
Utility-based VM Assignment in Cloud Scenarios

Ziqi Wan and Jie Wu
Department of Computer and Information Sciences

Temple University
Philadelphia, United States of America
{ziqi.wan, jiewu}@temple.edu

Abstract—The problem of Virtual Machine (VM) assignment
in cloud computing is getting more and more attention each year.
In this paper, we introduce the utility cost model, which combines
both job time cost and the VM rent cost in the Cloud Scenarios.
We investigate the interrelationship between the time cost and the
VM rent cost, and formalize it as the parallel speedup pattern.
We firstly propose the time first algorithm only considering the
time cost, with the objective of minimizing the average completion
time of all jobs. Additionally, we propose the price first algorithm,
which focus on minimizing the rent cost. Based on that two
algorithms, we introduce the policy shifting scheduling algorithm,
which combines both time cost and rent price at the same time.
We then formulate three group-based algorithms by adopting
the idea of minimizing the utility cost. There are also time
complexity and performance tradeoffs among the three group-
based algorithms. Our experimental results demonstrate that our
algorithms can achieve very good average utility gains in the real
setting.

Keywords—utility; virtual machine; assignment; parallel; cloud;

I. INTRODUCTION

Cloud computing architectures have received increasing
attention in recent years. Cloud providers take advantage of
virtualization technologies to gain economic advantages from
underutilized IT resources. Although the cloud data centers are
increasingly larger, the number of jobs running in the cloud
also grows explosively. Most of these jobs can be processed
by multiple VMs in parallel. Thus, the VM resource is still
limited. A good VM assignment strategy, which determines
the number of VMs for each parallel job, is really needed.

A fundamental aspect for cloud providers is reducing
data center costs while guaranteeing the promised Service
Level Agreement (SLA) [1] to cloud consumers. Current
virtualization technology offers the ability to easily relocate
a virtual machine from one host to another without shutting
it down, thus giving the opportunity to dynamically optimize
the placement with a small impact on performance. Several
recent works [2][3] addressed the VM assignment problem
by minimizing the average finishing time of jobs assigned to
machines, and several algorithms [4][5] have been proposed
with the objective of maximizing the utilization of the virtual
machines.

However, to the best of our knowledge, there is no pro-
posal, explicitly considering both time cost and VM rent
cost together. What’s more, the average finishing time of the
jobs and rent cost of VM are interrelated. However, most of
the previous studies focus on either the execution time of
the MapReduce jobs or the machine rent cost of the cloud

Fig. 1. Utility Cost Model

providers, abiding by the distinct difference between them but
ignoring the dependence therein.

The problem of cost reduction becomes even more complex
when considering a relationship between the processing speed
of a job and the number of processing machines. Indeed, in
cloud computing, the speedup pattern is not simply linear.
CPU, memory and I/O resources will all influence the job
processing speed. It becomes more challenging when a large
number of jobs are competing for these resources. It is clear
that only considering time cost or machine rent cost is not good
enough. The utility of the MapReduce[6] jobs, which combines
both jobs and machines, has not been carefully studied. What’s
more, due to the complexity of the speedup patterns of the real
cloud clusters, the scheduling policies should either adapt to
specific changing patterns or be robust.

This paper focuses on the utility-based virtual machine
assignment issue in the MapReduce framework [6]. Usually,
a typical MapReduce job includes both MapTasks and Re-
duceTasks. Each MapTask generates intermediate data in key-
value pairs after taking a block of input data. Then, Reduc-
eTasks fetch these intermediate data according to keys through
the copy/shuffle phase, and proceed to the reduce phase after
receiving all the intermediate results. The management of
computing resources is done through the allocation of job slots;
each slot only permits a single job to be launched. The number
of machines for each job are not flexible for the Reduce phase.
Thus, we focus on the Virtual Machine assignment problem
of the map phase in this paper.

Our main contribution of this paper is inviting the Utility
Cost Model as shown in Fig. 1, which combine both time cost
and machine rent price cost. In the traditional model, only
time cost or the machine cost was considered separately in
the virtual machine placement issues. The rest of the paper is
organized as follows. Firstly, we put our effort into the analysis
of the parallel speedup patterns in the cloud clusters, then



discuss machine rent model and the utility model based on the
basic idea of time cost and machine rent cost in Section II. In
Section III, we provide several algorithms. We then perform
real experiments in our MapReduce clusters. The results in
Section IV answers the question about what the real speedup
pattern is in the real cluster, and shows good evidence that our
algorithm works well with the consideration of both time and
price cost. In Section V, we list recent related works of others.
Section VI concludes the paper and discusses possible future
work.

II. MODEL DESCRIPTION

In this section, we will first illustrate the machine cost
model, then explain the notion of utility, which clarifies
the objective of our VM assignment strategy in the cloud
scenarios.

A. Machine Rent Models

First of all, we take a look at the price model on the market.
Amazon Web Services [7] provides a complete set of Cloud
Computing services that enable one to build sophisticated,
scalable applications. The basic idea is to pay only for what
you use. In this paper, users pay for computation capacity by
the hour with no long-term commitments or upfront payments.
Users can increase or decrease their computation capacity
depending on the demands of their applications and only pay
the specified hourly rate for the instances they use. Thus,
it is more flexible and interesting. What’s more, most cloud
provider consider every virtual machine in the same type to
be the same, with the same computing capacity and unit rent
price.

To better illustrate machine rent model, we define the
notion of the total machine time of a job. We assume that
the workload of jobi is wi, and mi is the number of machines
for jobi. We assume all VMs have the same property, and
each job is processed by multiple machines in parallel. Thus,
we assume that a job starts and finishes at the same time for
each VM running it. So they have the same processing time
as wi/S(mi) for jobi. Then the total machine time of jobi is
Mtimei = wi×mi/S(mi). For the On-Demand Instances, the
machine rent cost is linearly related to the total machine time.
We define the rent price of virtual machines as pi for jobi, a
is a constant coefficient representing the price for renting each
machine per unit time.

pi = a×Mtimei = a× wi ×mi/S(mi) (1)

B. Utility Model

The utility cost model is shown in Fig. 1. We extend the
utility-based routing model from economics to cloud comput-
ing; we assume Bi is the benefit of completing a request, pi is
the service price, and ti is the finishing time of job request i.
We define the start time of jobi as tstarti , so the processing time
of jobi is wi/s(mi). The relationship between the workload
and the processing speed is wi =

∫ ti
tstart
i

S(mi(t))dt. Once a
job been launched, the number of machines for this job can
not be changed any more in the Hadoop configuration. The
finishing time of jobi can be transferred as follows.

ti = wi/s(mi) + tstarti (2)

Fig. 2. Dominance Scheduling and Shared Scheduling

We first define Uci = pi + b × ti as the utility cost of
jobi. Then we define the utility of jobi as Ui = Bi − Uci =
Bi − pi − b × ti. Here b is the coefficient representing the
utility cost of a unit time of a job. It can be seen that the user
is willing to give up response time in exchange for service
price without any satisfaction change. Then we assume that the
benefit of completing a request is proportional to the workload
of a job. We define the coefficient B as the utility benefit per
unit workload, then Bi = B×wi as the benefit from finishing
a request. Therefore, the utility function of a job request can
be rewritten as,

Ui = Bi − pi − b× ti
= Bwi − awimi/S(mi)− bwi/S(mi)− btstarti

= wi(B − ami/S(mi)− b/S(mi))− btstarti

(3)

There are also constraints for machines and processing
times. We assume that the number of machines M are limited.
Therefore, there must be a performance tradeoff between price
and time, when the processing speed is not linearly related to
the number of machines. If one wants to finish earlier with
more machines, he has to suffer a higher price. Our objective
to maximize the overall utility of all users, which is U =

∑
Ui.

When the processing speed is linearly increasing with the
number of processing machines, the processing speed of a
job with m machines is S(m) = k × m. Then it becomes
the malleable scheduling problem [8]. Therefore, the utility
function can be rewritten as,

Ui = Bwi − akwimi/S(mi)− bti
= Bwi − akwimi/kmi − bti
= Bwi − awi − bti = (B − a)wi − bti

(4)

From the equation above, we can see that the rent price for
each job is fixed. To maximize the overall utility is equal to
minimizing the average completion time.

In the sublinear speedup pattern and the superlinear
speedup pattern, we assume S(m) = k×m×αm−1. Then the
utility function becomes Ui = Bwi− akwimi/S(mi)− bti =
Bwi − akwimi/(kmiα

mi−1) − bti = Bwi − awi − bti =
(B − a)wi/α

mi−1 − bti. Here α 6= 1, since the processing
speed cannot linearly increase with the number of machines.
Therefore, the utility of a job is not only determined by the job
workload wi and the finishing time ti, but also by the speedup
pattern α and the number of machines that have been used mi.

III. ALGORITHMS

Nowadays, most cloud service providers use the FIFO
scheduler. There are other advanced schedulers like priority
scheduler [9] and small job first scheduler, which show good



Algorithm 1 TimeFirst
Input: Workloads of all jobs, total number of machines, and

speedup property of machines;
1: Compute tavgd and pd for the dominance policy;
2: Compute tavgs and ps for the shared policy;
3: if tavgd = tavgs then
4: if pd = ps then
5: Apply tie-breaking rules to find a better policy;
6: else
7: The policy with the lower p is better;
8: else
9: The policy with the lower t is better;

10: Schedule jobs according to the better policy.

Algorithm 2 PriceF irst
Input: Workloads of all jobs, total number of machines, and

speedup property of machines;
1: Compute tavgd and pd for the dominance policy;
2: Compute tavgs and ps for the shared policy;
3: if pd = ps then
4: if tavgd = tavgs then
5: Apply tie-breaking rules to find a better policy;
6: else
7: The policy with the lower t is better;
8: else
9: The policy with the lower p is better;

10: Schedule jobs according to the better policy.

performance in minimizing the average completion time of
jobs. However, these schedulers all adopt the dominance
scheduling policy, which allocates a job with as many slots
as possible to greedily achieve an early finishing time for each
job. Actually, sometimes the shared scheduling is equal to or
better than the dominance scheduling policy. For example, in
Fig. 2, there are 2 jobs; assume the processing time for each
task with 4 slots is 2, and the the processing time for each
task with 2 slots is 3. Then the average completion times
of different policies are equal in this example. The shared
policy has a shorter machine time for each job, but it has
a lower utility cost than the other. In this section, we provide
several algorithms trying to maximize the overall utility. We
first consider two special cases, in which either time cost or
rent price is more important than the other.

A. Time First and Price First

In some cases, users only care about the time, and pay
little attention to the rent price. Therefore, we should minimize
the time cost first, then consider minimizing the machine rent
price.

Although we try to minimize each job’s completion time,
it might generate a very large overall completion time. Here
we assume w1 ≤ w2 ≤ ... ≤ wn are the workloads of n jobs
in a batch, and n ≤ M . Our policy still follows the idea of
the shortest workload job first rule. We define td1, td2, ..., tdn
as the finishing times of n jobs for the dominance policy. The

average finishing time for the dominance scheduling policy is,

tavgd = (td1 + (td1 + td2) + ...+ (td1 + td2 + ...+ tdn))/n

= (nw1 + (n− 1)w2 + ...+ wn)/(nS(M))
(5)

The average finishing time for the shared scheduling policy is
shown as follow.

tavgs =
∑

wi/(n× S(
M

n
)) (6)

When a tie-breaking decision is needed, we need to con-
sider the rent machine price as well. There are some other
tie breaking rules, such as uniform random selection; this
considers the rent cost of machines of the dominance policy.

pd =
M × S(1)×

∑
wi

S(M)
(7)

The rent cost of machines of the shared policy is shown as
follow.

ps =
M × S(1)×

∑
wi

n× S(M/n)
(8)

Our idea to try and find out the changing point for the
dominance scheduling policy and shared scheduling policy.
Our time first algorithm are shown in Alg. 1. In the worst case,
we might always failed to choose the better policy; however,
there is a bound for the average finishing time.

Theorem 1. In the worst case, the average finishing time is
max(2n/(n+ 1), S(Mn )/S(M)) times the optimal one.

Proof: In the worst case, we choose the wrong scheduling
policy due to the lack of future knowledge. The ratio of
average makespan of two scheduling algorithms is tavgd /tavgs =
(nw1+(n−1)w2+...+wn)/(nS(M))∑

wi/(n∗S(M
n ))

. If we always choose the shar-
ing schedule policy, in the worst case, w1 = w2 = ... = wn

and S(Mn ) = S(M)/n, then tavgd /tavgs =
(n+1)S(M

n )

2S(M) =

(n+1)/2n, and the bound is 2n/(n+1). If we always choose
the dominance schedule policy, then the worst case is that
w1 is much greater than the w2, ..., wn, then tavgd /tavgs =
w1

S(M)/
w1

S(M
n )

= S(Mn )/S(M).

In the case of users only caring about the price and paying
little attention to the time cost, we should minimize the price
first, and consider the time cost latter. Thus, we assign the
minimum number of machines for each job for the sublinear
speedup pattern. Our price first algorithm are shown in Alg.
2. The best idea is to maximize the number of machines for
each job.

B. Policy Shifting Scheduling

As we known, the price first algorithm and the time first
algorithm have failed to combine both rent price and time cost
together. Sometimes, we need to decide whether we should
change the scheduling rules by monitoring the number of
job requests in the cloud and their remaining workloads. The
Policy Shifting Scheduling algorithm are shown in Alg. 3. In
the worst case, we might always failed to choose the better
policy; fortunately, we figure out a bound for the average
utility.



Algorithm 3 PolicyShifting
Input: Workloads of all jobs, total number of machines, and

speedup property of machines;
1: Compute tavgd and pd for dominance scheduling policy;
2: Compute tavgs and ps for shared scheduling policy;
3: Compute and compare the utility cost of two policies;
4: Schedule jobs according to the better policy with lower

utility cost.

Algorithm 4 Group Utility − single size
Input: Workloads of all jobs, total number of machines, and

speedup property of machines;
1: for g from 1 to maximum number of machines M do
2: Set g = bN/Mc as the number of jobs in all groups,

except the last group. The number of jobs in the last
group is glast = N − g;

3: Group all the jobs in their workloads. The job smaller
workload arranged in the earlier processing group;

4: Compute total U =
∑

(Bi − Uci) of the all group;
5: Compare and find out the best number of jobs for each

group. Schedule jobs in groups with that number.

Algorithm 5 Group Utility − all sizes
Input: Workloads of all jobs, total number of machines, and

speedup property of machines;
1: Set the number of jobs in group j as gj , and J as the total

number of groups.
2: Set total the number of jobs in groups as N =

∑
gj .

3: for Each possible set of g1, g2, ..., gN do
4: Group all the jobs in their workloads. The job having

smaller workload is arranged in the earlier processing
group;

5: Compute total U =
∑

(Bi − Uci) of the all group;
6: Compare and find out the best number of jobs for each

group. Schedule jobs in groups with that number.

Theorem 2. In the worst case, the utility cost is
a×max(2n/(n+ 1), S(Mn )/S(M)) + b× S(Mn )/S(M)
times the optimal one.

Proof: In the worst case, we suffer both worst time cost
and worst rent price of the two algorithms at the same time.
According to theorem 1, we have the average finishing time
as max(2n/(n + 1), S(Mn )/S(M)). At the same time, the
maximum price is S(Mn )/S(M). So the worst utility cost is
a×max(2n/(n+ 1), S(Mn )/S(M)) + b× S(Mn )/S(M).

C. Utility-based Scheduling

The intuition of this policy is to find the proper number of
machines for each job with the maximal utility. Jobs should
follow the order of the smallest workload first policy then
determine the processing sequence. In order to maximize the
utility, we need to minimize the total utility cost Uctotal. For
jobi we assume that the number of machines used does not
changed during the processing, and every machine is fully
utilized. As we known Uci = pi+b×ti, our objective function

Algorithm 6 Group Utility − greedy size
Input: Workloads of all jobs, total number of machines, and

speedup property of machines;
1: h=1
2: while There is a jobs not in groups g1, g2, ..., gh do
3: for gh from 1 to maximum number of machines M do
4: while N >

∑h
1 gj do

5: Set Number of jobs in gh+1 as gh
6: Compute total U =

∑
(Bi − Uci) of the all group;

7: h = h+ 1;
8: Compare and find out the best number of jobs for gh.

Schedule jobs in groups with that number.

can be written as follows.

Uctotal =

N∑
i

Uci =

N∑
i

(pi + b× ti) (9)

Here, we use the overfitting function of the processing speed
to find the best mi. As S(mi) = k ×mi × αmi−1, the total
cost of jobi is

Uctotal =

n∑
i

(wi(ami + b)/S(mi) + btstarti )

=

n∑
i

(wi(ami + b)/(kmiα
mi−1) + btstarti )

(10)

A naive way is to schedule jobs one by one. Each job
is greedily allocated the optimal number of machines. The
computation complexity is O(N). Here, N is the total number
of jobs. However, this algorithm is actually too bad to use.
It is often the case that one job will use up all the machines
at a time. The waiting time for the following machines will
aggregate. However, the greedy algorithm of scheduling jobs
one by one can be easily extended to the scheduling policy for
a group of jobs to get better a performance with the sacrifice of
time complexity of the algorithm. We assume that the number
of jobs in a group j is gj , and n ≤ M . The total number of
groups is J . It is clear that

∑J
j gj = N .

Here we provide three group utility algorithms. The first
one is called single size algorithm as shown in Alg. 4. In
this algorithm, we assume all groups have the same size,
which means all groups contains the same number of jobs. The
complexity of this algorithm is O(MN), which is quite small.
But the restriction of having the same size for each group is
too strong The second group utility algorithm is the all sizes
algorithm as shown in Alg. 5. In contrast to the single size
algorithm, it considers all the possible group sizes. Although
it may get a very good result, it is very time consuming to
enumerate all the possible combinations of group sizes. The
worst time complexity of this algorithm is O(M !N ). Since both
the single size algorithm and the all sizes algorithm have some
obvious drawbacks, we provide the greedy size algorithm to
make a balance between performance and time complexity.
The idea of the greedy size algorithm is to greedily determine
the number of jobs in each group as shown in Alg. 6. The
worst time complexity of this algorithm is O(MN ).



(a) Average Time (b) Normalized Machine Time

Fig. 3. Word Count

(a) Average Time (b) Normalized Machine Time

Fig. 4. Pentomino

(a) Average Time (b) Normalized Machine Time

Fig. 5. TeraSort

Theorem 3. The utility cost of based on the single size algo-
rithm utility group is less than (a+ b)×maxn(S(Mn )/S(M))
times of the optimal one.

Proof: In the utility group algorithm, we try to maximize
the total utility of the group. However, the number of jobs in
a group is fixed before the scheduling process. However, the
number of jobs in a group will influence the scheduling flexi-
bility. In the worst case, there are M jobs for M machines. The
utility cost in this situation is (a+ b)maxn(S(

M
n )/S(M))×

OPT .

In general, the greedy size policy gets better results than
the single size policy, and gets results close to those of the
all size policy. However, the number of jobs in a group needs
to be further discussed, and what we discussed here is in the
batched start offline situation. For the online condition, more
study need to be done. It might be our future work.

IV. EXPERIMENTS

We investigate our model based on the real experiment. Our
clusters consist of Dell R210 Servers. Each server has a dual
core Intel Celeron processor. They also have 4 GB of RAM.

They then have Gigabit Ethernet jacks for communication. We
also use a Cisco small business 300 Series Managed Switch to
connect the servers together. Each Switch has only eight ports
available so only eight servers can be connected through one
hop. To this end, we will collect data by adding servers one at
a time and running the same job with the same input data ten
times on each configuration. We will stop after we have done
this with the first sixteenth servers. From there we will try to
estimate how time will be affected by adding more nodes.

In this paper, we investigate three common applications
in the Hadoop cloud framework, which are Word Count,
Pentomino [10], and TeraSort [11]. In the following paragraph,
we will present our results and point out some interesting
things to note about them. Figs. 3(a), 4(a), 5(a) show the
relationship between the average finishing time and the parallel
machine numbers of the three cloud applications. It is clear
that increasing the number of processing machines for any
type of job will accelerate the processing speed and will bring
on the shorter finish time of the job. However, the speedup
patterns are no similar. The processing speed for a Word Count
job increases rapidly only from 1 VM to 2 VMs and slows
down when adding more machines. However, the processing
speed of the Pentomino job keeps boosting. For the TeraSort
job, the processing speed rises significantly then slows down
drastically.

Figs. 3(b), 4(b), 5(b) illustrate the relationship between the
normalized machine time and machines number of the three
cloud applications. Here the normalized machine time (NMT)
is the normalized product of the parallel processing time
ti− tstarti and the number of parallel processing machines m,
namely NMT = η(ti− tstarti )×m. Here η is the normalized
coefficient. The normalized machine time is used to measure
the overall machine usage, and is in proportion to the machine
rent cost. The higher NMT, the higher the machine rent cost.
From the above observation, we can see that, no matter how
different those NMT patterns are, the changing points do exist.
It may help us to find out the best choice of machine numbers.

Then we test our algorithms by using the results we get
from the real clusters. The time costs of 4 algorithms are shown
in Fig. 6(a). It is clear that the price first policy has a very
large time cost compared to other policies, and the time first
policy has the lowest time cost. The reason is that the price
first policy always uses a few machines with minimal cost for
every job, so there are many machines unassigned when the
number of jobs is very small. The machine rent costs of 4
algorithms are shown in Fig. 6(b). In contrast to the result of
the time cost, the time first policy has the worst machine rent
price. The reason is that the time first policy always uses as
many machines as possible. Due to the sub-linear increase of
the parallel computing speed, the overall machine rent time
increased. However, when combining both time and rent cost,
neither the price first policy nor the time first policy are the
best as shown in Fig. 6(c). As a result, the utility group policies
are more powerful in minimizing the utility cost of the cloud
clusters. We can also see that the greedy step group policy is
better than the single step policy.

V. RELATED WORK

There is a large body of research work on the performance
optimization for the Cloud. We list the closely related work



(a) Time Cost (b) Rent Cost (c) Utility Cost

Fig. 6. Simulation Results of 4 Algorithms for Word Count

to ours as follows. Many MapReduce schedulers have been
proposed over the past few years trying to maximize the
resource utilization. Zaharia et al. introduced delay scheduling
[12] that speculatively postpones the scheduling of the head-
of-line jobs and ameliorate the locality degradation in Hadoop
Fair scheduler. They also proposed Longest Approximate Time
to End [13] scheduling policy to mitigate the deficiency of
Hadoop scheduler in coping with the heterogeneity across
virtual machines in a cloud environment.

Some recent publication addressed the VM assignment
problem by minimizing the average finishing time of jobs
assigned to machines. Wang et al. [2] studied the m identical
parallel-machine and unrelated parallel-machine scheduling
with a deteriorating maintenance activity to minimize the total
completion time. Albers et al. [3] investigated dynamic speed
scaling, a technique to reduce energy consumption in variable-
speed microprocessors.

Several algorithms have been proposed with the objective
of maximizing the utilization of the virtual machines. For
example, Beloglazov et al. [4] [5] proposed approaches for
known stationary workload and a given state configuration
optimally solves the problem of host overload detection by
maximizing the mean intermigration time under a Markov
chain model.

Recently, YARN [14] has been proposed by Yahoo! as the
next generation MapReduce. It separates the JobTracker into
ResourceManager and Application Manager, and removes task
slot concept. In future, we plan to incorporate our techniques
into the YARN.

VI. CONCLUSION

We consider the design and analysis utility-based scheduler
in the cloud environment. Unlike all existing works, we
propose the notion of the utility for the Virtual Machine
management. Next, we investigate the parallel speedup pattern
in the cloud clusters. After that, we propose several scheduling
algorithms based on the idea of the time cost and rent price.
Then we introduce the policy shifting scheduling algorithm,
provided with bounded performance against the optimal one.
Motivated by the previous scheduling policies, we provide the
three utility-based algorithms, with each method having its
unique pros and cons. Our experimental results demonstrate
that our algorithms can achieve very good average utility in

the given settings. The model presented here opens the door
for an in-depth study of how to schedule in the presence of
phase overlapping. There are a wide variety of open questions
remained to be done.

REFERENCES

[1] S. Subashini and V. Kavitha, “A survey on security issues in service
delivery models of cloud computing,” Journal of Network and Computer
Applications, vol. 34, no. 1, pp. 1–11, 2011.

[2] L.-Y. Wang, X. Huang, P. Ji, and E.-M. Feng, “Unrelated parallel-
machine scheduling with deteriorating maintenance activities to min-
imize the total completion time,” Optimization Letters, vol. 8, no. 1,
pp. 129–134, 2014.

[3] S. Albers, F. Müller, and S. Schmelzer, “Speed scaling on parallel
processors,” Algorithmica, vol. 68, no. 2, pp. 404–425, 2014.

[4] A. Beloglazov and R. Buyya, “Managing overloaded hosts for dynamic
consolidation of virtual machines in cloud data centers under quality of
service constraints,” Parallel and Distributed Systems, IEEE Transac-
tions on, vol. 24, no. 7, pp. 1366–1379, 2013.

[5] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,” Concurrency
and Computation: Practice and Experience, vol. 24, no. 13, pp. 1397–
1420, 2012.

[6] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[7] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia,
J. Shalf, H. J. Wasserman, and N. J. Wright, “Performance analysis of
high performance computing applications on the amazon web services
cloud,” in Cloud Computing Technology and Science (CloudCom), 2010
IEEE Second International Conference on, pp. 159–168, IEEE, 2010.

[8] W. Ludwig and P. Tiwari, “Scheduling malleable and nonmalleable
parallel tasks,” in Proceedings of the fifth annual ACM-SIAM symposium
on Discrete algorithms, pp. 167–176, Society for Industrial and Applied
Mathematics, 1994.

[9] T. Sandholm and K. Lai, “Dynamic proportional share scheduling in
hadoop,” in Job scheduling strategies for parallel processing, pp. 110–
131, Springer, 2010.

[10] A. Hadoop, “Hadoop,” 2009.
[11] O. OMalley and A. C. Murthy, “Winning a 60 second dash with a yellow

elephant,” Proceedings of sort benchmark, 2009.
[12] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and

I. Stoica, “Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling,” in Proceedings of the 5th European
conference on Computer systems, pp. 265–278, ACM, 2010.

[13] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environments.,”
in OSDI, vol. 8, p. 7, 2008.

[14] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, et al., “Apache hadoop
yarn: Yet another resource negotiator,” in Proceedings of the 4th annual
Symposium on Cloud Computing, p. 5, ACM, 2013.


