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ABSTRACT
This paper poses the following problem: given a task that
originates at some node in a Delay Tolerant Network (DT-
N), how are we to disseminate the workload during pairwise
contacts to minimize the makespan? We first investigate
the scenario in which each node has access to an oracle
that knows global and future knowledge of node mobility,
and we propose a centralized polynomial-time optimal algo-
rithm. We then develop a distributed dissemination proto-
col, D2, which maintains r-hop neighborhood information at
individual nodes. D2 makes dissemination decisions based
on the estimations of the potential computational capacities
and the future workloads of DTN nodes. Using trace-driven
simulations, we show that, D2 with only 1-hop information
is already near-optimal in a wide variety of environments,
and the performance gap becomes smaller as the amount of
information maintained at individual nodes increases.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless Com-
munication

Keywords
Crowd computing; delay tolerant networks; makespan; work-
load dissemination

1. INTRODUCTION
The last few years have witnessed an explosive prolif-

eration of personal wireless devices, whose communication
ranges are much smaller than their roaming regions. Due to
the unpredictable node mobility, devices can only contact
each other opportunistically. Hence, the network around us
is in essence intermittently-connected, and is a type of De-
lay Tolerant Network (DTN) [5]. Much existing DTN work
has been devoted to message routing [2], content distribu-
tion [6], and cellular traffic offloading [8], however, little at-
tention has been given to utilizing computational resources
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Figure 1: Two snapshots of a DTN with three nodes. The
processing rate of each node is written next to the respective
node that represents it.

in DTNs. Indeed, the computational capacity of a single de-
vice is generally quite small compared to the scale of tasks we
have to handle at work or in scientific research; therefore, it
would take a long time for us to complete a task. Inspired by
crowd computing (e.g., the SETI@home [1] project exploits
the massive idle computing resources across the Internet to
analyze radio signal data), in this paper, we propose to dis-
seminate the workload within the DTN around us, so that
multiple devices can collaboratively finish a task, which may
greatly reduce the makespan.

Compared with offloading parts of the workload to remote
clouds, disseminating workload around us has some desirable
properties. First and foremost, users do not need to pay
any service fee to cloud providers, and can achieve economic
efficiency through opportunistically sharing computational
resources. Second, it is ad-hoc and can be used in cases
where there are no infrastructure-based services, e.g., in a
disaster. Third, the Internet is relieved to some extent, since
uploading tasks and related data to clouds may take up a
large amount of bandwidth.

This paper poses the following question: given a task that
originates at some node in a DTN, how are we to disseminate
the workload during pairwise contacts, so as to minimize the
makespan? Unlike the classical minimummakespan schedul-
ing problem [7], we do not have information about which
devices would contribute to the completion of the task or
from which time a device begins to participate in the col-
laboration. We use the example in Fig. 1 to illuminate the
challenges in designing a distributed protocol. There are
only two contacts in this DTN, i.e., A meets B at the be-
ginning of slot 0, and B meets C at the beginning of slot
4. The processing rate of each node is written next to the
respective node that represents it. For instance, A can fin-
ish 10 units of workload in one slot. Suppose that nodes
A, B, and C have 300, 0, and 50 units of workload at the
beginning of slot 0, respectively. We then show two possi-
ble dissemination schemes. Fig. 2(a) shows a näıve scheme,
where the workload is split between two nodes in a contact



XXXXXXXXnode
time

0 0′ 4 4′
completion

time
A 300 200 160 160 20
B 0 100 80 30 10
C 50 50 10 60 10

(a) Näıve scheme: the makespan is 20 slots.

XXXXXXXXnode
time

0 0′ 4 4′
completion

time
A 300 145 105 105 14.5
B 0 155 135 48.3 13.7
C 50 50 10 96.7 13.7

(b) D2 protocol: the makespan is 14.5 slots.

Figure 2: Comparison of two schemes. The numbers indi-
cate the amount of workload in each node before workload
splitting (t = 0, 4) and after workload splitting (t = 0′, 4′).

based on the ratio of their processing rates. That is, node A
transfers 100 units of workload to B since, in this way, A and
B would finish their respective workloads by the same time.
The makespan of this scheme is 20 slots. Fig. 2(b) shows the
protocol developed in this paper, where the impact of the
future contact between B and C is taken into account when
B meets A. To measure the impact, B needs to know not
only when the contact will emerge, but also how many units
of workload that C has. In our protocol, node A transfers
155 units of workload to B at the beginning of slot 0, which
reduces the makespan to 14.5 slots.
In this paper, to gain a better understanding of the prob-

lem, we first investigate the scenario where each node has
access to an oracle that knows global and future knowledge
of node mobility, and we propose a centralized polynomial-
time disseminating algorithm based on the Dijkstra shortest
path algorithm [4]. The proposed centralized algorithm is
proven to be optimal and serves as the comparison bench-
mark in extensive simulations.
With the insights obtained from the oracle case, we then

develop a distributed dissemination protocol, D2, which en-
ables each device to determine its disseminating strategy,
such that all devices can collaboratively complete the task
and achieve the minimal makespan. More specifically, in
each individual node, D2 is comprised of four components:
the workload queue manages operations (e.g., integration
and splitting) on the actual workload; the r-hop neighbor-
hood information manager stores and updates the contact
rate, opportunistic path, and workload information for every
r-hop neighbor of a node; the finish time estimator calcu-
lates the expected finish time of a given workload; and the
future workload estimator predicts the expected workload in
a node at a future time slot. We show through trace-driven
simulations that the performance, in terms of makespan,
of D2 with only 1-hop neighborhood information is already
near-optimal in a wide variety of environments, and the per-
formance gap becomes smaller as the amount of information
maintained at individual nodes increases.

2. MODEL AND PROBLEM
Task Model. This paper considers a type of task that has

the following two properties. One is that the output of (part
of) a task is small, which makes it possible for participating
devices to send their respective output to the task source
through long distance communications. Thus, this paper
mainly concentrates on the workload disseminating process

and does not care about the result gathering phase. The
other property is that the workload of a task is fine-grained
and can be parsed into arbitrarily small chunks. When two
devices have a contact, their total workloads can be redis-
tributed in any ratio between them.

These two properties are not made-up. For example, in
the SETI@home [1] project, the observation data from the
Arecibo radio telescope is divided into extremely small pieces,
which are then assigned to the volunteers; a volunteer only
has to report whether there are abnormal signals in a piece
of data after analyzing it. Another example of this type of
task could be an evaluation of the delivery ratio of a routing
protocol on a data trace. To make the evaluation thorough-
ly, the routing protocol needs to be executed 100 times for
each of the 1,000 different combinations of protocol param-
eters. In this example, we can see that the output (i.e., the
delivery ratio) produced in a single execution is very small,
and a single execution can be used as the smallest indivisible
unit of workload.

Network Model. We model a delay tolerant network
as a graph G = (V,E). The vertex set V consists of all
the mobile devices/users/nodes. Device i ∈ V can process
ri units of workload in one time slot. We assume that the
processing rate is constant for each node, and is not affected
by the execution of the proposed protocols developed in this
paper. The edge set E represents the stochastic contacts
between devices. The inter-contact time between i and j
is assumed to be exponentially distributed with the contact
rate λij . Each node is also assumed to contact its neighbors
one by one, since a node does not frequently contact multiple
neighbors at the same time. We do not consider storage and
bandwidth constraints in this paper.

The Minimum Makespan Workload Dissemination
Problem. As a starting point, this paper focuses on the
problem of disseminating the workload from a single task in
an empty DTN, where by “empty” we mean that: 1) when
the single task originates at its source, all of the other nodes
do not have any units of unfinished workload, and 2) before
the single task is finished, there are no more tasks that would
originate in the DTN.

To put it formally, the single task C consists of W units
of workload; time is partitioned into slots of equal length.
Denote the amount of workload in node i at the beginning
of slot t (or slot t for short without causing confusion) as
W t

i . Without loss of generality, we assume that, the task C
originates at its source s ∈ V at slot 0. Since we consider
the case where there is only one task, we have W 0

s = W ,
and ∀i ∈ V \ {s}, W 0

i = 0.
The completion time T , also called the makespan, is de-

fined as the time difference between the origin time, i.e., slot
0, and the finish time, i.e., the time point when all nodes
finish their respective workload that belongs to C. That is,
T = min t, subject to W t

i = 0, ∀i ∈ V . Our problem is how
to disseminate the workload during pairwise contacts so as
to minimize the makespan T .

3. OPT: CENTRALIZED POLYNOMIAL
TIME OPTIMAL ALGORITHM

In this section, we introduce the centralized polynomi-
al time optimal algorithm for the case that each node has
global and future knowledge. The basic idea is to utilize the
computational capacity of each node as early as possible and



(a) Discrete contact graph (b) Shortest delay tree

Figure 3: A numerical example of the OPT algorithm.

make sure that all of the participating nodes finish their re-
spective workloads at the same time. Based on the Dijkstra
shortest path algorithm, we can construct a shortest-delay
tree, which encodes the shortest delays from the task source
to all of the other nodes. Each node then makes workload
dissemination decisions according to the tree. The details
are omitted due to space limitations.
Fig. 3(a) shows a DTN that we will use throughout this

paper. The processing rate of each node is labeled next to
the respective node that represents it, and the contact op-
portunities of each pair of nodes are written next to the
respective edge that represents it. For example, node 0 con-
tacts node 1 at slots 1 and 5. Suppose that node 0 has 60
units of workload at slot 0, how are we to disseminate them?
As shown in Fig. 3(b), we first build the shortest delay

tree; after simple calculations, we have assignment[0] = 15,
assignment[1] = 20, assignment[2] = 20, assignment[3] =
5, and assignment[4] = 0. That is, at the beginning of slot
1, node 0 transfers 25 units of workload to node 1; at the
beginning of slot 2, node 0 transfers 20 units of workload to
node 2, and node 1 transfers 5 units of workload to node 3.

4. D2: DISTRIBUTED DISSEMINATION
PROTOCOL

This section provides an overview of the D2 protocol. The
details are omitted due to space limitations. Fig. 4 shows
the architecture of the D2 protocol.
Workload queue. The workload queue manages opera-

tions on the actual workload in four aspects: 1) it accumu-
lates the output of the finished workload and sends it to a
source-specified server via long-distance communications at
the proper time; 2) it stores the unfinished workload and is
responsible for updating W t

i ; 3) when another node j trans-
fers some workload to node i, it integrates the new workload
into its own; 4) when node i goes to transfer a certain part
of its workload to another node j, it splits the workload into
two corresponding parts.
The r-hop neighborhood information manager. De-

note the set of nodes that are within r hop(s) of node i asNr
i ,

where r ∈ [1, R], and R is the network diameter that repre-
sents the hop count of the longest shortest path among any
two nodes in a DTN. For each node k ∈ Nr

i , this manager
is responsible for storing and updating the contact rate λik,
the workload Φk(t), and the opportunistic path Pik. When
node i comes in contact with j, for each node k ∈ Nr

i \Nr−1
j ,

node i keeps Pik unchanged; for each k ∈ Nr−1
j \Nr

i , node i
initializes Pik by catenating i and Pjk (denoted as i+ Pjk);
for each node k ∈ Nr−1

j ∩ Nr
i , node i updates Pik to the

path with the smaller weight among Pik and i+ Pjk.
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Figure 4: The architecture of D2.

Finish time estimator. Based on the information main-
tained by the r-hop manager, this component generates and
updates a function Ti(w), which returns the expected time
for node i to finish w units of workload. We note that it
is non-trivial to obtain Ti(w), since the processing capacity
and the amount of workload in all nodes that are within r
hop(s) from node i should be taken into account. For exam-
ple, suppose that node i has w units of workload, and has
only one 1-hop neighbor j; if Φj(t)/rj < w/ri, then we have:

Ti(w) =
1

ri + rj
(w +Φj(t) +

rj
λij

(e
−

λij
rj

Φj(t) − e
−

λij
ri

w
))

Future workload estimator. This component gener-
ates and updates a function Φi(t), which returns the expect-
ed workload in node i in a future point t in time, i.e., the
domain of this function is {t|t ≥ t0}, where t0 is the generat-
ing time of this function. Since node i may transfer/receive
some workload to/from other nodes during future contacts,
it is also non-trivial to obtain Φi(t).

Take Fig. 4 for example; we illustrate how D2 works when
nodes i and j meet at time slot t: (1) After neighbor dis-
covery, i and j exchange the information about the amount
of their respective workloads, i.e., W t

i and W t
j . (2) Node i

generates Ti(w) based on the information (i.e., λik, rk, and
Φk(t)) of all nodes in Nr

i \{j}; node j generates Tj(w) based
on the information (i.e., λjh, rh, and Φh(t)) of all nodes in
Nr

j \{i}. Without loss of generality, suppose that W t
i < W t

j ,
then node j sends the function Tj(w) to i. (3) In order to
locally minimize the makespan, their total workloads should
be re-distributed in such a way that two nodes finish their
separate parts by the same time. Specifically, denote the
amounts of workload that nodes i and j would get after
workload splitting by xi and xj , respectively; then, xi and
xj should satisfy:

xi + xj = W t
i +W t

j and Ti(xi) = Tj(xj)

Node i returns the results to node j. The workload queues
then complete the necessary workload transfers. (4) Nodes i
and j generate Φi(t) and Φj(t), respectively. Node i updates
its maintained copy Φj(t) to be the new one generated by j,
and node j does the same in a similar way. (5) For each node
k ∈ Nr−1

j , node i updates Φk(t) and Pik; node j updates
the corresponding information in a similar way.

Applying D2 to Fig. 3(a), the makespan is 3.34 slots, while
the makespan of the Näıve scheme is 3.53 slots.

5. PERFORMANCE EVALUATION
This section evaluates the performance of D2, which is

compared with the following dissemination algorithms: OP-
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Figure 5: Performance comparison under different workloads
while keeping MaxCapacity = 10.

T, the polynomial-time optimal algorithm that has access
to global and future knowledge; Näıve, the total workload
is split between two nodes in a contact based on the ratio
of their processing rates; and Random, the total workload is
randomly split between two nodes in a contact.
Simulation Setup. Our evaluations are conducted on

three realistic traces and a synthetic trace. Due to space
limitations, we only present results on the Infocom06 [3]
and synthetic traces. In the Infocom06 trace, mobile user-
s with Bluetooth-enabled devices periodically detect their
peers nearby and record contacts over several days. After
some preprocessing on the raw data, we find that there are
few contacts made during the nighttime. In order to have
a meaningful and usable DTN, we only use trace data that
was collected during the daytime.
Since the scale of these traces is relatively small and can-

not be flexibly tuned, we also generate a synthetic trace with
N nodes: the number of 1-hop neighbors of a node is uni-
formly generated from the range [AvgDeg−5, AvgDeg+5];
the inter-contact time between two nodes follows exponen-
tial distribution, with λ being uniformly generated from the
range [1/2 · AvgLambda, 3/2 · AvgLambda]. Based on the
observations from the realistic traces, the defaults are set
as AvgDeg = 10, AvgLambda = 0.0001, and N = 100.
D2 maintains r = 1 hop information at individual nodes—
unless otherwise noted. In each trace, the processing rates
of mobile devices are uniformly generated from the range
[1,MaxCapacity], and W units of workload originate at a
randomly selected node at the beginning of the partial trace
that we use. The result is averaged over multiple running
times for statistical convergence.
Simulation Results. Fig. 5 shows the comparison re-

sults under different workloads in two traces, while keeping
MaxCapacity = 10. In general, D2 achieves a near-optimal
performance and outperforms Näıve and Random. Specifi-
cally, the makespan in D2 is within 113% and 172% of that
in OPT in the two traces, respectively. With various work-
loads, D2 maintains a 10%-70% performance advantage over
Näıve and Random. We also notice that the advantage be-
comes greater when the amount of workload goes up. The
reason behind this phenomenon is that D2 makes decisions
by estimating the expected finish time and the future work-
load of each node, and the estimation becomes more accu-
rate when the computation task lasts for a longer time.
We are also interested in evaluating the impact of the

scope of network information maintained at individual n-
odes. Fig. 6(a) shows the simulation results. Generally, D2
performs better when more information is maintained at in-
dividual nodes. Surprisingly, we notice that D2 with 1-hop
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Figure 6: Sensitivity results.

information has already received most of the performance
gain under various workloads, and the marginal benefit of
maintaining additional information is small. This is because
each node does not maintain the information between its r-
hop neighbors; when r increases, the estimation accuracy of
D2 would be reduced. This insight can be used to trade-off
between the performance and the overhead of D2.

Fig. 6(b) shows the impact of the number of nodes on the
makespan, when there are more mobile nodes in a DTN, the
makespan in all four algorithms goes down since more nodes
provide more computational capacity.

In summary, our trace-driven simulations show that D2
performs well in a variety of settings. In future work, we be-
lieve a more sophisticated estimation of the potential com-
putational capacity and the future workload of each node
will improve our results, and perhaps bringing us closer to
guarantees of performance.

6. CONCLUSION
In this paper, we propose making full utilization of com-

putational surplus around us, and we design a centralized
optimal algorithm, OPT, and a distributed protocol, D2,
for the minimum makespan workload dissemination prob-
lem in DTNs. Extensive simulations show that D2 achieves
a near-optimal performance in a wide variety of settings.

Acknowledgements. This work was supported in part by
NSFC (No. 61073028, No. 61202113, and No. 61021062), Key
Project of Jiangsu Research Program (No. BE2010179), Jiangsu
NSF(No. BK2011510), China 973 Program (No. 2009CB320705),
Research and innovation project of Jiangsu (No. CXZZ12 0055),
Program A for outstanding PhD candidate of Nanjing University,
and US NSF (ECCS 1128209, CNS 1065444, CCF 1028167, CNS
0948184, and CCF 0830289).

7. REFERENCES
[1] SETI@home. http://setiathome.berkeley.edu/.
[2] A. Balasubramanian, B. Levine, and A. Venkataramani.

DTN routing as a resource allocation problem. In ACM
SIGCOMM 2007.

[3] A. Chaintreau, P. Hui, J. Scott, R. Gass, J. Crowcroft, and
C. Diot. Impact of human mobility on opportunistic
forwarding algorithms. IEEE TMC 2007.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, 2nd revised
edition edition.

[5] K. Fall. A delay-tolerant network architecture for challenged
internets. In ACM SIGCOMM 2003.

[6] W. Gao and G. Cao. User-centric data dissemination in
disruption tolerant networks. In IEEE INFOCOM 2011.

[7] V. Vazirani. Approximation algorithms. Springer, 2004.

[8] X. Zhuo, W. Gao, G. Cao, and Y. Dai. Win-Coupon: An
incentive framework for 3G traffic offloading. In IEEE ICNP
2011.


