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Abstract—In streaming federated learning, where data on each
client is received in the form of a data stream, the distribution of
data on the clients has a significant impact on the performance of
the federated learning model. The continuous influx of streaming
data on the clients leads to real-time changes in the local
data distribution, which in turn affects the performance of
the federated learning model. Furthermore, the heterogeneity
in data distribution among clients exacerbates this impact. In
this paper, to address these challenges, we propose a Data-
aware Probabilistic Client Sampling scheme (DPCS) for selecting
appropriate clients to participate in model training in each round
of federated learning. DPCS begins with a method for real-time
monitoring of local data distributions on the clients. Based on
these observations, the central server adopts a probability-based
client sampling strategy. Through extensive experimentation,
we demonstrate that our client sampling scheme offers higher
timeliness and enhances the performance of federated learning
compared to traditional methods.

Index Terms—client sampling, data heterogeneity, data imbal-
ance, streaming federated learning

I. INTRODUCTION

Federated Learning (FL), a machine learning approach that
has gained significant attention in recent years, is particularly
well-suited for handling big data in a distributed and privacy-
preserving manner [1]–[3]. Big data analysis of streaming
data is driven by the exponential growth of real-time data
generated from various sources [4]. Streaming data refers
to a continuous flow of data that is generated in real-time
and needs to be processed as it arrives. Unlike traditional
batch processing, where data is collected and processed in
large chunks at regular intervals, streaming data processing
requires real-time or near-real-time analysis. Streaming fed-
erated learning is an innovative approach that addresses the
challenges of privacy, scalability, and real-time processing in
a distributed environment [5]. It is an active area of research
with potential applications in various domains, including the
Internet of Things, smart cities, and personalized services.

In streaming FL, the problems of data heterogeneity and
data imbalance present unique challenges that can signifi-
cantly impact the performance and effectiveness of the learn-
ing models. Data heterogeneity refers to the situation where
different clients in the federated system have data that is not
identically distributed. In the context of streaming data, this
means that the data characteristics, such as feature distribu-
tions, data scales, and even the underlying data-generating
processes, can vary greatly across clients. Data imbalance
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Fig. 1: Local data distribution aware client sampling scheme
in streaming federated learning.

occurs when the distribution of different classes (or labels)
in the data is uneven. In federated learning, this problem is
caused by the fact that some clients may have a large number
of samples from certain classes, while others may have very
few or none at all. This imbalance can result in a model that
is biased towards the majority classes and performs poorly on
the minority classes.

To tackle data heterogeneity and imbalance in streaming
federated learning, researchers and practitioners employ client
sampling and selection strategies, which carefully select a
diverse and representative subset of clients for each training
round to ensure that the global model benefits from a wide
range of data distributions. McMahan et al. in [6] propose an
approach randomly selects the subset of clients for training in
FL. Yae Jee Cho et al. in [7], [8] discuss the issue of client
selection in FL, particularly focusing on strategies that bias the
selection towards clients with higher local loss to accelerate
convergence speed. To address the challenge of selecting
appropriate devices and excluding unnecessary model updates
to save resources, Yibo Jin et al. in [9] formulate an online
optimization problem and design an algorithm to solve it,
achieving resource efficiency and model convergence. The
loss is measured for each device and across all devices, and
the training aims for convergence of local and global models.

In federated learning, client sampling methods are crucial
for the efficiency and effectiveness of the learning process
[10], [11]. However, some client sampling methods do not
take into account the data imbalance issue. Data imbalance
occurs when the data contributed by different clients have
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Fig. 2: Influence of local data distribution in streaming federated learning.

significantly different distributions or quantities. This can lead
to a model that is biased towards the majority class or the data
from clients with more representation, resulting in poor gener-
alization to underrepresented classes or clients. Furthermore,
some other methods design their client sampling strategies
based on gradients or the model itself. These approaches
assume that the model has already been trained for a certain
period and can accurately represent the data. In streaming
FL scenarios, the data distribution can change rapidly. If the
sampling strategy relies on the model to select clients, it may
not be up-to-date with the current data distribution, leading
to a significant sampling bias.

In this paper, we propose a Data-aware Probabilistic Client
Sampling scheme (DPCS) for data heterogeneity and imbal-
ance in streaming FL. DPCS contains a monitor of local
data distribution and a probabilistic client sampling strategy,
as shown in Fig. 1. The monitor of local data distribution
involves the data structure of counter for the data stream to
track the local data distribution at each client. The proposed
scheme also includes a theoretical framework for modeling
the client sampling problem. An optimization model for client
sampling is constructed, which leverages convex optimization
techniques to calculate a probability-based client sampling
strategy. This ensures that the client selection for model
training is not only efficient but also optimized to account for
the dynamic nature of streaming data. We conduct extensive
experiments on three publicly available datasets, and the
experimental results reveal that DPCS offers higher timeliness
and enhances the performance of federated learning compared
to traditional methods.

II. STREAMING FEDERATED LEARNING

A. Motivation

In order to analyze the impact of data distribution changes
in streaming FL, we discuss it from the three perspectives
of heterogeneity, imbalance and latency through experimental
data analysis. In our experiment focusing on the heterogeneity
of client data distribution, we utilized the Dirichlet distribution
to construct the local data on the clients. Specifically, we
examined data across 10 different class labels and illustrated
the distribution of labels on the clients’ local data for varying
values of the parameter α in the Dirichlet distribution. As the
value of α increases, the distribution of data across clients
becomes more uniform. This trend is evident when comparing

the distributions at different α values. For instance, when α
is set to 0.2, the data distribution is non-uniform as shown
in Fig. 2a. This suggests that a smaller α value leads to a
more diverse distribution of labels, potentially reflecting a
more realistic scenario in federated learning where clients may
hold significantly different data.

In our experimental investigation of client data distribution
heterogeneity in federated learning, as depicted in Fig. 2b,
we utilized the random sampling strategy from FedAvg [6]
to select clients for each training round. By varying the
parameter α in the Dirichlet distribution used to partition the
data, we induced different levels of heterogeneity among the
clients. The impact of these varying degrees of heterogeneity
on the model’s accuracy was then assessed. The experimental
results clearly demonstrate a relationship between the hetero-
geneity of client data distribution and the accuracy of the
models generated. As the value of α decreases, leading to
greater heterogeneity in the data distribution among clients,
the accuracy of the models tends to diminish. This suggests
that when clients possess more dissimilar data, the federated
learning process becomes more challenging, potentially due
to the increased difficulty in aggregating diverse updates into
a coherent global model.

This imbalance is characterized by a non-uniform distri-
bution of samples across different labels within the dataset,
which can affect the model’s ability to learn effectively from
all classes. The imbalance factor in our experiment is defined
as the ratio of data for each label in the sum of all clients’
datasets. We construct the number of samples for each label
in decreasing fashion with the imbalance factor. For instance,
the imbalance factor is set to 0.8, the initial sample count
for the first label is set to 10,000. Subsequently, the sample
count for the second label is reduced to 8,000, which is
80% of the first label’s sample count. This pattern continues
with each subsequent label’s sample count being reduced
by the imbalance factor compared to the previous label’s
count. In our experimental study on the impact of client data
distribution imbalance in federated learning, we employed a
random sampling method for the federated learning process.
The results of this experiment are presented in Fig. 2c. It
is evident from the findings that the accuracy rate for a
dataset with an imbalance factor of 0.8 is significantly lower
compared to a dataset with an imbalance factor of 0.9. This
observation indicates that a higher degree of imbalance in



the label set across all clients leads to a degradation in
model performance. The FL model may struggle to learn from
the underrepresented labels, leading to a biased model that
performs poorly on the test data.

To validate the impact of latency in local training on the dis-
tribution of local data, we conducted an experimental analysis.
In each round of selection, we calculated the loss for the local
data before and after local training based on the samples. Fig.
2d displays the difference in loss between the local training
before and after each round. In the experiment, we selected
one client to calculate the loss, where ’before’ indicates the
loss before the data update, and ’after’ indicates the loss after
the data update. The experiment includes variations in the
local data distribution established by controlling the rate of
change in the client’s cache labels, with different growth rates
of the data. The results show that the updated data before
and after local training have a discrepancy in loss. Therefore,
using the loss calculated from the data before local training
to formulate a client sampling strategy is inaccurate.

B. Theoretical Analysis

In this section, we analyze the relationship between the
model obtained from the federated learning in the m-th round
and the model trained using a centralized approach on an
uniform-distribution data set. Let ri denote the distribution
vector of data labels on the ith client by its counter, and is
normalized with the C classes, i.e., ri = (ri,1, ri,2, · · · , ri,C).
a is the sampling probability of the n client by the central
server, i.e., a = (a1, a2, · · · , an). Let wf

mT denote the
parameters of global model after m rounds training, and T
denotes the number of local updates in each round. wb

mT

denotes the parameters of global model trained on a dataset
with a target (balance) distribution after m rounds training.
wcenter

mT denotes the model parameters of global model trained
in a centralized manner according to the expected distribution
after m rounds training. The theorem is as follows:

Theorem 1. There exists an upper bound between the model
obtained from the federated learning in the m-th round and
the model trained using a centralized approach on a balanced
data set, as described below:

∥ E[wf
mT ]− wb

mT ∥

≤
∑n

i=1
ai[(1 + ηλ)T ∥ wi

(m−1)T − wcenter
(m−1)T ∥

+ η ∥ pcenter − ri ∥1
∑T

j=2
g(wcenter

mT−j )(1 + ηλ)j−1]

+ (1 + ηλ)T ∥ wcenter
(m−1)T − wb

(m−1)T ∥

+ η ∥ pcenter − pgoal ∥1 (
∑T

j=1
(1 + ηλ)j−1)g(wb

mT−j),

(1)

where pcenter = (pcenter1 , pcenter2 , · · · , pcenterC ) denotes the
distribution vector of the data labels calculated according to
such sampling probabilities, which is calculated as follows:
pcenter =

∑n
i=1 ai·ri. Let pgoal denote the distribution vector

of the target data labels used for comparison. For training,
pgoal is the normalized sum of all client data distributions∑n

i=1 ri. For testing, pgoal adopts the uniform distribution.

Proof. Due to the page limitations, we briefly describe the
proof process here. We expand the equation into two parts.

∥ E[wf
mT ]− wb

mT ∥
≤∥ E[wf

mT ]− wcenter
mT + wcenter

mT − wb
mT ∥

≤∥ E[wf
mT ]− wcenter

mT ∥ + ∥ wcenter
mT − wb

mT ∥ .

For the first part of the equation ∥ E[wf
mT ] − wcenter

mT ∥,
the upperbound is as follows:

∥ E[wf
mT ]− wcenter

mT ∥

≤
∑n

i=1
ai(1 + ηλ) ∥ wi

mT−1 − wcenter
mT−1 ∥

≤
∑n

i=1
ai[(1 + ηλ)T ∥ wi

(m−1)T − wcenter
(m−1)T ∥

+ η ∥ pcenter − ri ∥1
∑T

j=2
g(wcenter

mT−j )(1 + ηλ)j−1].

For the second part of the equation ∥ wcenter
mT −wb

mT ∥, the
upper bound is calculated as follows:

∥ wcenter
mT − wb

mT ∥

=∥ wcenter
(m−1)T − η

∑C

i=1
pcenter
i ∇wEx|y=i[− log fi(x,w

center
(m−1)T )]

− wb
mT−1 + η

∑C

i=1

1

C
∇wEx|y=i[− log fi(x,w

center
(m−1)T )] ∥

≤ (1 + ηλ)T ∥ wcenter
(m−1)T − wb

(m−1)T ∥

+ η ∥ pcenter − pgoal ∥1 (
∑T

j=1
(1 + ηλ)j−1)g(wb

mT−j),

where η is the learning rate. g(·) is a function of w, and
∇wEx|y=i[− log fi(x,w)] is λx|y=i-Lipschitz for each class
i ∈ [C] introduced in [12].

Thus, we obtain the upper bound of ∥ E[wf
mT ] − wb

mT ∥
by combining the two parts of the above equations.

We notice that both of the equations
∑n

i=1 ai ∥ pcenter −
ri ∥ and ∥ pcenter − pgoal ∥1 are in the upper bound, and∑n

i=1 ai ∥ pcenter − ri ∥ is related to ∥ pcenter − pgoal ∥1.
This can be affected by the sampling probability a, and we
investigate the client sampling scheme based on a.

III. DATA-AWARE PROBABILISTIC CLIENT SAMPLING

To address the dynamic nature of streaming data in feder-
ated learning, we propose a Data-aware Probabilistic Client
Sampling scheme (DPCS) as shown in Algorithm 1. DPCS is
designed to address the challenges of data heterogeneity and
dynamic data distributions typical in streaming data scenarios,
and the scheme operates through two main components.
The first one is the monitor of local data distribution. At
the client level, this component continuously monitors and
assesses the distribution of the incoming streaming data. It
provides real-time insights into the local data characteristics,
which is crucial for making informed decisions about client
participation in the federated learning process. The second
component is the probability model-based client sampling
strategy. The central server employs this strategy to determine
the probability of each client being selected for participation
in each round of federated learning. It does so by analyzing
the local data distribution reports submitted by the clients.
The probability model evaluates the relevance and diversity



of each client’s data and calculates the selection probability
accordingly, ensuring that the clients chosen contribute to the
robustness of the global model. By integrating these com-
ponents, the DPCS scheme ensures that the client sampling
process is both data-aware and probabilistically driven. This
leads to a more strategic and efficient selection of clients,
which is essential for optimizing the performance of federated
learning models, especially when dealing with large-scale and
heterogeneous datasets.

A. Monitor of Local Data Distribution

At each client, a data structure is designed to monitor the
local data distribution as it changes in real-time, as shown
in Fig. 1. The data structure added to each client serves acts
as a local monitoring system, which is capable of tracking
the frequency and distribution of data instances as they arrive
in a streaming fashion. Each client is equipped with a data
structure (such as a counter) that can efficiently store and
process the incoming data stream to record the frequency
[13], [14]. This could be a simple counter with the size of
C (the number of classes) to record the frequency of each
class. As new data arrives, the data structure updates to reflect
the current distribution of data across different categories or
features. This monitoring happens in real-time, allowing the
system to quickly respond to changes in the data flow. With
an up-to-date understanding of the local data distribution,
the client sampling strategy based on a can be adjusted
accordingly. This means that the selection of clients for the
next round of model training is informed by the most recent
data distribution, ensuring that the model is trained on a
representative and balanced subset of the data. It’s important
to note that while this method enhances the adaptability of
the FL process, it also needs to maintain the privacy of the
clients’ data. The data structures should be designed in a way
that they do not store raw data but rather aggregate statistics
that can be used for sampling purposes without compromising
privacy.

B. Probability Model-based Client Sampling Strategy

At the central server, the strategy leverages the power
of probabilistic models to make informed decisions about
which clients to sample for each round of model training.
The core idea is to construct a model that captures the
underlying distribution of the data across all clients and uses
this information to guide the sampling process.

To minimize the upper bound proven in Theorem 1, we
adopt ∥ pcenter − pgoal ∥1=∥

∑
a∈a a · ri − pgoal ∥ as the

objective of optimization in this paper as follows:

min
a

∥
∑

a∈a
a · ri − pgoal ∥ . (2)

This is a convex optimisation problem that we can solve us-
ing the CVXPY solver library to find the sampling probability
for each client a. Based on the sampling probability of each
client, the central service uses a sampling method without
replacement to select the clients that participate in the current
round of federated learning. The sampling strategy is adaptive,

Algorithm 1: Data-aware Probabilistic Client Sam-
pling scheme (DPCS).

Input: initial global weight wf
0 , learning rate η,

number of local updates T , number of training
rounds R

Output: trained weights wf
mT

1 for round m = 0, · · · , R− 1 do
2 Sampling clients, get client S:
3 All clients upload ri;
4 Server computes sampling probability;
5 Sampling clients according to probability;

6 for each client c ∈ S, in parallel do
7 wc

mT = wf
mT ;

8 for k = 0, · · · , T − 1 do
9 Compute ∆c

mT,k = ∇Fc(w
c
mT,k, ξ

c
mT,k);

10 Local update: wc
mT,k+1 = wc

mT,k − η∆c
mT,k;

11 Upload to server: wc
(m+1))T = wc

mT,k+1;

12 At server:
13 Receive wc

(m+1))T , c ∈ S;
14 Let wf

(m+1)T = 1/|S|
∑

wc
(m+1))T ;

meaning it learns from the outcomes of previous rounds.
If certain clients consistently provide updates that lead to
model improvements, the model may adjust the probabilities
to reflect this.

IV. EXPERIMENT RESULTS

A. Experiment Setup

1) Parameters: In our experiments, the related parameters
are as follows: the number of the clients is 20, and the number
of local updates (T ) is 5. In local training, the parameters of
momentum, batch size and learning rate is 0.5, 64 and 0.03,
respectively. The parameter α in the Dirichlet distribution is
0.1. The sampling ratio of clients in each round is 0.3, and
the parameter of imbalance is 0.8.

2) Datasets: We adopt three different datasets as follows:
(1) MNIST [15]: It comprises a total of 70,000 images,
with 60,000 images for the training set and 10,000 images
for the test set. Each image is a 28 × 28 pixel grayscale
representation of a hand-written digit from zero to nine.
(2) Fashion MNIST (FMNIST) [16]: This is a collection
of 70,000 grayscale images, consisting of a training set of
60,000 examples and a testing set of 10,000 examples. Each
example is a 28x28 grayscale image, and there are ten classes
of labels. (3) CIFAR10 [17]: This is a widely used dataset
in the machine learning and computer vision communities,
consisting of 60,000 color images, each with a resolution
of 32x32 pixels. The dataset is divided into 50,000 training
samples and 10,000 testing samples.

Training and test sets are provided in these datasets.
We have done federated learning partitioning and imbalance



(a) MNIST (b) FMNIST

Fig. 3: Comparison of loss in training.

(a) MNIST (b) FMNIST

Fig. 4: Comparison of accuracy in training.

(a) Learning rate (b) Local updates (c) Sampling ratio (d) Imbalance

Fig. 5: Sensitivity analysis compared with random sampling strategy.

operations on the training set according to the Dirichlet
distribution.

3) Baseline Algorithms: The algorithms compared in our
experiments are as follows: (1) FedAvg [6]: The FedAvg
algorithm performs stochastic gradient descent (SGD) locally
on each client’s data and then aggregates the model updates
from all clients to form a global model. In each round, a subset
of clients is selected, typically via random sampling. (2)
FedProx [18]: In the FedProx algorithm, the server aggregates
the local updates from the clients by considering both the
magnitude of the updates and the proximity of the local
models to each other, encouraging consensus among clients.
(3) Powerd [8]: The algorithm is a client selection method
for federated learning that intentionally biases the choice of
clients towards those with higher local loss values.

B. Loss and Accuracy in Training

In the experimental study of federated learning training
loss, we have conducted a comparative analysis of four
distinct algorithms across two different datasets in 600 rounds.
As illustrated in Fig. 3, the training loss for all algorithms
decreases with an increase in the number of training rounds.
Notably, the proposed DPCS demonstrates a superior perfor-
mance by achieving lower loss values compared to existing
algorithms. This innovative strategy not only reduces loss
more effectively but also expedites the convergence process
during training.

In the experimental evaluation of federated learning on test
set accuracy, we have compared and tested four different
algorithms across two distinct datasets in 600 rounds. As
depicted in Fig. 4, there is a clear upward trend in the training
accuracy for all algorithms as the number of training rounds
increases. This indicates that as the models are further refined

over successive rounds, they become more adept at making
accurate predictions on unseen data. The proposed DPCS
leverages counter statistics to understand the distribution of
data, stands out by achieving higher accuracy rates than
the existing algorithms. This strategy demonstrates a more
effective utilization of the diverse data present across different
clients, leading to a model that generalizes better to new data.

C. Sensitivity Analyses

In our investigation into the parameter sensitivity of client
sampling strategies within federated learning, we conducted
an experiment comparing the proposed DPCS with the ran-
dom sampling approach used in FedAvg [6] in 200 rounds
with the dataset CIFAR10. The results are presented in Fig.
5. Specifically, Fig. 5a illustrates the impact of the learning
rate on the accuracy of both strategies. It is observed that
as the learning rate increases, the accuracy of both client
sampling strategies initially rises and then declines, with a
peak in accuracy around the learning rate of 0.03 to 0.04. This
suggests that there exists an optimal range for the learning rate
where the models are most effective in terms of accuracy.

Fig. 5b presents a comparison between DPCS and the
random sampling strategy in terms of their accuracy as local
updates vary. Local updates in federated learning refer to
the number of times each client performs gradient descent
(or a variant like mini-batch gradient descent) to update the
model parameters on their local device. The results indicate
a positive trend in accuracy for both strategies with an in-
crease in the number of local updates. The proposed counter-
based DPCS strategy consistently demonstrates superior per-
formance over the random sampling strategy.

As depicted in Fig. 5c, we examined the impact of varying
sampling ratios on the accuracy of the two client sampling



TABLE I: Comparison of algorithm accuracy

Algorithms MNIST FMNIST CIFAR10

FedAvg [6] 0.9541 / 0.9819 0.7074 / 0.8391 0.3717 / 0.5252
FedProx [18] 0.9532 / 0.9810 0.7083 / 0.8402 0.3743 / 0.5051
Powerd [8] 0.9580 / 0.9704 0.7453 / 0.85 0.3909 / 0.5411
DPCS 0.9654 / 0.9826 0.8074 / 0.8677 0.4745 / 0.6127

strategies. The sampling ratio in federated learning is a critical
parameter that defines the proportion of clients selected to
participate in each round of the training process relative to the
total number of available clients. Expressed as a percentage,
the sampling ratio determines how many clients out of the
entire network will contribute their local data for the model’s
training in a given round. The results reveal that the accuracy
for both strategies increases with the growth of the sampling
ratio, showing a notable upward trend. However, this trend
tends to stabilize when the sampling ratio exceeds 0.2. This
inflection point suggests that beyond a certain threshold,
increasing the sampling ratio does not significantly contribute
to further improvements in accuracy.

D. Accuracy of Algorithm

Table I provides a comparative analysis of the accuracy
performance of four distinct algorithms, across three different
datasets. The accuracy is measured at two training milestones,
specifically after 200 and 600 rounds, to evaluate the learning
progress and convergence of the algorithms. Each cell in
the table represents the accuracy achieved by the respective
algorithm on a particular dataset at the specified number of
training rounds, denoted as ’a / b’ where ’a’ corresponds to the
accuracy after 200 rounds and ’b’ after 600 rounds. On all the
three datasets, DPCS has achieved an average improvement
of 10.52% over FedAvg, 11.13% over FedProx, and 7.84%
overPowerd. This consistent outperformance indicates that
the DPCS algorithm is more effective in leveraging the data
distributed across the clients in a federated learning setting.

V. CONCLUSION

In conclusion, this paper has presented an innovative client
sampling scheme tailored for streaming federated learning
environments, where data is continuously and dynamically
received by clients in the form of streams. Recognizing the
challenges posed by the real-time fluctuations in local data
distributions and the inherent heterogeneity among clients,
our proposed solution incorporates a real-time monitoring
mechanism to assess the data distribution on each client. This
information is then utilized by the central server to implement
a probability-based client sampling strategy, ensuring that
each training round is informed by the most current and
representative data. Our experimental results have validated
the effectiveness of this approach, demonstrating that it sig-
nificantly improves the timeliness and overall performance of
federated learning models in the face of streaming data.
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