, we introduce the Multi-Armed Bandit (MAB)
model, and turn the unknown worker recruitment problem
into a Differentially Private MAB (DP-MAB) game. More-
over, we propose two budget-feasible differentially private
arm-pulling algorithms, i.e., the ε-First-based Differentially
Private algorithm (DPF) and the UCB-based Differentially
Private algorithm (DPU). The proposed DPF and DPU al-
gorithms can not only satisfy δ-differential privacy, but also
achieve provable theoretical performance bounds on the ex-
pected regrets. Finally, extensive simulations are conducted
to verify the significant performances of DPF and DPU.
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