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The maturity of wireless transmissions and the popularity of portable computing devices
have made the dream of “communication anytime and anywhere” possible. An ad hoc wire-
less network is a good choice for fulfilling this dream. An ad hoc wireless network consists
of a set of mobile hosts operating without the aid of an established infrastructure of central-
ized administration. Communication is done through wireless links among mobile hosts
through their antennas. Due to concerns such as radio power limitation and channel utiliza-
tion, a mobile host may not be able to communicate directly with other hosts in a single-hop
fashion. In this case, a multihop scenario occurs, in which the packets sent by the source
host must be relayed by several intermediate hosts before reaching the destination host.

Although military tactical communication is still considered the primary application for
ad hoc wireless networks, commercial interest in this type of network continues to grow.
Applications such as law enforcement operation, commercial and educational use, and
sensor networks are just a few possible commercial examples. There are several technical
challenges related to the ad hoc wireless network. In ad hoc wireless networks, the topology
is highly dynamic and frequent changes in the topology may be difficult to predict. With the
use of wireless links, the network suffers from higher loss rates, and can experience higher
delays and jitter. In addition, physical security is limited due to the wireless transmission.
Finally, as ad hoc wireless network nodes rely on batteries, energy saving is an important
system design criterion.

Most of the existing works in ad hoc wireless networks focus on issues related to the
network layer, such as routing and broadcasting. Routing protocols in ad hoc wireless
networks fall into either proactive or reactive, although a combination of proactive and
reactive is also possible. In proactive routing, routes to all destinations are computed a priori
and are maintained in the background via a periodic update process. Route information is
maintained either as routing tables or as global link state information. In reactive routing,
a route to a specific destination is computed “on demand,” that is, only when needed.
To efficiently use resources in controlling large dynamic networks, hierarchical routing,
including cluster based and dominating set based, is normally used.
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2 Ad Hoc Wireless Networks

Many other technical issues are discussed through the use of protocol stacks where at
least four layers are used:

1. Physical layer: responsible for frequency selection, carrier frequency generation,
signal detection, modulation, and data encryption.

2. Data link layer: responsible for the multiplexing of data streams, data frame detec-
tion, medium access, and error control.

3. Network layer: responsible for forwarding the data to appropriate destinations.
4. Application layer: responsible for supporting various applications.

The 19 chapters in this section cover a wide range of topics across multiple layers: MAC
(part of the data link layer), network, and applications. One chapter is devoted to the cross-
layer architecture for ad hoc wireless networks. Several chapters deal with various efficient
and scalable routing, including multicasting and geocasting, in ad hoc wireless networks.
One chapter discusses routing in a selfish wireless network. Three chapters present some
recent results on topology control while three other chapters are dedicated to energy-
efficient design under several different system settings. The security and reliability issues
are covered in two separate chapters. MAC protocols are given in one dedicated chapter. Of
the three chapters about applications, one discusses ad hoc relaying in cellular networks,
one uses ad hoc wireless networks for robust data communication, and one is devoted to
the application in Bluetooth. This section ends with a chapter on scalable simulation for
ad hoc wireless networks.
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The success of the cleanly layered Internet Architecture has promoted its adoption for wireless and mobile
networks, including ad hoc networks. This has also fostered skepticism toward alternative approaches.
However, a strict layered design is not flexible enough to cope with the dynamics of mobile networks and
can prevent many classes of performance optimizations. To what extent, then, must developers modify the
pure layered approach by introducing closer cooperation among protocols belonging to different layers?

Although the debate on cross-layer versus legacy-layer architecture has been around for a while, we
propose a novel solution based on loosely coupled cross-layering, which constitutes a trade-off between the
two extremes. Our solution allows for performance optimizations, but at the same time maintains flexibility.

This innovative architecture not only makes room for techniques to design new ad hoc protocols,
for which we present specific examples, but also opens up the possibility of research into the usage of
cross-layering for the Internet more generally.

1.1 Introduction

The Internet transparently connects millions of heterogeneous devices, supporting a huge variety of
communications. From a networking standpoint, its popularity is due to a core design that has made
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it extensible, and robust against evolving usage as well as failures. Now, mobile devices and wireless
communications prompt the vision of networking without a network (ad hoc networking). This brings
new challenging issues where the need for flexibility confronts ad hoc constraints. A careful architectural
design for the ad hoc protocol stack is necessary to incorporate this emerging technology.

The Internet architecture layers protocol and network responsibilities, breaking down the networking
system into modular components, and allowing for transparent improvements of single modules. In a
strict-layered system, protocols are independent of each other and interact through well-defined (and
static) interfaces: each layer implementation depends on the interfaces available from the lower layer, and
those exported to the upper layer. Strict-layering provides flexibility to a system’s architecture: extensions
introduced into single levels do not affect the rest of the system. The separation of concerns brings the
added benefits of minimizing development costs by re-using existing code. This design approach relies on
“horizontal” communication between peer protocol layers on the sender and receiver devices (the dashed
arrows in Figure 1.1). The result is a trend to spend bandwidth (an abundant resource in the Internet)
instead of processing power and storage.

Several aspects of the Internet architecture have led to the adoption of this strict-layer approach also for
mobile ad hoc networks. Some of these aspects include (1) the “IP-centric” view of ad hoc networks; and
(2) the flexibility offered by independent layers, which allows for reuse of existing software. The choice
of the layered approach is reenforced by the fact that ad hoc networks are considered mobile extensions
of the Internet, and hence the protocol stack must be suitable. However, this design principle clashes with
the following facts:

1. Issues such as energy management, security, and cooperation characterize the whole stack and
cannot be solved inside a single layer.

2. Ad hoc networks and the Internet have conflicting constraints; and while the former are dynamic,
the latter is relatively static.

Some guidelines to approach these problems point to an enhancement of “vertical” communication
in a protocol stack (see Figure 1.1),1,2 as a way to reduce peer (horizontal) communication, and hence
conserve bandwidth. Vertical communication, especially between nonadjacent layers, facilitates local data
retrieval, otherwise carried out through network communication. The practice of accessing not only the
next lower layer, but also other layers of the protocol stack, leads to cross-layering to allow performance
improvements. The main downside of strict-layering is that it hinders extensibility: a new, higher-level
component can only build on what is provided by the next lower layer.3 Hence, if one layer needs to access
functionality or information provided by a nonadjacent layer, then an intermediate extension should be
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FIGURE 1.1 The Internet emphasizes horizontal communication between peer protocol layers to save router re-
sources, while ad hoc networking promotes vertical interaction to conserve bandwidth.
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devised. Cross-layering allows nonadjacent protocols to directly interact, making overall optimizations
possible and achieving extensibility at the eventual expense of flexibility.

In the literature there is much work showing the potential of cross-layering for isolated performance
improvements in ad hoc networks. However, the focus of that work is on specific problems, as it looks
at the joint design of two to three layers only. For example, cross-layer interactions between the routing
and the middleware layers allow the two levels to share information with each other through system
profiles, in order to achieve high quality in accessing data.4 An analogous example is given by Schollmeier
et al.,5 where a direct interaction between the network and the middleware layers, termed Mobile Peer
Control Protocol, is used to push a reactive routing to maintain existing routes to members of a peer-
to-peer overlay network. Yuen et al.6 propose an interaction between the MAC and routing layers, where
information like signal-to-noise ratio, link capacity, and MAC packet delay is communicated to the routing
protocol for the selection of optimal routes. Another example is the joint balancing of optimal congestion
control at the transport layer with power control at the physical layer.7 This work observes how congestion
control is solved in the Internet at the transport layer, assuming that link capacities are fixed quantities.
In ad hoc networks, this is not a good assumption, as transmission power, and hence throughput, can be
dynamically adapted on each link. Last, but not least, Kozat et al.8 propose cross-layer interaction between
physical, MAC, and routing layers to perform joint power control and link scheduling as an optimized
objective.

Although these solutions are clear examples of optimization introduced by cross-layering, the drawback
on the resulting systems is that they contain tightly coupled, and therefore mutually dependent components.
Additionally, while an individual suggestion for cross-layer design, in isolation, may appear appealing,
combining them all together could result in interference among the various optimizations.9 From an
architectural point of view, this approach leads to an “unbridled” stack design, difficult to maintain
efficiently, because every modification must be propagated across all protocols. To give an example of
interfering optimizations, let us consider an adaptation loop between a rate-adaptive MAC and minimal
hop routing protocol (most ad hoc routing protocols are minimum hop). A rate-adaptive MAC would
be able to analyze the quality of channels, suggesting higher layers on the outgoing links, which provide
the higher data rates in correspondence with shorter distances. This conflicts with typical decisions of a
minimum hop routing protocol, which chooses a longer link (for which the signal strength and data rate
are typically lower) to reach the destination while using as few hops as possible.

We claim that cross-layering can be achieved, maintaining the layer separation principle, with the
introduction of a vertical module, called Network Status∗ (NeSt), which controls all cross-layer interactions
(see Section 1.2). The NeSt aims at generalizing and abstracting vertical communications, getting rid of
the tight coupling from an architectural standpoint. The key aspect is that protocols are still implemented
in isolation inside each layer, offering the advantages of:

� Allowing for full compatibility with standards, as NeSt does not modify each layer’s core functions
� Providing a robust upgrade environment, which allows the addition or removal of protocols be-

longing to different layers from the stack, without modifying operations at other layers
� Maintaining the benefits of a modular architecture (layer separation is achieved by standardizing

access to the NeSt)

In addition to the advantages of a full cross-layer design, which still satisfies the layer separation principle,
the NeSt provides full context awareness at all layers. Information regarding the network topology, energy
level, local position, etc. is made available by the NeSt to all layers, to achieve optimizations, and offers
performance gains from an overhead point of view. Although this awareness is restricted to the node’s
local view, protocols can be designed so as to adapt the system to highly variable network conditions (the
typical ad hoc characteristic).

∗This term indicates the collection of network information that a node gathers at all layers. It should not be confused
with a concept of globally shared network context.
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This innovative architecture opens research opportunities for techniques to design and evaluate new
ad hoc protocols (see Section 1.3), but also remains compliant with the usage of legacy implementations,
introducing new challenging issues concerning the usage of cross-layering for the Internet more generally
(see Section 1.4).

1.2 Toward Loosely Coupled Cross-Layering

One of the main problems caused by direct cross-layer interactions (as already discussed in Section 1.1)
is the resulting tight coupling of interested entities. To solve this problem, the NeSt stands vertically beside
the network stack (as shown in Figure 1.2), handling eventual cross-layer interactions among protocols.
That is, the NeSt plays the role of intermediary, providing standard models to design protocol interactions.
While the new component uniformly manages vertical exchange of information between protocols, usual
network functions still take place layer-by-layer through standardized interfaces, which remain unaltered.
This introduced level of indirection maintains the loosely coupled characteristic of Internet protocols,
preserving the flexible nature of a layered architecture.

The idea is to have the NeSt exporting an interface toward protocols, so as to allow sharing of information
and reaction to particular events. In this way, cross-layer interactions do not directly take place between
the interested protocols, but are implemented using the abstractions exported by the NeSt. This approach
allow protocol designers to handle new cross-layer interactions apart, without modifying the interfaces
between adjacent layers. The work described by Conti et al.10,11 introduces this idea in the context of pure ad
hoc networking. This work extends the definition of the NeSt interaction models, presenting the exported
interface. This is to evolve toward a general-purpose component, eventually suitable for cross-layering in
a future Internet architecture.

1.2.1 Overview of NeSt Functionalities

The NeSt supports cross-layering implementation with two models of interaction between protocols:
synchronous and asynchronous. Protocols interact synchronously when they share private data (i.e., internal
status collected during their normal functioning). A request for private data takes place on-demand,
with a protocol querying the NeSt to retrieve data produced at other layers, and waiting for the result.
Asynchronous interactions characterize the occurrence of specified conditions, to which protocols may be
willing to react. As such conditions are occasional (i.e., not deliberate), protocols are required to subscribe
for their occurrences. In other words, protocols subscribe for events they are interested in, and then return
to their work. The NeSt, in turn, is responsible for delivering eventual occurrences to the right subscribers.
Specifically, we consider two types of events: internal and external. Internal events are directly generated
inside the protocols. Picking just one example, the routing protocol notifies the rest of the stack about a
“broken route” event, whenever it discovers the failure of a preexisting route. On the other side, external
events are discovered inside the NeSt on the basis of instructions provided by subscriber protocols. An
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FIGURE 1.2 An architectural trade-off for loosely coupled vertical protocol interactions.
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example of an external event is a condition on the host energy level. A protocol can subscribe for a
“battery-low” event, specifying an energy threshold to the NeSt, which in turn will notify the protocol
when the battery power falls below the given value.

As the NeSt represents a level of indirection in the treatment of cross-layer interactions, an agreement
for common-data and events representation inside the vertical component is a fundamental requirement.
Protocols must agree on a common representation of shared information, in order to guarantee loose
coupling. To this end, the NeSt works with abstractions of data and events, intended as a set of data
structures that comprehensively reflect the relevant (from a cross-layering standpoint) information and
special conditions used throughout the stack. A straightforward example is the topology information
collected by a routing protocol. To abstract from implementation details of particular routing protocols,
topology data can be represented as a graph inside the NeSt. Therefore, the NeSt becomes the provider of
shared data, which appear independent of its origin and hence usable by each protocol.

How is protocols internal data exported into NeSt abstractions? The NeSt accomplishes this task using
callback functions, which are defined and installed by protocols themselves. A callback is a procedure that
is registered to a library (the NeSt interface) at one point in time, and later on invoked (by the NeSt). Each
callback contains the instructions to encode private data into an associated NeSt abstraction. In this way,
the protocol designer provides a tool for transparently accessing protocol internal data.

1.2.2 The NeSt Interface

To give a technical view of the vertical functionalities, we assume that the language used by the NeSt to
interface the protocol stack allows for declaration of functions, procedures, and common data structures.
We adopt the following notation to describe the NeSt interface:

functionName : (input) → output

Each protocol starts its interaction with the NeSt by registering to the vertical component. This operation
assigns to each protocol a unique identifier (PID), as shown by step a in Figure 1.3. The registration is
expected to happen once for all at protocol bootstrap time by calling

register : () → PID

As described in the previous section, the NeSt does not generate shared data, but acts as an intermediary
between protocols. More precisely, a protocol seizes the NeSt abstractions related to its internal function-
alities and data structures. The example of the network topology suggests the routing protocol to acquire
ownership of an abstract graph containing the collected routing information. This operation requires a
protocol to identify itself, providing the PID, and to specify the abstraction’s identifier (AID) together with
the associated callback function (see step b in Figure 1.3). When invoked, the callback function fills out the

NeSt
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2. Return PID

1. Verify callback
2. Grant or reject
    seizing

register ( )

seize ( )

access ( )

subscribe ( )

notify ( )

monitor ( )

a. Register

b. Seize an abstraction
    with PID, AID,
    and callback

P1

P2

FIGURE 1.3 NeSt functionalities: register and seize.
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abstraction, encoding protocol internal representation in NeSt format. Note that the callback invocation
takes place asynchronously with the seizing operation, every time a fresh copy of the associated data is
needed inside the NeSt. The entire process begins by calling

seize : (P I D, AI D, readCallBack()) → result

The result of a call to s ei ze() indicates the outcome of the ownership request.
Once an abstraction has been seized, the NeSt is able to satisfy queries of interested entities. A protocol

accesses an abstraction by calling

access : (P I D, AI D, filter()) → result

This function shows that the caller must identify itself with a valid PID, providing also the abstraction
identifier and a filter function. The latter parameter is a container of instructions for analyzing and
selecting only information relevant to the caller’s needs. The NeSt executes this call by spawning an
internal computation that performs the following steps (see Figure 1.4):

1. Invoke the callback installed by the abstraction’s owner (if any).
2. Filter the returned data locally (i.e., in the context of the NeSt).
3. Deliver the filtering result to the caller.

The remaining functions of the NeSt interface cope with asynchronous interactions. In the case of
internal events, the role of the NeSt is to collect subscriptions, wait for notifications, and vertically dispatch
occurrences to the appropriate subscribers, as shown in Figure 1.5. A protocol subscribes for an event by
identifying itself and providing the event’s identifier (EID), calling the function

subscribe : (P I D, E I D) → result

To notify the occurrence of an event, a protocol must specify in addition to the event identifier (EID),
information regarding the occurrence. This happens by calling the function

notify : (P I D, E I D, info) → result

After the notification of an event, the NeSt checks it against subscriptions, and dispatches the occurrence
to each subscriber.

In the case of external events, protocols subscribe by instructing the NeSt on how to detect the event.
The rules to detect an external event are represented by a monitor function that periodically checks the
status of a NeSt abstraction. When the monitor detects the specified condition, the NeSt dispatches the
information to the subscriber protocol. As shown in Figure 1.6, a protocol delegates the monitoring of an

NeSt
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2. Apply Filter ( )
    on AID

register ( )

seize ( )

access ( )

subscribe ( )

notify ( )

monitor ( )

a. Access an abstraction
    with PID, AID, and Filter ( )

b. Abstract internal
   data in NeSt format

P1

P2

3. Return Filter ( )
    result

Internal data

FIGURE 1.4 NeSt functionalities: access an abstraction.
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FIGURE 1.5 NeSt functionalities: management of internal events.

external event by passing to the NeSt a monitor function and the identifier of the target abstraction. This
happens by calling

monitor : (P I D, AI D, monitor()) → result

The NeSt serves this call by spawning a persistent computation (see Figure 1.6) that executes the following
steps:

1. Verify the monitor (e.g., type checking).
2. While (true):

a. Refresh the abstraction invoking the associated callback.
b. Apply the monitor to the resulting content.
c. If the monitor detects the special condition, then notify the requesting protocol.

The result of a call to monitor() only returns the outcome of the monitor’s installation, while the notification
of external events takes place asynchronously.

NeSt

1. Verify Monitor ( )

1. While (true)
    2a. Invoke callback
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FIGURE 1.6 NeSt functionalities: management of external events.
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1.2.3 Design and Implementation Remarks

It is difficult to find comparisons to the proposed architecture as, to the best of our knowledge, there are
no similar approaches in the organization of a protocol stack. However, there are important observations
and remarks to be given.

First of all, the NeSt is a component dedicated to enabling optimization. If on the one hand it helps
maintain the layering principle allowing loosely coupled interactions, on the other hand it must guarantee
the appropriate level of real-timing. That is, when subjected to a heavy load of cross-layering, the NeSt
should be responsive, avoiding making protocol efforts fruitless. For example, in the case of synchronous
interactions where call-backs are employed, the NeSt should not degrade the performance of both the
requestor and provider protocols. For these reasons, it advisable to pre-fetch and cache exported data (when
possible), serving a series of accesses to the same abstraction with fewer callback executions. However, this
approach also requires the presence of cache invalidation mechanisms, which protocols can use to stale
pre-fetched or cached abstractions.

As presented here, the NeSt should come with an a priori set of abstractions for data and events,
to which protocols adapt in order to cross-interact. A more mature and desirable approach would re-
verse the adaptation process, having the vertical component adapt to whatever the protocols provide.
For example, this adaptation issue could be solved through the use of reflection, a characteristic of
some modern programming languages12 that enables introspection of software components, allowing
for dynamic changes in behavior. A NeSt reflective API would allow each protocol to define its con-
tribution to cross-layer interactions, providing an initial registration of profiles describing the data
and the events it is able to share. The resulting data and event sharing would be more content-based
than the presented subject-based mechanism. With this approach, the sole agreement between the two
parties would regard the representation of protocol profiles. A solution could be the usage of a language
that provides rules to define both profiles data and metadata, as for example the eXtensible Markup
Language (XML). This solution would restrict the agreement on the set of tags (i.e., the grammar)
to use in building profiles. Note that such use of higher-level programming languages would inter-
est only initial negotiation phases between the NeSt and the protocols, without affecting the runtime
performance.

One might argue that the NeSt exhibits some conceptual similarities with a management information
base (MIB). An MIB is a collection of network-management information that can be accessed, for example,
through the Simple Network Management Protocol (SNMP). SNMP facilitates the exchange of information
between network devices and enables network administrators to manage performances, find and solve
problems, and plan for network growth. Some NeSt functionalities could be realized through a local MIB
(storing protocols information), to which other protocols can access in order to read and write data.
However, the NeSt and MIBs target different goals. MIBs are designed for network statistics and remote
management purposes, while the NeSt aims at overall local performance improvements. Furthermore, the
MIB’s nature makes it unsuitable for the real-time tasks typical of NeSt optimizations, which require only
local accesses and fine-grained time scales (e.g., in the order of single packets sent/received).

1.3 The Need for Global Evaluation

The NeSt architecture, as described in previous sections, is a full cross-layer approach where protocols
becomes adaptive to both application and underlying network conditions. Such an approach brings the
stack as a whole to the best operating trade-off. This has been highlighted by Goldsmith and Wicker,13

where the authors point at global system requirements, like energy saving and mobility management, as
design guidelines for a joint optimization. Our approach opens up different perspectives in the evaluation
of network protocols. We claim that in a full cross-layer framework, the performance of a protocol should
not only be evaluated by looking at its particular functionalities, but also by studying its contribution in
cross-layer activities. Therefore, a stack designed to exploit joint optimizations might outperform a “team”
of individually optimized protocols.
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To give an example, let us consider ad hoc routing, which is responsible for finding a route toward
a destination in order to forward packets. With reference to the classifications reported by Royer and
Toh14 and Chlamtac et al.,15 the main classes of routing protocols are proactive and reactive. While
reactive protocols establish routes only toward destinations that are in use, proactive approaches com-
pute all the possible routes, even if they are not (and eventually will never be) in use. Typically, reactive
approaches represent the best option: they minimize flooding, computing and maintaining only indis-
pensable routes (even if they incur an initial delay for any new session to a new destination). But what
happens when we consider the cross-layer contribution that a routing protocol might introduce in a NeSt
framework?

To answer this question, we provide an example of cross-layer interaction between a routing protocol
and middleware platform for building overlay networks, where the former contributes exporting the
locally collected knowledge of the network topology. Building an overlay network mainly consists of
discovering service peers, and establishing and maintaining routes toward them, as they will constitute the
backbone of a distributed service. The overlay network is normally constituted by a subset of the network
nodes, and a connection between two peers exists when a route in the underlay (or physical) network
can be established. The task of building and maintaining an overlay is carried out at the middleware
layer, with a cost that is proportional to the dynamics of the physical network. Overlay platforms for the
fixed Internet assume no knowledge of the physical topology, and each peer collects information about
the overlay structure in a distributed manner. This is possible because the fixed network offers enough
stability, in terms of topology, and bandwidth to exchange messages. Of course, similar conditions do not
apply for ad hoc environments, where bandwidth is a precious (and scarce) resource and the topology is
dynamic. In ad hoc networks, cross-layering can be exploited, offering the information exported by the
network routing to the middleware layer. The key idea is that most of the overlay management can be
simplified (and eventually avoided) on the basis of already available topology information.16 In this case,
the more information available, the easier the overlay management; and for this reason, a proactive routing
approach becomes more appealing. To support this claim, let us look at what is described by Schollmeier
et al.5 This article describes a cross-layer interaction between a middleware that builds an overlay for
peer-to-peer computing and a dynamic source routing (DSR) at the network layer. In this work, the DSR
algorithm is forced to maintain valid routes toward the overlay peers, even if these routes are not in use.
That is, a reactive routing is forced to behave proactively, with the additional overhead of reactive control
packets. The same cross-layer approach with a proactive protocol would probably represent the best joint
optimization.

Another example of joint optimization is the extension of routing to support service discovery. A ser-
vice discovery protocol works at the middleware layer to find out what kind of services are available in
the network. As the dynamics of the ad hoc environment determines frequent changes in both avail-
able services and hosting devices, service discovery is of fundamental support. The IETF proposes the
Service Location Protocol (SLP)17 to realize service discovery in both Internet and ad hoc networks.
Recently, they also underlined the similarity of the messages exchanged in SLP, with those used in a reac-
tive routing such as the Ad hoc On-demand Distance Vector (AODV) protocol.18 This proposal discusses
an extension of AODV to allow service request/reply messages in conjunction with route request/reply.
In this proposal, there is a background cross-layer interaction that allows SLP to interface directly with
AODV, asking for service-related messages, providing local service data, and receiving service informa-
tion coming from other nodes. The proposed joint optimization would work even better in the case
of a proactive routing protocol such as DSDV or OLSR (see Chlamtac et al.15 for details). In case of
proactive routing, the service information regarding the local services offered on each node could be
piggybacked on routing control packets and proactively spread around the network, together with lo-
cal connectivity information. The service discovery communication could be significantly reduced, at
the expense of broadcasting routing control packets a few bytes longer. This optimization would result
in a proactive service discovery, where a component such as the NeSt supports the exchange of ser-
vice information from the service discovery protocol, at the middleware, with the routing protocol, and
vice versa.
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1.4 Discussion and Conclusions

Typically, cross-layering is emphasized as a way to work around the TCP/IP implementation limits, as
it introduces direct interaction between protocols to enable smarter adaptation or better performance,
at the cost of a “spaghetti-like” code.9 We believe that cross-layering is possible while keeping the layer
separation principle, and that the Internet community is incrementally moving toward cross-layering. The
simplest step in this direction is represented by layer triggers, which are predefined signals that notify events
between protocols. An example is given by the Explicit Congestion Notification (ECN) mechanism, which
notifies the TCP layer about congestion detected by intermediate routers (IP layer). In this way, the source
can be informed of congestion quickly and unambiguously, without resorting to inferring mechanisms
based on retransmit timer or repeated duplicate ACKs. Another example is given by L2 triggers,19 added
between the data link and IP layers to efficiently detect changes in the wireless links’ status. A further
step toward cross-layering is presented in by Waldvogel and Rinaldi.20 This work proposes a way to build
topology-aware overlay networks, where logical neighbors are also close in the physical network, according
to metrics coming from different levels. These include metrics typically used in routing protocols, such as
the physical distance and the bandwidth achieved by a TCP stream.

An open question is to understand if a NeSt-like approach can support cross-layering in the future Inter-
net architecture. Considering the above examples, the NeSt could easily handle the described interactions
in the following way:

� The signaling of the ECN bit might correspond to an internal event generated by the IP protocol,
previously subscribed by the TCP. Analogously, the MAC layer could generate link-related events
to notify the IP layer.
� The metrics used in the construction of the topology-aware overlay network could be associated

to NeSt abstractions, seized by the routing and transport protocols, and accessible through the
NeSt API.

The NeSt could also be employed to realize optimizations, proposed for the Internet architecture, which
are not cross-layered but sidestep the standard layer interfacing. For example, Application Level Framing
(ALF)21 aims at minimizing retransmissions due to data loss, enabling the application level to break the
data (to transmit) into suitable aggregates, and the lower level to preserve these frame boundaries when
processing the data. Thus, the data segmentation functionality is moved from the transport layer to the
application layer. Although the vertical data pipeline inside the protocol stack is not altered, the ALF
approach needs a customized implementation, which complicates the maintainability of the overall stack
and disagrees with standard interfacing. In the NeSt architecture, the same goal could be achieved keeping
the data segmentation functionality at the transport layer and allowing the application layer to instruct,
through information sharing, the transport protocol on the way to break data.

Finally, cross-layering provides an effective step toward the mobile Internet. The NeSt architecture is a
building block for context-aware computing and networking, a novel paradigm in which a system shows
the ability to discover and take advantage of contextual information. Context can be defined as the set
of environmental states and settings that determines a system’s behavior, and in which system events of
interest for the user occurs.22 While current distributed Internet applications and middleware platforms
tend to provide a transparent representation of the underlying execution environmen,23 context awareness
fits well in the area of mobile computing, where applications and software components have to cope with
dynamic environments, determining changes in context. In mobile networks, applications and middleware
platforms need to be aware of context details, leaking out information such as device location, network
bandwidth, or surrounding environment, to and from adjacent layers. The NeSt approach goes toward
full awareness of networking context: if applications and network protocols are mutually aware of their
operating conditions, then they can adjust their behavior to achieve functional trade-offs and deliver the
best end-to-end performance.13

Awareness is an important requisite for extending the mobile Internet toward 4th Generation wireless
technology. The computing world is experiencing a seamless integration of mobile ad hoc networks
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with other wireless networks and the fixed Internet infrastructure. The global system presents different
characteristics, depending on both physical constraints (e.g., bandwidth, energy, processing power) and
usage patterns. The key requirement for the operation of this heterogeneous Internet is the protocol’s ability
to globally adapt to application requirements and underlying network conditions. The need for adaptive
networking becomes a challenging issue, the solution of which requires context-awareness.
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