

Utility-based Uploading Strategy in Cloud Scenarios

Ziqi Wan and Jie Wu

Temple University, Philadelphia, PA, USA

1. Introduction

2. Problem Formulation

3. Models

4. Analysis

5. Simulation Results

Introduction

- The Cloud provider
 - We care customers.
 - We'd like to make money!
- How to make money?

- Profit= (Unit Price Unit Cost)*Number of Users
- Lower cost leads lower price and more users.
- Lower data center' s cost!
- User
 - The task should be finished quickly.

T

Cost is HUGE!

- Data center burns money!
 - Annual cost to operate a single data center runs between \$10 million and \$25 million

- Use less machines if possible!
 - Lower the running power cost!
 - Lower cooling power cost!
 - Don't even need to buy them!

1. Introduction

2. Problem Formulation

3. Models

4. Analysis

5. Simulation Results

Problems

- How to save machine number?
 - Run more jobs in less machines
 - However, users need to wait for a longer time. (Customers might complain, and quit the contract.)
- How to save time?
 - Just rent more machines for a single job
- With a limited budget.
 - If you want to go quickly, go alone. If you want to go far, go together.
- Key issue:
 - Should I wait?
 - How long should I wait?

Simplification

- Balance customers' satisfaction and data center cost
- Simplification:
 - Task Finishing Time \rightarrow Customers' Satisfaction
 - Running Machines Cost \rightarrow Data Center Cost

Again, balancing Time and Money!

1. Introduction

2. Problem Formulation

3. Models

4. Analysis

5. Simulation Results

Utility-based VM Model

• Utility Cost Model

• Then we just need to minimize the utility cost to maximize the profit for cloud providers.

Utility-based VM Model (Cont'd)

- More VMs assign to a job will make this job run faster.
- However, the processing speed not linearly increase with the number of machines.

Fig. 3. Word Count

• The processing speed not linearly increase with the number of machines.

Fig. 4. Pentomino

Fig. 5. TeraSort

1. Introduction

2. Problem Formulation

3. Models

4. Analysis

5. Simulation Results

Analysis

- In some cases, users only care about the time, and pay little attention to the rent price.
 - minimize the time cost first, then consider minimizing the machine rent price.
- In some cases, users only care about the Price
 - minimize the rent price first, then consider minimizing the machine time cost.
- A simple policy-shifting algorithm
 - In case, we don't know which one is more important

More Analysis

- We want to maximize the utility directly.
 - We provide a greedy algorithm to make a balance between performance and time complexity.

Algorithm 6 Group Utility – greedy size

- **Input:** Workloads of all jobs, total number of machines, and speedup property of machines;
 - 1: h=1
 - 2: while There is a jobs not in groups $g_1, g_2, ..., g_h$ do
 - 3: for g_h from 1 to maximum number of machines M do
 - 4: while $N > \sum_{j=1}^{h} g_j$ do
 - 5: Set Number of jobs in g_{h+1} as g_h
 - 6: Compute total $U = \sum (B_i Uc_i)$ of the all group;
 - $7: \qquad h = h + 1;$
 - 8: Compare and find out the best number of jobs for g_h . Schedule jobs in groups with that number.

1. Introduction

2. Problem Formulation

3. Models

4. Analysis

5. Simulation Results

Simulation

- Simulation setting
 - 8 Dell R210 Servers.
 - dual core Intel Celeron processor.
 - 4 GB of RAM
 - Cisco small business 300 Series Managed Switch
 - Tasks (three common applications in the Hadoop cloud framework)
 - Word Count, Pentomino, and TeraSort

Simulation

- Algorithms
 - Time-first algorithm
 - Price-first algorithm
 - Utility-single algorithm
 - Utility-greedy algorithm

Simulation (cont'd)

Simulation Results of 4 Algorithms for Word Count

1. Introduction

2. Problem Formulation

3. Models

4. Analysis

5. Simulation Results

Conclusions

- We consider the design and analysis utility-based scheduler in the cloud environment. Unlike all existing works, we propose the notion of the utility for the Virtual Machine management.
- The model presented here opens the door for an indepth study of how to schedule in the presence of phase overlapping. There are a wide variety of open questions remaining with respect to the design of algorithms that minimize response time

Thank you!

Questions?

ziqi.wan@temple.edu