Overview

Theoretical and algorithmic approaches to address key issues in Sensor networks, Ad hoc wireless networks, and Peer-to-peer networks (simply called SAP networks) have played a central role in the development of emerging network paradigms. These three networks are characterized by their ad hoc nature without infrastructure or centralized administration. Unlike infrastructured networks, such as cellular networks, where nodes interact through a centralized base station, nodes in a SAP network interact in a peer-to-peer fashion. As a result of the mobility (including join/leave the network) of their nodes, SAP networks are characterized by dynamically changing topologies. The applications of SAP networks range from civilian (file-sharing) to disaster recovery (search-and-rescue), and military (battlefield).

The main goal of this book is to fill the need for comprehensive reference material on the recent development on theoretical and algorithmic aspects of three related fields. Topics covered include: theoretical and algorithmic methods/tools: optimization, computational geometry, graph theory, and combinatorics; protocol security and privacy; scalability design; distributed and localized solutions; database and data management; operating systems and middleware support; power control systems and energy efficient design; applications; and performance and simulations.

This book brings together different research disciplines to initiate a comprehensive technical discussion on theoretical and algorithmic approaches to three related fields: sensor networks, ad hoc wireless networks, and peer-to-peer networks. The objective is to identify several common theoretical and algorithmic approaches that can address issues related to SAP networks. The central topic revolves around following the two questions: What are the central technical issues in SAP networks? What are the possible solutions/tools available to address these issues?

This book is expected to serve as a reference book for developers in the telecommunication industry or as a textbook for a graduate course in Computer Science and Engineering. It is organized in the following three groups as 48 chapters.

- Ad-Hoc Wireless Networks (19 chapters)
- Sensor Networks (16 chapters)
- Peer-to-Peer Networks (13 chapters)

Although many books have emerged recently in this area, none of them address all three fields in terms of common issues. This book has the following features and benefits:

- Coverage of three related fields: ad hoc wireless, sensor, and peer-to-peer networks. Allows the reader to easily cross-reference similar results in three fields.
- International groups of authors. Presents balanced coverage of research results done worldwide.
- Systematic treatment of theoretical and algorithmic aspects. Allows the reader easy access to some important results.
Applications and uses of these networks. Offers good motivation for research in these fields.

Authoritative materials on a broad range of topics. Provides a comprehensive treatment of various important topics by some of the leading researchers in the field.

Common Theoretical and Algorithmic Issues

The following preliminary set of common theoretical and algorithmic issues is identified for SAP networks.

Location Management (in sensor networks, ad hoc wireless networks, and peer-to-peer networks): This issue addresses the problem of “where is X”. This problem can be analyzed from two aspects: update and page. The updating process notifies the location servers of the current locations of nodes. In search of a node, the paging process queries the servers to identify the exact/possible locations of the mobile station before the actual search. This avoids the potentially high costs of doing a global search. Updating and paging costs are tradeoffs. More frequent updates can improve the accuracy of the information in location servers, thus reducing the paging costs. On the contrary, less frequent updates can save updating costs, but may incur higher paging costs, especially for highly mobile stations. Many analytical tools such as queueing analysis and Markov chain analysis were used in this area. Graph theoretical models are used in peer-to-peer networks based on building an overlay network.

Security and Privacy (in sensor networks, ad hoc wireless networks, and peer-to-peer networks): Security is the possibility of a system withstanding an attack. There are two types of security mechanisms: preventive and detective. The majority of the preventive mechanisms have cryptography as building components. The goal of system security is to have controlled access to resources. The key requirements for SAP networks are confidentiality, authentication, integrity, non-repudiation and availability. SAP networks are more prone to attack because of their dynamic and/or infrastructure nature. The attacks on networks can be categorized into interruption, interception, modification, and fabrication. In addition to various “attacks”, a number of “trust” issues also occur in SAP networks. The cryptographic algorithms are widely used in this area.

Topology Design and Control (in sensor networks, ad hoc wireless networks, and peer-to-peer networks): Topology design deals with the way to control the network topology to achieve several desirable properties in SAP networks, including small diameter and small average node distance in peer-to-peer networks, and a certain level of node connectivity in sensor and ad hoc wireless networks. In general, each node has similar number of neighbors, and the average nodal degree should be small. Regular and uniform structures are usually preferred. In many cases, the topology control is tied to energy-efficient design. The traditional graph theory is usually used to deal with topology control.

Scalable Design (in sensor networks, ad hoc wireless networks, and peer-to-peer networks): Scalable design deals with how to increase the number of nodes without degrading system/protocol performance. The most common approach for supporting scalability is the clustering approach used both in sensor networks and ad hoc wireless networks. Basically, the network is partitioned into a set of clusterheads, with one clusterhead in each cluster. Clusterheads do not have connection, but each clusterhead directly connects to all its member. In sensor networks, the clustering approach is used to reduce the number of forward nodes (that contact the base station directly) and, hence, to reduce overall energy consumption. The traditional scalability analysis is normally used.

Energy-aware Design (in sensor networks and ad hoc wireless networks): Energy-aware design has been applied to various levels of protocol stacks. Most of works have been done at the network layer. Several different protocols have been proposed to manage energy consumption by adjusting transmission ranges. In the source-independent approach, all nodes can be a source and are able to reach all other nodes by assigning appropriate ranges. The problem of minimizing the total transmission power consumption
(based on an assigned model) is NP-complete for both 2-D and 3-D space. Various heuristic solutions exist for this problem. At the MAC layer, power saving techniques for ad hoc and sensor networks can be divided into two categories: sleeping and power controlling. The sleeping methods put wireless nodes into periodical sleep state in order to reduce the power consumption in the idle listening mode. Both graph theory and optimization methods are widely used in this area.

Routing and Broadcasting (in sensor networks and ad hoc wireless networks): This issue deals with trade-offs between proactive and reactive routing, flat and hierarchical routing, location-assist and non-location-assist routing, source-dependent and source-independent broadcasting. These trade-offs focus on cost and efficiency and are dependent on various parameters, such as network topology, host mobility, and network and traffic density. Various graph theoretical models (such as dominating set) and computational geometrical models (such as Yao graph, RNG (relative neighborhood graph), and Gabriel graph) have been used. Graph theory, distributed algorithms, and computational geometry are widely used in this area.
Acknowledgment

I wish to thank all the authors for their contributions to the quality of the book. The support from NSF for an international workshop, held at Fort Lauderdale, Florida in early 2004, is greatly appreciated. Many chapters come from the extension of presentations at that workshop.

Special thanks to Rich O’Hanley, the managing editor, for his guidance and support throughout the process. It has been a pleasure to work with Claire Miller, who collected and edited all chapters. I am grateful to them for their continuous support and professionalism.

Finally, I thank my children, NiNi and YaoYao, and my wife Ruiguang Zhang for making this all worthwhile and for their patience during my numerous hours working both at home and at the office.
Contributors

Mehran Abolhasan
Telecommunication and IT Research Institute (TITR)
University of Wollongong
Wollongong, NSW, Australia

Dharma P. Agrawal
OBR Research Center for Distributed and Mobile Computing
ECECS Department
University of Cincinnati
Cincinnati, Ohio

Anish Arora
<To Come>

James Aspnes
Department of Computer Science
Yale University
New Haven, Connecticut

Rimon Barr
Computer Science and Electrical Engineering
Cornell University
Ithaca, New York

Ratnabali Biswas
OBR Research Center for Distributed and Mobile Computing
ECECS Department
University of Cincinnati
Cincinnati, Ohio

Douglas M. Blough
<To Come>

Andrija M. Bosnjakovic
<To Come>

Virgil Bourassa
<To Come>

Aharon S. Brodie
Wayne State University
Detroit, Michigan

Gruia Calinescu
Department of Computer Science
Illinois Institute of Technology
Chicago, Illinois

Edgar H. Callaway, Jr.
<To Come>

Guohong Cao
Pennsylvania State University
University Park, Pennsylvania

Ionu Cărdei
Florida Atlantic University
Boca Raton, Florida

Krishnendu Chakrabarty
Department of Electrical and Computer Engineering
Duke University
Durham, North Carolina

Chih-Yung Chang
Department of Computer Science and Information Engineering
Tamkang University
Taipei
Taiwan, R.O.C.

Sriram Chellappan
Department of Computer Science and Engineering
Ohio State University
Columbus, Ohio

Po-Yu Chen
Institute of Communications Engineering
National Tsing Hua University
Hsin-Chu
Taiwan

Wen-Tsuen Chen
Institute of Communications Engineering
National Tsing Hua University
Hsin-Chu
Taiwan

Xiao Chen
<To Come>

Yuh-Shyan Chen
Department of Computer Science and Information Engineering
National Chung Cheng University
Taiwan, R.O.C.
Liang Cheng
Laboratory of Networking Group (LONGLAB)
Department of Computer Science and Engineering
Lehigh University
Bethlehem, Pennsylvania

Young-ri Choi
<To Come>

Marco Conti
<To Come>

Jon Crowcroft
<To Come>

A.K. Das
Department of Electrical Engineering
University of Washington
Seattle, Washington

Saumitra M. Das
<To Come>

Haitao Dong
Department of Computer Science and Technology
Tsinghua University
Beijing
China

Sameh El-Ansary
Swedish Institute of Computer Science (SICS)
Sweden

Mohamed Eltoweissy
Department of Computer Science
Virginia Tech
Falls Church, Virginia

Jakob Eriksson
<To Come>

Patrick Th. Eugster
Sun Microsystems and Swiss Federal Institute of Technology

Michalis Faloutsos
<To Come>

Yuguang Fang
Department of Electrical and Computer Engineering
University of Florida
Gainesville, Florida

Ophir Frieder
Department of Computer Science
Illinois Institute of Technology
Chicago, Illinois

L.M. Gambardella
Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA)
Manno–Lugano
Switzerland

Mohamed G. Gouda
<To Come>

Aditya Gupta
OBR Research Center for Distributed and Mobile Computing
ECECS Department
University of Cincinnati
Cincinnati, Ohio

Sandeep Gupta
Department of Computer Science and Engineering
Arizona State University
Tempe, Arizona

Zygmunt J. Haas
Department of Computer Science and Electrical Engineering
Cornell University
Ithaca, New York

Joseph Y. Halpern
Department of Computer Science
Cornell University
Ithaca, New York

Seif Haridi
Royal Institute of Technology (IMT/KTH)
Sweden

Fred B. Holt
<To Come>

Jennifer C. Hou
Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, Illinois

Hung-Chang Hsiao
<To Come>

Jinfeng Hu
Department of Computer Science and Technology
Tsinghua University
Beijing
China

Y. Charlie Hu
<To Come>

Yiming Hu
Department of Electrical and Computer Engineering and Computer Science
University of Cincinnati
Cincinnati, Ohio

Chi-Fu Huang
Department of Computer Science and Information Engineering
National Chiao Tung University
Hsin-Chu
Taiwan, R.O.C.

Zhuochuan Huang
Department of Computer and Information Sciences
University of Delaware
Newark, Delaware
<table>
<thead>
<tr>
<th>Name</th>
<th>Department</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giovanni Turi</td>
<td><To Come></td>
<td></td>
</tr>
<tr>
<td>Robbert van Renesse</td>
<td>Department of Computer Science and Electrical Engineering</td>
<td>Cornell University, Ithaca, New York</td>
</tr>
<tr>
<td>Ashraf Wadaa</td>
<td>Department of Computer Science</td>
<td>Old Dominion University, Norfolk, Virginia</td>
</tr>
<tr>
<td>Peng-Jun Wan</td>
<td>Department of Computer Science</td>
<td>Illinois Institute of Technology, Chicago, Illinois</td>
</tr>
<tr>
<td>Guiling Wang</td>
<td>Pennsylvania State University</td>
<td>University Park, Pennsylvania</td>
</tr>
<tr>
<td>Xun Wang</td>
<td>Department of Computer Science and Engineering</td>
<td>Ohio State University, Columbus, Ohio</td>
</tr>
<tr>
<td>Roger Wattenhofer</td>
<td>Department of Computer Science</td>
<td>Swiss Federal Institute of Technology, Zurich, Switzerland</td>
</tr>
<tr>
<td>Larry Wilson</td>
<td>Department of Computer Science</td>
<td>Old Dominion University, Norfolk, Virginia</td>
</tr>
<tr>
<td>Jie Wu</td>
<td>Department of Computer Science and Engineering</td>
<td>Florida Atlantic University, Boca Raton, Florida</td>
</tr>
<tr>
<td>Tadeusz Wysocki</td>
<td>Telecommunication and IT Research Institute (TITR)</td>
<td>University of Wollongong, Wollongong, New South Wales, Australia</td>
</tr>
<tr>
<td>Li Xiao</td>
<td>Department of Computer Science and Engineering</td>
<td>Michigan State University, East Lansing, Michigan</td>
</tr>
<tr>
<td>Cheng-Zhong Xu</td>
<td>Wayne State University</td>
<td>Detroit, Michigan</td>
</tr>
<tr>
<td>Chuanfu Xu</td>
<td>School of Computer Science</td>
<td>National University of Defense Technology, Changsha, P.R. China</td>
</tr>
<tr>
<td>Jun Xu</td>
<td>College of Computing</td>
<td>Georgia Institute of Technology, Atlanta, Georgia</td>
</tr>
<tr>
<td>Dong Xuan</td>
<td>Department of Computer Science and Engineering</td>
<td>Ohio State University, Columbus, Ohio</td>
</tr>
<tr>
<td>Qing Ye</td>
<td>Laboratory of Networking Group (LONGLAB)</td>
<td>Department of Computer Science and Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lehigh University, Bethlehem, Pennsylvania</td>
</tr>
<tr>
<td>Xingxing Yu</td>
<td>School of Mathematics</td>
<td>Georgia Institute of Technology, Atlanta, Georgia</td>
</tr>
<tr>
<td>Hongqiang Zhai</td>
<td>Department of Electrical and Computer Engineering</td>
<td>University of Florida, Gainesville, Florida</td>
</tr>
<tr>
<td>Honghai Zhang</td>
<td>Department of Computer Science</td>
<td>University of Illinois at Urbana-Champaign, Urbana, Illinois</td>
</tr>
<tr>
<td>Wensheng Zhang</td>
<td>Pennsylvania State University</td>
<td>University Park, Pennsylvania</td>
</tr>
<tr>
<td>Weimin Zheng</td>
<td>Department of Computer Science and Technology</td>
<td>Tsinghua University, Beijing, China</td>
</tr>
<tr>
<td>Yingwu Zhu</td>
<td>Department of Electrical and Computer Engineering</td>
<td>University of Cincinnati, Cincinnati, Ohio</td>
</tr>
<tr>
<td>Yi Zou</td>
<td>Department of Electrical and Computer Engineering</td>
<td>Duke University, Durham, North Carolina</td>
</tr>
</tbody>
</table>
Contents

Section I Ad Hoc Wireless Networks 1

1. A Modular Cross-Layer Architecture for Ad Hoc Networks
 Marco Conti, Jon Crowcroft, Gaia Maselli, and Giovanni Turi
 ... 5

2. Routing Scalability in MANETs
 Jakob Eriksson, Srikanth Krishnamurthy, and Michalis Faloutsos
 .. 17

3. Uniformly Distributed Algorithm for Virtual Backbone Routing
 in Ad Hoc Wireless Networks
 Dongsoo S. Kim
 ... 35

4. Maximum Necessary Hop Count for Packet Routing in MANETs
 Xiao Chen and Jian Shen
 .. 43

5. Efficient Strategy-proof Multicast in Selfish Wireless Networks
 Xiang-Yang Li
 .. 53

6. Geocasting in Ad Hoc and Sensor Networks
 Ivan Stojmenovic
 .. 79

7. Topology Control for Ad Hoc Networks: Present Solutions and Open Issues
 Chien-Chung Shen and Zhuochuan Huang
 ... 99

8. Minimum-Energy Topology Control Algorithms in Ad Hoc Networks
 Joseph Y. Halpern and Li (Erran) Li
 .. 115

9. Models and Algorithms for the MPSCP: An Overview
 R. Montemanni, L.M. Gambardella, and A.K. Das
 .. 133

10. A Survey on Algorithms for Power Assignment in Wireless
 Ad Hoc Networks
 Gruia Calinescu, Ophir Frieder, and Peng-Jun Wan
 .. 147

11. Energy Conservation for Broadcast and Multicast Routings in
 Wireless Ad Hoc Networks
 Jang-Ping Sheu, Yuh-Shyan Chen, and Chih-Yung Chang
 .. 159

12. Linear Programming Approaches to Optimization Problems
 of Energy Efficiency in Wireless Ad Hoc Networks
 Hai Liu and Xiaohua Jia
 .. 177

13. Wireless Networks World and Security Algorithms
 Nicolas Sklavos, Nikolay A. Moldovyan, and Odysseas Koufopavlou
 .. 193
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Reliable Computing in Ad Hoc Networks</td>
<td>Patrick Th. Eugster</td>
</tr>
<tr>
<td>15</td>
<td>Medium Access Control Protocols in Mobile Ad Hoc Networks Problems and Solutions</td>
<td>Hongqiang Zhai and Yuguang Fang</td>
</tr>
<tr>
<td>16</td>
<td>On Using Ad Hoc Relaying in Next-Generation Wireless Networks</td>
<td>B.S. Manoj and C. Siva Ram Murthy</td>
</tr>
<tr>
<td>17</td>
<td>Ad Hoc Networks: A Flexible and Robust Data Communication</td>
<td>Mehran Abolhasan and Tadeusz Wysocki</td>
</tr>
<tr>
<td>18</td>
<td>Adaptive Cycle-Controlled E-Limited Polling in Bluetooth Piconets</td>
<td>Jelena Mišić and Vojislav B. Mišić</td>
</tr>
<tr>
<td>19</td>
<td>Scalable Wireless Ad Hoc Network Simulation</td>
<td>Rimon Barr, Zygmunt J. Haas, and Robbert van Renesse</td>
</tr>
<tr>
<td>21</td>
<td>How to Structure Chaos: Initializing Ad Hoc and Sensor Networks</td>
<td>Thomas Moscibroda and Roger Wattenhofer</td>
</tr>
<tr>
<td>22</td>
<td>Self-Organization of Wireless Sensor Networks</td>
<td>Manish Kochhal, Loren Schwiebert, and Sandeep Gupta</td>
</tr>
<tr>
<td>23</td>
<td>Self-Stabilizing Distributed Systems and Sensor Networks</td>
<td>Z. Shi and Pradip K. Srimani</td>
</tr>
<tr>
<td>24</td>
<td>Time Synchronization in Wireless Sensor Networks</td>
<td>Qing Ye and Liang Cheng</td>
</tr>
<tr>
<td>25</td>
<td>Routing and Broadcasting in Hybrid Ad Hoc and Sensor Networks</td>
<td>François Ingelrest, David Simplot-Ryl, and Ivan Stoimenović</td>
</tr>
<tr>
<td>26</td>
<td>Distributed Algorithms for Deploying Mobile Sensors</td>
<td>Guohong Cao, Guiling Wang, Tom La Porta, Shashi Phoha, and Wensheng Zhang</td>
</tr>
<tr>
<td>27</td>
<td>Models and Algorithms for Coverage Problems in Wireless Sensor Networks</td>
<td>Chi-Fu Huang, Po-Yu Chen, Yu-Chee Tseng, and Wen-Tsuen Chen</td>
</tr>
<tr>
<td>28</td>
<td>Maintaining Sensing Coverage and Connectivity in Large Sensor Networks</td>
<td>Honghai Zhang and Jennifer C. Hou</td>
</tr>
<tr>
<td>29</td>
<td>Advances in Target Tracking and Active Surveillance using Wireless Sensor Networks</td>
<td>Yi Zou and Krishnendu Chakrabarty</td>
</tr>
</tbody>
</table>

Section II Sensor Networks

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>How to Structure Chaos: Initializing Ad Hoc and Sensor Networks</td>
<td>Thomas Moscibroda and Roger Wattenhofer</td>
</tr>
<tr>
<td>22</td>
<td>Self-Organization of Wireless Sensor Networks</td>
<td>Manish Kochhal, Loren Schwiebert, and Sandeep Gupta</td>
</tr>
<tr>
<td>23</td>
<td>Self-Stabilizing Distributed Systems and Sensor Networks</td>
<td>Z. Shi and Pradip K. Srimani</td>
</tr>
<tr>
<td>24</td>
<td>Time Synchronization in Wireless Sensor Networks</td>
<td>Qing Ye and Liang Cheng</td>
</tr>
<tr>
<td>25</td>
<td>Routing and Broadcasting in Hybrid Ad Hoc and Sensor Networks</td>
<td>François Ingelrest, David Simplot-Ryl, and Ivan Stoimenović</td>
</tr>
<tr>
<td>26</td>
<td>Distributed Algorithms for Deploying Mobile Sensors</td>
<td>Guohong Cao, Guiling Wang, Tom La Porta, Shashi Phoha, and Wensheng Zhang</td>
</tr>
<tr>
<td>27</td>
<td>Models and Algorithms for Coverage Problems in Wireless Sensor Networks</td>
<td>Chi-Fu Huang, Po-Yu Chen, Yu-Chee Tseng, and Wen-Tsuen Chen</td>
</tr>
<tr>
<td>28</td>
<td>Maintaining Sensing Coverage and Connectivity in Large Sensor Networks</td>
<td>Honghai Zhang and Jennifer C. Hou</td>
</tr>
<tr>
<td>29</td>
<td>Advances in Target Tracking and Active Surveillance using Wireless Sensor Networks</td>
<td>Yi Zou and Krishnendu Chakrabarty</td>
</tr>
</tbody>
</table>

xviii
Section III Peer-to-Peer Networks 587

36 Peer-to-Peer: A Technique Perspective
Weimin Zheng, Xuezheng Liu, Shuming Shi, Jinfeng Hu, and Haitao Dong
... 591
37 Searching Techniques in Peer-to-Peer Networks
Xiuqi Li and Jie Wu
... 617
38 Semantic Search in Peer-to-Peer Systems
Yingwu Zhu and Yiming Hu
... 643
39 An Overview of Structured P2P Overlay Networks
Sameh El-Ansary and Seif Haridi
... 665
40 Distributed Data Structures for Peer-to-Peer Systems
James Aspnes and Gauri Shah
... 685
41 State Management in DHT with Last-Mile Wireless Extension
Hung-Chang Hsiao and Chung-Ta King
... 701
42 Topology Construction and Resource Discovery in Peer-to-Peer Networks
Dongsheng Li, Xicheng Lu, and Chuanfu Xu
... 733
43 Peer-to-Peer Overlay Optimization
Yunhao Liu, Li Xiao, and Lionel M. Ni
... 765
44 Resilience of Structured Peer to Peer Systems: Analysis and Enhancement
Dong Xuan, Sriram Chellappan, and Xun Wang
... 779
45 Swan: Highly Reliable and Efficient Network of True Peers
Fred B. Holt, Virgil Bourassa, Andrija M. Bosnjakovic, and Jovan Popovic
... 799
46 Scalable and Secure P2P Overlay Networks
Haiying Shen, Aharon S. Brodie, Cheng-Zhong Xu, and Weisong Shi
... 825
47 Peer-to-Peer Overlay Abstractions in MANETs
Y. Charlie Hu, Saumitra M. Das, and Himabindu Pucha
... 857