
1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3064324, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2020 1

Budgeted Unknown Worker Recruitment for
Heterogeneous Crowdsensing Using CMAB

Guoju Gao, He Huang, IEEE Member, Mingjun Xiao, IEEE Member,
Jie Wu, IEEE Fellow, Yu-E Sun, IEEE Member , and Yang Du

Abstract—Mobile crowdsensing, through which a requester can coordinate a crowd of workers to complete some sensing tasks, has
attracted significant attention recently. In this paper, we focus on the unknown worker recruitment problem in mobile crowdsensing,
where workers’ sensing qualities are unknown a priori. We consider the scenario of recruiting workers to complete some continuous
sensing tasks. The whole process is divided into multiple rounds. In each round, every task may be covered by more than one recruited
workers, but its completion quality only depends on these workers’ maximum sensing quality. Each recruited worker will incur a cost
and each task is attached a weight to indicate its importance. Our objective is to determine a recruiting strategy to maximize the total
weighted completion quality under a limited budget. We model such unknown worker recruitment process as a novel combinatorial
multi-armed bandit (CMAB) problem, and propose an unknown worker recruitment algorithm based on the modified upper confidence
bound (UCB). Moreover, we extend the problem to the case where the workers’ costs are also unknown and design the corresponding
algorithm. We analyze the regret bounds of the two proposed algorithms through rigorous proofs. In addition, we also study the
unknown worker recruitment problem with fairness constraints. Here, the term “fairness” means that the platform must guarantee a
minimum selection fraction for each registered worker, so that the platform can avoid the scenario where some workers are
over-recruited but some others might be under-recruited. For this problem, we devise a fairness-aware unknown worker recruitment
algorithm. Finally, we demonstrate the performance of the proposed algorithms through extensive simulations on real-world traces.

Index Terms—Heterogeneous crowdsensing, combinatorial multi-armed bandits, online learning, worker recruitment, fairness.
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1 INTRODUCTION
Mobile Crowdsensing (MC) is a newly-emerging paradigm
where a crowd of mobile users can be recruited to cooper-
atively complete some sensing tasks by using their carried
smart phones [2]–[12]. Owing to users’ mobility and the di-
versity of sensors embedded in their smart phones, MC can
deal with various sensing tasks distributed in a large-scale
area. Consequently, it has stimulated many applications that
a single user cannot cope with, such as traffic informa-
tion collection, noise pollution collection, water pollution
monitoring, and urban WiFi characterization, etc, which has
provided a great convenience for our daily life.

A typical MC system includes a platform residing on a
cloud. Through the platform, service requesters can pub-
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licize their sensing tasks and recruit mobile users (a.k.a.,
workers) to complete these tasks. Generally, due to the di-
verse smart phones (e.g., camera pixel, software version,
storage capacity, etc.) and worker behaviors (e.g., skill level,
engagement level, etc.), workers might result in different
sensing qualities, even for the same task. Thus, recruiting
workers to achieve higher completion qualities or lower
costs is one of the most important problems in MC. Much
effort has been devoted to designing worker recruitment or
task allocation algorithms in recent years [5], [8], [13]–[16].
However, most of the existing work assumes that workers’
sensing qualities are known in advance, which is not true
in practice. So far, only a few researches have investigated
the scenario where workers’ sensing qualities are unknown
a priori, i.e., the so-called unknown worker recruitment
problem. For example, [17] studies how to maximize the
task completion ratio while considering unknown workers’
reliability and the dynamic arrivals of tasks; [18] develops a
modified Thompson Sampling worker selection algorithm
to recruit some unknown workers; [19] investigates how
to select the most informative contributors with unknown
costs for budgeted crowdsensing; [20] designs a context-
aware hierarchical online learning algorithm for perfor-
mance maximization of MC. Nevertheless, these researches
either neglect the requester’s budget constraint or mainly
involve homogeneous MC models in which each task can be
completed by all workers, although their sensing qualities
might be different.

In this paper, we focus on the unknown worker recruit-
ment problems in heterogeneous MC systems. Consider
a scenario where a requester wants to recruit workers to
collect the traffic data (e.g., traffic photos or videos) at some
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Fig. 1: Illustration of the heterogeneous crowdsensing.

urban intersections for a period of time. The whole data
collection is divided into multiple rounds. In each round,
it consists of many location-related sensing tasks, each of
which corresponds to a traffic intersection, as shown in
Fig. 1. Here, each task is attached with a weight to indicate
its importance. Each worker can complete (a.k.a., cover)
one or more tasks. The tasks that each worker can deal
with might be different, i.e., the sets of tasks covered by
different workers are heterogeneous. All workers will tell
the platform the tasks they want to perform and the costs
they expect to charge. In order to increase the probability
of being recruited in each round, each worker can provide
multiple options at the beginning, where each option is
composed of different task combinations and costs, but at
most one option will be selected in each round. Moreover,
each worker has a sensing quality, following an unknown
distribution. Note that only when the workers complete
these tasks and return the sensing results, the platform or
requester is able to measure the sensing qualities for each
worker. Our objective is to design a worker recruitment
strategy that can maximize the total task completion quality
(i.e., the weighted sum of the completion qualities of all
tasks over all rounds) under a given budget.

In the above unknown worker recruitment problem of
heterogeneous MC systems, the main challenge lies in that
the platform does not know the workers’ sensing quali-
ties in advance, so it needs to learn their quality values
by tentatively recruiting workers to complete some tasks
and then selects the best group of workers according to
the learned results. Generally, the two processes are called
exploration and exploitation [21]–[23], respectively. We need
to balance the two processes so as to maximize the total task
completion quality under a given budget. To address this
challenge, we model the unknown worker recruitment pro-
cess as a novel Combinatorial Multi-Armed Bandit (CMAB)
problem, where each worker is seen as an arm, its sensing
quality is seen as the corresponding reward, and recruiting
workers is equivalent to pulling arms. Moreover, in order
to balance the achieved total completion quality and the
required number of total rounds under the budget, we let
a fixed number of arms (i.e., K) be pulled in each round.
Our CMAB model has two novel characteristics, which is
different from all the existing CMAB models. First, each
arm has multiple options, each of which corresponds to a
set of covered tasks and a cost. The platform needs to not
only select arms but also determine the option for each arm.
Second, it contains a budget-limited maximum weighted
coverage problem (i.e., maximizing the total task completion
quality, which involves a weighted sum function on some

maximum sensing qualities), making it very challenging.
As we know, Upper Confidence Bound (UCB) is a

widely-used arm-pulling strategy, designed for the tradi-
tional multi-armed bandit problem [21], [24]. It always
selects the arm that has the largest value on the estimated
reward and the upper bound of confidence to be pulled.
However, the simple application of the existing algorithms
cannot solve our problem efficiently. To that end, we extend
the UCB strategy by adding two extra designs. First, when
estimating the reward and computing the confidence for
each arm, we consider that workers’ sensing qualities might
be learned multiple times in one round, since each worker
has multiple options and covers multiple tasks. Second, we
adopt the greedy strategy to solve the budget-limited maxi-
mum weighted coverage problem, when determining which
arms should be pulled. Next, according to the extended
UCB arm-pulling strategy, we design an unknown worker
recruitment algorithm. Furthermore, we extend our problem
to the scenario where workers’ costs are also unknown and
devise another algorithm. In addition, we also study the
unknown worker recruitment problem by involving the fair-
ness constraint, which can guarantee a minimum selection
fraction for each registered worker. In such a way, the MC
system can avoid the scenario that some workers are over-
recruited but some others might be under-recruited. We
propose the fairness-aware unknown worker recruitment
algorithm for this problem.

Our major contributions are summarized as follows:

• We introduce the unknown worker recruitment prob-
lem for heterogeneous MC systems and turn it in-
to a novel K-arm CMAB problem. Unlike existing
researches, this CMAB model contains a budget-
limited maximum weighted coverage problem and
each arm has multiple candidate options.

• We propose an extended UCB based arm-pulling
strategy to solve our CMAB problem and design the
corresponding unknown worker recruitment online
algorithm. Moreover, we derive the regret bound
of the proposed algorithm, that is, O(NLK3 ln(B+
NLK2 ln(N2K2ML))), in which B, N , M , and L
denote the budget, the number of workers, the num-
ber of tasks, and the number of options for each
worker, respectively.

• We also study an extended case where both the
sensing qualities and the costs of workers are
unknown, and devise another algorithm with a
provable regret guarantee O(NLK3 ln(NMB +
N2K2ML ln(N2K2ML))).

• Moreover, we consider another case by involving
the fairness constraint of workers. That is, the plat-
form must guarantee a minimum selection fraction
for each registered worker under the given budget.
By introducing the virtual queue technique in the
CMAB problem, we design a fairness-aware un-
known worker recruitment algorithm.

• We conduct extensive experimental simulations on
real-world traces to evaluate the significant perfor-
mance of the three proposed algorithms, and the
results show that our policies outperform the com-
pared algorithm.
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The remainder of the paper is organized as follows. We
first introduce the crowdsensing model and the optimiza-
tion problem in Section 2. Next, we design an unknown
worker recruitment algorithm in Section 3. We then propose
another algorithm for the extended problem in Section 4.
In Section 5, we devise the fairness-aware unknown worker
recruitment algorithm to address the fairness constraint of
workers. In Section 6, we evaluate the performances of the
proposed algorithms. After reviewing the related work in
Section 7, we conclude the paper in Section 8.

2 SYSTEM MODEL & PROBLEM
In this section, we first introduce the system overview, and
then present the model. Finally, we formalize the problem.

2.1 System Overview
Consider an MC system, composed of a platform and a
crowd of workers. A requester wants to collect some traffic
data (e.g., photos, videos, etc.) for a period of time via the
MC system, but constrained by a budget. The whole data
collection consists of some location-related sensing tasks
and is also divided into multiple rounds, each of which
lasts a certain time interval. Each task here is attached
with a weight to indicate its importance. First, the requester
publicizes these tasks to all workers via the platform. Then,
each worker will tell the platform which sensing tasks it
is willing to perform. Moreover, the worker can provide
multiple options at first, each of which consists of a subset of
tasks that it can deal with and a cost that it wants to charge.
Next, the platform will recruit some workers to perform the
tasks round by round according to some strategy, until the
budget is exhausted. Fig. 2 illustrates the main procedures.

For generality, we assume that the MC system is het-
erogeneous, where each task can be completed by multiple
workers and each worker can also cover multiple tasks in
each round. Moreover, each worker has a sensing quality
when performing tasks. The quality value can be measured
by the platform after the worker completes some tasks and
submits the sensed results. For example, the platform may
take the photo clarity, photographing angle, the number
of photos, and some other factors into consideration when
determining workers’ sensing quality in terms of the photos.
If a task is completed by more than one workers, we will
only select the best sensing data and let the completion
quality of this task be the maximum sensing quality of
these workers. We assume that workers’ sensing qualities
follow some unknown distributions. The platform can learn
and estimate these distributions after the workers complete
some tasks. A profile is used to record the learned qualities
of each worker. In this paper, we consider that all workers
are truthful about their costs. This is reasonable because
some auction mechanisms [25]–[30] can be introduced to
solve the incentive issues.

2.2 Model
We let t denote the index of the round; let N =
{1, · · · , i, · · · , N} and M = {1, · · · , j, · · · ,M} denote N
workers and M sensing tasks in the system, respectively. We
use B to denote the requester’s budget. Since each task has
a different level of importance for the requester, we use wj

to denote the weight of the j-th task, and let
∑

j∈M wj=1.

1. Sensing Tasks

2. Options: Subset & Cost

Platform Unknown workers

DataWorker 

Profiles

Objective Function

& Strategy
Recruitment

Controller

Update
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Workers 

3. Budgeted Recruitment

4. Sensing Results

Fig. 2: Illustration of the main procedures in MC.

In our MC system, each worker i ∈ N would sub-
mit L (≥ 1) candidate options to the platform. We use
pli = ⟨Ml

i, c
l
i⟩ to denote the l-th (1≤ l≤L) option submitted

by the worker i, where Ml
i ⊆M means the subset of tasks

he can perform and cli denotes the corresponding cost. Note
that for each worker, at most one option can be selected in
each round. Moreover, we suppose c1i ≤ c2i ≤ · · · ≤ cLi for
∀i∈N . In reality, the corresponding cost cli is highly related
to the number of tasks, i.e., the value of |Ml

i|. We consider
that the cost is proportional to the function of the number of
tasks for simplicity. That is, we let cli = εi · f(|Ml

i|), where
f(·), as a monotonically increasing function (i.e., performing
more tasks must result in a higher cost), is given in our
model. The values of εi (called cost parameter) for different
workers are heterogeneous. For example, a worker carrying
the smart phone with the advanced configurations (e.g.,
high-resolution camera, 5G network, etc.) generally has a
large cost parameter. Moreover, εi is assumed to be known
a priori here. In this paper, we will also consider an extended
case where εi is unknown. Note that the value of cli is
normalized to (0, 1]. We let Pi={pli|1≤ l≤L} denote the set
of options submitted by worker i for simplicity, and further
use P=∪i∈NPi to denote the set of all options.

On the other hand, we use a normalized nonnegative
random variable qti,j ∈(0, 1] to denote the sensing quality of
the worker i completing the task j∈Ml

i in the t-th round. In
fact, for a particular worker (e.g., i), the values of {qti,j |j ∈
Ml

i, ∀t ≥ 1} follow an unknown independent and identi-
cally distribution with an unknown (unique) expectation qi.
This is because the sensing quality is mainly determined
by the configurations of the workers’ smart phones (e.g.,
camera pixel, software version, storage capacity, etc.) and
their sensing behaviors (e.g., skill level, engagement level,
worker habit, etc.). In other words, the options submitted
by the same worker share the same quality distribution. If
the l-th option submitted by the worker i (i.e., pli) is selected
in round t, i must perform all tasks in Ml

i, and the quality
values {qti,j |j ∈ Ml

i} will be revealed. This indicates that
the expected quality (i.e., qi) would be learned |Ml

i| times
by the platform. Moreover, due to the selection constraint
(i.e., at most one of the worker’s options can be selected in
each round) and the shared quality distribution among the
options submitted by a worker, one option cannot be simply
seen as a separate worker. These factors make our problem
differ from the traditional CMAB model [31], [32].

2.3 Problem
For the above heterogeneous MC system, we focus on re-
cruiting K workers in each round so that the total weighted
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completion quality of all the tasks over all rounds can be
maximized under a given budget. Here, the value of K has
a vital impact on the performance of the MC system. We will
verify this in the simulation section. We let Pt ⊂P denote
the selected options in round t, in which pli ∈ Pt means
that the l-th option of worker i will be selected in round
t. Since at most one option for a worker can be selected in
each round, we have

∑L
l=1 I{pli∈Pt}≤1 for ∀i∈N , where

I{true}=1 and I{false}=0. Moreover, we define the final
completion quality of a task according to Pt in round t,
denoted by uj(Pt),

uj(Pt) =

{
0; j /∈ (∪pli∈PtMl

i),

max{qti,j | pli ∈ Pt}; j ∈ (∪pli∈PtMl
i).

(1)

We further use u(Pt) to denote the total achieved
weighted completion quality of all tasks based on Pt in
round t, i.e.,

u(Pt)=
∑

j∈M(wj · uj(Pt)). (2)

Our objective is to determine {P1, · · · ,Pt, · · · } in each
round, such that the total expected weighted completion
quality of all tasks is maximized under the budget constrain-
t. We formulate our optimization problem as follows:

Maximize : E
[∑

t≥1 u(Pt)
]

(3)

Subject to :
∑

t≥1

∑
pl
i∈Pt cli ≤ B (4)

|Pt| = K for ∀t > 1 (5)∑L
l=1 I{pli∈Pt} ≤ 1 (6)

Eqs. (4) and (5) represent the budget and quantity con-
straints, while Eq. (6) indicates that at most one option of
each worker can be selected in each round. Additionally, we
summarize the commonly used notations throughout the
paper in Table 1.

3 ALGORITHM DESIGN
We first introduce the basic solution and then present the
detailed algorithm. After that, we analyze the performance
guarantee of the proposed algorithm.

3.1 Basic Solution
To address our unknown worker recruitment issue for the
heterogeneous MC system under a given budget, we model
it as a budgeted-limited K-arm CMAB problem, where each
worker is seen as an arm, sensing quality is seen as the
corresponding reward, and recruiting workers is treated as
pulling arms. In this model, K workers are recruited in each
round and each recruited worker’s sensing quality would be
learned multiple times in a round. We first extend the Upper
Confidence Bound (UCB) to denote the learned quality
values (called UCB-based quality). Then, we propose a UCB-
based quality function by taking the maximum weighted
coverage problem into consideration. Based on this, we
adopt a greedy strategy to recruit K unknown workers in
each round, that is, we always select the worker with the
maximum ratio of the marginal UCB-based quality function
value and recruitment cost. We introduce our detailed solu-
tion as follows.

When an option of a worker is selected in round t (e.g.,
pli ∈ Pt), the worker i must perform all sensing tasks in Ml

i.

TABLE 1: Description of commonly-used notations.

Variable Description
N , M the sets of workers and sensing tasks.
i, j, t the indexes for workers, tasks, and rounds.
K the number of recruited workers in each round.
wj the weight of the j-th task for the requester.
εi the cost parameter of i and cli=εif(|Ml

i|).
pli the l-th option submitted by the worker i.
P the sets of all options.
Pt the set of selected options in round t.
L the number of options that a worker submits.
B the budget given by the requester.
qti,j the quality value of i conducting j in round t.
qi(t) the average quality of i until the t-th round.
q̂i(t) the UCB-based quality value of worker i.
qi the mean of the distribution {qti,j |t≥1, j∈Mi}.
ni(t) the number of i being learned until round t.
nl
i(t) the number of pli being selected until round t.

E[·] the expected function.
ηi the required minimum fraction of rounds of i.
τ(B) the total rounds under the given budget B.
Vi(t) the virtual queue length of Vi in round t.
ϱ the tradeoff parameter for the fairness.

In other words, the number of times of i being learned by
the platform in round t is actually |Ml

i|. Based on this, we
first introduce nl

i(t) and ni(t) for i∈N , 1≤ l≤L to record
the number of times that pli is selected and the number of
times that i is learned. That is,

nl
i(t) =

{
nl
i(t− 1) + 1; pli ∈ Pt,

nl
i(t− 1); pli /∈ Pt.

(7)

ni(t) =
∑L

l=1(n
l
i(t) · |Ml

i|) for ∀i ∈ N . (8)

Next, we introduce the notation qi(t) to record the aver-
age quality value (learned) for i until the t-th round. After
Pt is determined, qi(t) will be updated as follows:

qi(t)=


qi(t−1)ni(t−1)+

∑
j∈Ml

i
qti,j

ni(t−1) + |Ml
i|

; pli∈Pt, 1≤ l≤L,

qi(t−1); pli /∈Pt, 1≤ l≤L.

(9)

In order to balance the relationship between exploitation
and exploration, we extend the traditional UCB to propose
the concept of UCB-based sensing quality. Concretely speak-
ing, we use q̂i(t) to denote the UCB-based quality value:

q̂i(t)=qi(t)+Qt,i; Qt,i=

√
(K+1) ln(

∑
i′∈N ni′(t))

ni(t)
. (10)

In this paper, the values of nl
i(t), ni(t), qi(t) and q̂i(t)

make up the worker profiles in the platform. Next, we intro-
duce the UCB-based quality function which considers the
maximum weighted coverage problem in our MC system.
When a task is covered by multiple workers, we let the
maximum sensing quality value of these workers denote
the final result of this task in a round. In order to determine
the solution Pt in round t, we would refer to the UCB-based
quality values revealed in the first t−1 rounds, i.e., the values
of {q̂i(t− 1)|i ∈ N}. More specifically, we let u[q̂i(t−1)](Pt)
denote the UCB-based quality function for the solution Pt

according to {q̂i(t−1)|i ∈ N}, that is,

u[q̂i(t−1)](Pt)=
∑

j∈M
wj ·max{q̂i(t−1)·I{j∈Ml

i, p
l
i∈Pt}}.(11)
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Algorithm 1 The UWR Algorithm

Require:N ,M,P={pli|i∈N , 1≤ l≤L}, {wj |j∈M}, B, K
Ensure: Pt⊆P for ∀t≥1, uB and τ(B).

1: Initialization: t=1, recruit all workers, i.e., P1={p1i |i∈
N}, and obtain the quality q1i,j for p1i ∈P1.

2: Let uB =u(P1), Bt=B −
∑

p1
i∈P1 c1i , ni(t)= |M1

i | and
qi(t)=(

∑
j∈M1

i
qti,j)/|M1

i | for ∀i∈N ;
3: while 1 do
4: t ⇐ t+ 1, Pt = ϕ;
5: while |Pt| < K do
6: Let Pt′ = {pl′i | for ∀pli ∈ Pt};

7: Get pli= argmax
pl′
i′∈(P\Pt′ )

u[q̂i(t−1)](Pt∪{pl′
i′})−u[q̂i(t−1)](Pt)

cl
′
i′

;

8: Add pli into Pt, i.e., Pt = Pt + {pli};
9: if

∑
pl
i∈Pt cli ≥ Bt−1 then

10: return Terminate and output uB and τ(B)= t;
11: Obtain the qualities qti,j for ∀pli∈Pt;
12: Update worker profiles: nl

i(t), ni(t), qi(t) and q̂i(t);
13: Bt = Bt−1 −

∑
pl
i∈Pt cli, and uB=uB+u(Pt);

Based on this, we introduce the greedy recruitment strat-
egy as follows. In the initialization period, the platform will
select the first option of each worker (with the minimum
cost) to explore the quality values, that is, P1= {p1i |i∈N}.
Then, nl

i(t), ni(t) and qi(t) will be initialized. In any round
t > 1, the set Pt is first initialized to be empty. Then, when
|Pt|<K , we find the element in P\Pt which can increase
the UCB-based quality function u[q̂i(t−1)](Pt) most quickly
with unit cost. That is to say, we let the ratio of the marginal
value of the function u[q̂i(t−1)](Pt) and cost be the selection
criteria, which can be described as follows:

pli = argmax
pl′
i′∈(P\Pt)

u[q̂i(t−1)](Pt ∪ {pl′i′})−u[q̂i(t−1)](Pt)

cl
′
i′

. (12)

Note that at most one option of a worker can be selected
in each round. Thus, if pli∈Pt, pl

′

i for 1≤ l′≤L, l′ ̸= l will not
be considered in this round. After K workers are recruited
in round t (i.e., |Pt| = K), each worker i (here pli ∈ Pt) is
required to perform all tasks in Ml

i. In this paper, we use
the concepts of worker and option exchangeably when no
ambiguity exists. Then, the specific completion quality (i.e.,
{qti,j |j ∈ Ml

i}) is obtained by the platform. Based on this
information, the platform will update the worker profiles,
i.e., the values of nl

i(t), ni(t), qi(t) and q̂i(t), according
to Eq. (7), Eq. (8), and Eq. (9), respectively. At the same
time, the total achieved weighted quality, i.e., the value
of uB = u(P1) + · · · + u(Pt), is updated. Based on the
remaining budget, the platform decides whether to continue
the recruitment process.

3.2 Detailed Algorithm
According to the above solution, we propose an Unknown
Worker Recruitment (UWR) algorithm, as shown in Alg. 1.
In steps 1-2, the platform will select the first options from
all workers with the minimum cost to initialize several
parameters, such as ni(t) and qi(t). In steps 3-8, the platform
selects K workers according to the UCB-based qualities
and the proposed selection criteria, i.e., Eq. (12). To meet
the constraint that at most one option of a worker can be

selected in a round, we let Pt′ denote the set of not satis-
fying options, in step 6. Then, the option with the largest
ratio of the marginal UCB-based quality function value and
cost is selected from the set P\Pt′ , in step 7. In steps 9-
10, the platform decides whether to terminate the algorithm
based on the remaining budget. If the remaining budget is
enough, the recruited workers in this round will perform
the corresponding tasks, and send the sensing results to
the platform in step 11. The platform updates the worker
profiles in step 12. The remaining budget and total achieved
weighted quality are updated in step 13. Moreover, the
computation complexity of the algorithm is dominated by
step 7, which is denoted by O(NMLK).

3.3 Performance Analysis
Assume that the platform knows the quality distributions
of all workers, i.e., qi for ∀i∈N . In such a case, the worker
recruitment problem is actually a special 0-1 knapsack prob-
lem in terms of all rounds, which is NP-hard [33]. There is
no polynomial-time optimal algorithm for this problem. For
simplicity of following descriptions, we let P∗ ⊂P denote
the optimal solution. Here, by recruiting the workers with
high ratios of marginal weighted quality value and cost
in each round, the platform can output an approximately
optimal solution, which is denoted by P⋆ ⊂ P . According
to the existing work [33], [34], we get that the ratio of the
approximately optimal solution and the optimal one, denot-
ed as α, is greater than 1/2. That is, α=

∑
t≥1 u[qi]

(P⋆)∑
t≥1 u[qi]

(P∗) ≥
1
2 .

Note that in this paper we always let ∗ and ⋆ denote the
corresponding identifications of the optimal and α-optimal
workers, respectively. Here, u[qi](Pt) is defined as follows:

u[qi](Pt)=
∑

j∈M wj ·max{qi ·I{j∈Ml
i, p

l
i∈Pt}},

According to this, directly comparing our unknown
worker recruitment results with the optimal solution is not
fair. Therefore, we introduce the concept of α-approximation
regret [19], [31] of an algorithm A under the budget B, that
is, the difference for the total completion qualities achieved
by the approximately optimal solution and our solution.
More specifically, we let RA

α (B) denote the α-approximation
regret and have the following equation:

RA
α (B) = α ·

∑
t≥1 u[qi](P∗)− E

[∑
t≥1 u(Pt)

]
≤

∑
t≥1 u[qi](P⋆)− E

[∑
t≥1 u(Pt)

]
. (13)

At the same time, we define the smallest/largest possi-
ble difference of the quality values among non-α-optimal
workers P ′ ̸=P⋆, and the minimum/maximum recruitment
cost values, i.e.,

∆min=
u[qi]

(P⋆)∑
cl
i
∈P⋆ cli

−max{P ′̸=P⋆}
u[qi]

(P′)∑
cl
i
∈P′ c

l
i
; (14)

∆max=
u[qi]

(P⋆)∑
cl
i
∈P⋆ cli

−min{P ′̸=P⋆}
u[qi]

(P′)∑
cl
i
∈P′ c

l
i
; (15)

∇max=u[qi](P⋆)−min{P ′̸=P⋆} u[qi](P ′); (16)

0<cmin=min{cli}; cmax=max{cli}≤1. (17)

Then, we introduce Cl
i(t) as the counters after the ini-

tialization period, which is updated as follows. In each
round, one of the following cases must happen: 1) the α-
optimal set of workers is selected; 2) a non-α-optimal set of
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workers is recruited. In the former, Cl
i(t) will not change;

in the latter, we denote the non-α-optimal set of workers
as Pt. Then, there must exist one option pli ∈ Pt such that
pli=argminpl′

i′∈Pt Cl′

i′ (t−1), and we let Cl
i(t)=Cl

i(t−1)+1.
Here, if there are multiple such options, we arbitrarily
choose one. Since exactly one element in Cl

i(t) is increased
by 1 when a non-α-optimal set of workers is selected, the
total number of non-α-optimal sets of workers is equal to
the sum of the values in {Cl

i(t)|i ∈ N , 1 ≤ l ≤ L}. Before
analyzing the α-approximation regret of our algorithm,
we first introduce two lemmas to analyze the bounds of
the expected counters E[Cl

i(τ(B))] and the stopping round
τ(B), respectively, which are shown as follows.

Lemma 1. We have E[Cl
i(τ(B))] ≤ φ1ln τ(B)+φ2 for any

pli ∈P , where φ1 and φ2 are two constants given below.
More specifically, we have

E[Cl
i(τ(B))]≤ 4K2(K+1)

(∆mincmin)2
ln(NMτ(B))+1+Kπ2

3 .(18)

Proof: Let I li(t) denote the indicator that Cl
i(t) is incre-

mented at round t. Then, we have

Cl
i(τ)=

τ∑
t=2

I{I li(t)=1}=λ+
τ∑

t=2
I{I li(t)=1, Cl

i(t)≥λ}

=λ+
τ∑

t=2
I{u[q̂i(t−1)/cli](P

t)≥u[q̂i(t−1)/cli](P
⋆), Cl

i(t)≥λ}

≤λ+
τ∑

t=1
I{u[q̂i(t)/cli]

(Pt+1)≥u[q̂i(t)/cli]
(P⋆), Cl

i(t)≥λ}

=λ+
τ∑

t=1
I{

∑
pl
i∈Pt+1

ξli(t+1) q̂i(t)
cli

≥
∑

pl
i∈P⋆

ξli(⋆)
q̂i(t)

cli
, Cl

i(t)≥λ}, (19)

where ξli(t+1) means the product of the effective number of
sensing tasks that worker pli ∈Pt+1 can contribute and the
total weight of these effective tasks, that is,

ξli(t+ 1)=
∑

j∈Ml
i

I
{
pli=argmax

pl′
i′∈Pt+1

{q̂i′,j(t+1)}
}
· wj .

Obviously, we have ξli(t+1)≤
∑

j∈Ml
i
wj ≤ 1.

Then, we continue Eq. (19) and get

Cl
i(τ)≤λ+

τ∑
t=1

I
{

max
λ≤ns(1)≤···≤ns(K)≤t

K∑
i=1

ξli(t+1)

cli
· q̂s(i)(t)

≥ min
1≤ns⋆(1)≤···≤ns⋆(K)≤t

K∑
i=1

ξli(⋆)

cl
i⋆

· q̂s⋆(i)(t)
}

≤ λ+
τ∑

t=1

t∑
ns(1)=λ

· · ·
t∑

ns(K)=λ

t∑
ns⋆(1)=1

· · ·
t∑

ns⋆(K)=1

I
{ K∑

i=1

ξli(t+1)

cli
· q̂s(i)(t) ≥

K∑
i=1

ξli(⋆)

cl
i⋆

· q̂s⋆(i)(t)
}
, (20)

where s(i) and s⋆(i) mean the i-th element in Pt+1 and P⋆,
respectively. Here, q̂s⋆(i)(t) = qs⋆(i)(t) + Qt,s⋆(i), in which

Qt,i =
√

(K+1) ln(
∑

i′∈N ni′ (t))

ni(t)
.

Next, we prove the probability of the following event:
K∑
i=1

ξli(t+1)

cli
(qs(i)(t)+Qt,s(i))≥

K∑
i=1

ξli(⋆)

cl
i⋆

(qs⋆(i)(t)+Qt,s⋆(i)),

which means that at least one of the following must hold:∑K
i=1

ξli(⋆)

cl
i⋆

qs⋆(i)(t) ≤
∑K

i=1
ξli(⋆)

cl
i⋆

(qs⋆(i) −Qt,s⋆(i)); (21)∑K
i=1

ξli(t+1)

cli
qs(i)(t) ≥

∑K
i=1

ξli(t+1)

cli
(qs(i) +Qt,s(i)); (22)∑K

i=1
ξli(⋆)

cl
i⋆

qs⋆(i) <
∑K

i=1
ξli(t+1)

cli
(qs(i) + 2Qt,s(i)). (23)

Now, we prove the upper bound for Eq. (21), and get

P
{∑K

i=1
ξli(⋆)

cl
i⋆

qs⋆(i)(t)≤
∑K

i=1
ξli(⋆)

cl
i⋆

(qs⋆(i)−Qt,s⋆(i))
}

≤
∑K

i=1 P
{
qs⋆(i)(t)≤qs⋆(i)−Qt,s⋆(i)

}
. (24)

After applying the Chernoff-Hoeffding bound intro-
duced in the existing work [24], [35], we have

P
{
qs⋆(i)(t)≤qs⋆(i)−Qt,s⋆(i)

}
≤ e−2ns⋆(i)(t)((K+1) ln(

∑
i′∈N ns⋆(i′)(t))/ns⋆(i)(t))

≤ e−2(K+1) ln(N |M|mint)≤ t−2(K+1),
where |M|min=min{|Ml

i| for ∀i∈N and 1≤ l≤L}.
We continue Eq. (24) and get the upper bound, which is

presented as follows:
P{Eq. (24)} ≤ K · t−2(K+1).

Similarly, we can derive the upper bound for Eq. (22),
which is the same as that of the first case. Moreover, if both
Eq. (21) and Eq. (22) are false, we can easily infer that Eq.
(23) is true. Now, we pick λ such that Eq. (23) becomes
impossible.

K∑
i=1

ξli(⋆)

cl
i⋆

qs⋆(i)−
K∑
i=1

ξli(t+1)

cli
qs(i)−2

K∑
i=1

ξli(t+1)

cli
Qt,s(i)

≥ ∆Pt+1−K
∑

j∈M wj

cmin

√
4(K+1) ln(

∑
i′∈N ns(i′)(t))

ns(i)(t)

≥ ∆Pt+1− K
cmin

√
4(K+1) ln(NMτ(B))

λ ≥ 0. (25)

Therefore, Eq. (25) always holds, when λ satisfies:

λ≥ 4(K+1)K2

(∆mincmin)2
ln(NMτ(B)).

Then, we continue Eq. (20) and further have

Cl
i(τ)≤⌈ 4(K+1)K2

(∆mincmin)2
ln(NMτ(B))⌉+

∑τ
t=1 2Kt−2

≤ 4(K+1)K2

(∆mincmin)2
ln(NMτ(B))+1+Kπ2

3 . (26)

Lemma 1 holds. �
Based on this, we get that the total number of non-

α-optimal sets is at most O(NLK3 ln τ(B)). Additionally,
since the recruitment cost in each round is uncertain, the
stopping round is indeterminate. We let τ(B) denote the
stopping round of Alg. 1 under the budget B. Then, we
introduce another lemma to prove the bound on τ(B).

Lemma 2. The stopping round of our algorithm τ(B) un-
der the budget B is bounded as follows (here c⋆ =∑

pl
i∈P⋆ cli)

B

c⋆
−φ3−1−φ1φ3

φ2
ln(

2B

c⋆
+ φ4) ≤ τ(B) ≤ 2B

c⋆
+ φ4. (27)

Proof: Due to the inequality lnϕ < ϕ−1 for ∀ϕ > 0, we
first have the following expression:

ln τ(B) ≤ Kcmin

2NLφ1
τ(B) + ln(

2NLφ1

Kcmin
)− 1, (28)

where Kcmin indicates the minimum cost in each round.
Next, we derive the stopping round of the α-optimal

algorithm: τ⋆(B)=⌊ B
c⋆ ⌋, in which c⋆=

∑
pl
i∈P⋆ cli. Then, we

have B/c⋆ − 1 ≤ τ⋆(B)≤B/c⋆.
In order to derive the upper bound on τ(B), we have

τ(B)≤ τ⋆(B)+τ
(∑

pl
i /∈P⋆ nl

i(τ(B))cmax

)
≤τ⋆(B)+NL/(Kcmin)E[Cl

i(τ(B))]. (29)
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Before proving the lower bound on τ(B), we first let 0≤
B⋆ ≤B denote the budget spent on the α-optimal options
P⋆, while B− =B−B⋆ represents the budget spent on the
non-α-optimal options. Then, we have

τ(B)=τ(B⋆+B−)≥ τ(B⋆)≥ τ⋆(B⋆)

≥τ⋆(B−
∑

pl
i /∈P⋆ nl

i(τ(B))cmax)≥ B−NLE[Cl
i(τ(B))]

c⋆ −1. (30)

According to Eq. (28) and Eq. (29), we further get

τ(B)≤τ⋆(B)+ NL
Kcmin

(
φ1(

Kcmin

2NLφ1
τ(B)+ln( 2NLφ1

Kcmin
)−1)+φ2

)
≤ B

c⋆ +
τ(B)
2 + NL

Kcmin
(φ1 ln(

2NLφ1

Kcmin
)−φ1+φ2)

≤ 2B
c⋆ + 2NL

Kcmin
(φ1 ln(

2NLφ1

Kcmin
)−φ1+φ2)=

2B
c⋆ +φ4.

By substituting the above results into Eq. 30, we get the
lower bound on τ(B) as follows.

τ(B)≥B/c⋆−NLφ2/c
⋆−1−NLφ1 ln(τ(B))/c⋆

≥B/c⋆−NLφ2/c
⋆−1−NLφ1 ln(2B/c⋆ + φ4)/c

⋆

=B/c⋆ − φ3 − 1− ln(2B/c⋆ + φ4)φ1φ3/φ2

Thus, the lemma holds. �
Based on Lemmas 1 and 2, we prove the regret bound in

the following theorem.
Theorem 1. The worst α-approximate regret of Alg. 1,

denoted by RA1
α (B), is bounded as O(NLK3 ln(B +

NLK2 ln(MLN2K2))), that is,
RA1

α (B)≤(NL∇maxφ1+ u⋆φ1φ3/φ2)(ln(
2B
c⋆ +φ4))+φ5,

where



u⋆=u[qi](P
⋆), c⋆=

∑
pli∈P⋆

cli

φ1=
4(K+1)K2

(∆mincmin)2
, φ2=ln(NM)φ1+1+

Kπ2

3

φ3=
NLφ2

c⋆
, φ4=

2NL

Kcmin
(φ1 ln(

2NLφ1

Kcmin
)−φ1+φ2)

φ5=NL∇max + u⋆(1/c⋆ + φ3 + 1)

Proof: According to Lemmas 1 and 2, we get that the α-
approximate regret of our algorithm satisfies

RA1
α (B) ≤

∑τ⋆(B)
t=1 u[qi](P⋆)− E[

∑τ(B)
t=1 u[qi](Pt)]

≤ (B+1)u⋆

c⋆ − τ(B)u⋆+τ(B)u⋆−E[
∑τ(B)

t=1 u[qi](Pt)]

≤ u⋆(B+1
c⋆ −τ(B))+

∑
i∈N

∑L
l=1 C

l
i(τ(B))∇max

≤ u⋆(B+1
c⋆ −( B

c⋆ − φ3 − 1− φ1φ3

φ2
ln( 2Bc⋆ + φ4))

+NL∇max(φ1 ln(
2B
c⋆ + φ4)+φ2)

= (NL∇maxφ1+ u⋆φ1φ3/φ2)(ln(
2B
c⋆ +φ4))+φ5

= O
(
NLK3 ln(B+NLK2 ln(MLN2K2))

)
.

φ1, φ2, φ3 and φ4 are constants. Theorem 1 holds. �

4 UNKNOWN QUALITY AND COST
In this section, we consider a more general case where the
cost of each worker is unknown too. We first introduce the
extended problem and further present the basic solution.
Then, we design an Extended Unknown Worker Recruit-
ment (EUWR) algorithm and analyze the corresponding
performance guarantee.

4.1 Problem Description
We consider an extended case where both workers’ sensing
qualities and costs are unknown a priori. Note that the cost
of pli is determined by cli=εif(|Ml

i|) where f(·) is given in

Algorithm 2 The EUWR Algorithm

Require: N , M, P={pli=⟨Mi⟩}, {wj |j∈M}, B, K, f(·)
Ensure: Pt⊆P for ∀t≥1, uB and τ(B).

1: Initialization: t=1, let P1 = {p1i |i∈N} and obtain the
quality q1i,j and cost parameter ε1i for p1i ∈P1.

2: Let uB =u(P1), Bt =B−
∑

p1
i∈P1 ε1i f(|M1

i |), ni(t)= 1,
qi(t)=(

∑
j∈M1

i
qti,j)/|M1

i | and εi(t)=ε1i for ∀i∈N ;
3: while 1 do
4: t ⇐ t+ 1, Pt = ϕ;
5: while |Pt| < K do
6: Let Pt′ = {pl′i | for ∀pli ∈ Pt};
7: pli= argmax

pl′
i′∈(P\Pt′ )

u[r̂ l
i (t−1)](Pt ∪{pl′i′})−u[r̂ l

i (t−1)](Pt);

8: Add pli into Pt, i.e., Pt = Pt + {pli};
9: Each recruited worker i where pli∈Pt obtains εti;

10: if
∑

pl
i∈Pt εtif(|Ml

i|) ≥ Bt−1 then
11: return Terminate and output uB and τ(B)= t;
12: Perform tasks and obtain the qualities qti,j for ∀pli∈Pt;
13: Update nl

i(t), ni(t), mi(t), qi(t), εi(t), and r̂ l
i (t);

14: Bt = Bt−1−
∑

pl
i∈Pt εtif(|Ml

i|), and uB=uB+u(Pt);

our MC system. The unknown cost here means that the cost
parameter εi is unknown. In each round, when an option
of a worker is selected, the worker would estimate the cost
parameter according to the current state including battery,
network, environment factors, etc. We use εti to denote the
cost parameter in round t. Here, we let 0 < εmin ≤ εti ≤ 1.
Note that the values of {ε1i , · · · , εti} follow an independent
and identically distribution with the unknown expectation
εi. After receiving the cost parameter εti in round t, the
platform calculates the recruitment cost for ∀pli ∈ Pt based
on the formula cli= εtif(|Ml

i|). Here, all values of cli will be
normalized into (0, 1]. When the remaining budget cannot
cover the total cost of Pt in round t, the recruitment al-
gorithm will terminate; else, the recruited workers perform
the corresponding tasks and return the sensing quality to
the platform. The platform then updates the parameters in
the worker profiles. In the extended problem, the platform
needs to learn the quality qi and parameter εi simultaneous-
ly, and meanwhile to maximize the total weighted qualities
of all tasks under a given budget. So it is more challenging
to design a suitable recruitment strategy.

4.2 Basic Solution
Like before, we still let nl

i(t) denote the number of pli
being selected. However, when pli is selected in a round,
the parameter εi is actually learned only one time. Thus,
we define another notation to record the total number of
cost parameter εi being learned, denoted by mi(t), i.e.,
mi(t) =

∑L
l=1 n

l
i(t). Then, the average cost parameter up

to round t, denoted by εi(t), is calculated as follows:

εi(t) =


εi(t−1) ·mi(t−1) + εti

mi(t−1) + 1
; for ∀1≤ l≤L, pli∈Pt,

εi(t−1); for ∀1≤ l≤L, pli /∈ Pt.

(31)

Similar to the UCB-based expression q̂i(t)=qi(t) +Qt,i,
we also define another UCB-based cost value, which is
denoted by Ct,i=

√
(K+1) ln t/mi(t).
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Before determining Pt, we can use εi(t−1)f(|Ml
i|) to

denote the recruitment cost of pli, and the values of εi(t−
1)f(|Ml

i|) are finally normalized to (0, 1]. That is, we have
0 < cmin ≤ εi(t−1)f(|Ml

i|) ≤ 1. Then, we design another
selection criteria, denoted by r̂i(t), which takes the obtained
quality and cost values into consideration simultaneously.
More specifically, we define

r̂ l
i (t) = f l

i ·
qi(t−1)

εi(t−1)
+ fmax · εmin ·Qt,i + Ct,i

ε2min

, (32)

where f l
i = |Ml

i|/f(|Ml
i|) and fmax = maxMl

i
f l
i .

Next, the platform focuses on determining Pt in round
t by referring to the value of r̂ l

i (t). More specifically, in the
initialization period, the platform will select the first options
of all workers to explore the quality and cost values, that is,
P1= {p1i |i∈N}. Then, qi(t) and εi(t) will be initialized. In
any round t > 1, the set Pt is first initialized to be empty.
When |Pt| < K, we find the element in P\Pt which can
increase the function u[r̂ l

i (t−1)](Pt) most quickly, that is,

pli = argmax
pl′
i′∈(P\Pt)

u[r̂ l
i (t−1)](Pt ∪ {pl

′

i′})−u[r̂ l
i (t−1)](Pt). (33)

Here, u[r̂ l
i (t−1)](Pt) means the total UCB-based ratios of

quality and cost for Pt, i.e.,
u[r̂ l

i (t−1)](Pt)=
∑

j∈M
wj ·max{r̂ l

i (t−1)·I{j∈Ml
i, p

l
i∈Pt}}. (34)

Also, the constraint that at most one option from a worker
can be selected in each round still exists. Based on the
basic solution, we propose an Extended Unknown Worker
Recruitment (EUWR) algorithm, as shown in Alg. 2. The
main procedures are similar to that of Alg. 1. The key
difference is that the selection criteria q̂i(t−1) is replaced
by r̂i(t−1) in the extended algorithm. Also, each recruited
worker in round t would first estimate his cost parameter εti
to determine his recruitment cost in step 9. Note that steps 6-
7 cooperate to remove the constraint that at most one option
from a worker can be selected in each round. In addition,
the computational overhead of Alg. 2 is still O(NMLK).

4.3 Performance Analysis
Before analyzing the regret guarantee of Alg. 2, we define
the smallest/largest possible difference of the ratio values
among non-α-optimal set of workers P ′ ̸=P⋆, that is,

∆rmin=u[rli]
(P⋆)−max{P ′̸=P⋆} u[rli]

(P ′), (35)

∆rmax=u[rli]
(P⋆)−min{P′,P ′̸=P⋆} u[rli]

(P ′). (36)

where rli = |Ml
i|qi/(εif(|Ml

i|)). The calculation of u[rli]
(Pt)

is similar to Eq. (34) in which r̂ l
i (t−1) is replaced by rli.

Then, we have the following theorem.
Theorem 2. The worst α-approximate regret of Alg. 2, de-

noted by RA2
α (B), is bounded as O(NLK3 ln(NMB+

N2K2ML ln(N2K2ML))). More precisely, we have:

RA2
α (B)≤(NLφ6)(

u⋆

c⋆ +∆rmax) ln(NM( 2Bc⋆ +2φ7))+φ8,

where



φ6=(K+1)
(2Kfmax(εmin + 1)

∆rminε2min

)2

φ7=
NL

Kcmin
(φ6 ln(

2N2MLφ6

Kcmin
)−φ6+1+

2Kπ2

3
)

φ8=
u⋆(1 + c⋆ +NL(1 + 2Kπ2

3
))

c⋆

+NL∆rmax(1 +
2Kπ2

3
)

Proof: The proof is similar to that of Theorem 1. When the
quality and cost distributions are known in advance, we can
get the α-optimal solution P⋆ by selecting the workers with
high ratios of marginal weighted quality and cost in each
round. We also let Cl

i(t), τ(B) and I li(t) denote the counters,
stopping round, and the indicator. In order to prove that
Cl

i(t) is bounded, we get

Cl
i(τ)≤λ+

τ∑
t=1

I{u[r̂ l
i (t)](Pt+1)≥u[r̂ l

i (t)](P⋆), Cl
i(t)≥λ}

=λ+
τ∑

t=1
I{

∑
pl
i∈Pt+1

ξli(t+1)r̂ l
i (t)≥

∑
pl
i∈P⋆

ξli(⋆)r̂
l
i (t), C

l
i(t)≥λ}

≤ λ+
τ∑

t=1

t∑
ns(1)=λ

· · ·
t∑

ns(K)=λ

t∑
ns⋆(1)=1

· · ·
t∑

ns⋆(K)=1

I
{∑K

i=1 ξ
l
i(t+1) · r̂ l

s(i)(t) ≥
∑K

i=1 ξ
l
i(⋆) · r̂ l

s⋆(i)(t)
}
. (37)

where ξli(t+1)≤
∑

j∈Ml
i
wj≤1 and ξli(⋆)≤1 have the same

meanings as before. Here, we use rli to denote the ratio of
quality and cost in which all parameters are known, i.e., rli=
f l
iqi/εi where f l

i = |Ml
i|/f(|Ml

i|). Also, the notation r l
i (t)=

f l
iqi(t−1)/εi(t−1) means the average ratio of quality and

cost for pli up to round t. After letting θt,i=fmax(εminQt,i+
Ct,i)/ε

2
min, we get that at least one of the three cases, which

are similar to Eq. (21), Eq. (22) and Eq. (23), must hold. Now,
we focus on the probability of the following case:

P
{
r l
s⋆(i)(t)≤rls⋆(i)−θt,s⋆(i)

}
= P

{
f l
s⋆(i) ·

qs⋆(i)(t)

εs⋆(i)(t)
≤f l

s⋆(i) ·
qs⋆(i)

εs⋆(i)
−θt,s⋆(i)

}
. (38)

Actually, the event in Eq. (38) holds only when at least
one of the following events must be true:

qs⋆(i)(t) ≤ qs⋆(i) −Qt,s⋆(i); (39)
εs⋆(i)(t) ≥ εs⋆(i) + Ct,s⋆(i). (40)

We can prove this claim by the counter-evidence. That is,
if both Eq. (39) and Eq. (40) are false, we have

f l
s⋆(i) ·

(
qs⋆(i)

εs⋆(i)
− qs⋆(i)(t)

εs⋆(i)(t)

)
= f l

s⋆(i) ·
(qs⋆(i)−qs⋆(i)(t))εs⋆(i)−qs⋆(i)·(εs⋆(i)−εs⋆(i)(t))

εs⋆(i)·εs⋆(i)(t)

< f l
s⋆(i) · (

Qt,s⋆(i)

εs⋆(i)(t)
+

qs⋆(i)Ct,s⋆(i)

εs⋆(i)εs⋆(i)(t)
)

≤ fmax · εminQt,s⋆(i)+Ct,s⋆(i)

ε2min
= θt,s⋆(i).

According to the previous proof, we know P{Eq. (39)}≤
t−2(K+1) and P{Eq. (40)}≤ t−2(K+1). We continue Eq. (38)
and have P{Eq. (38)}≤2t−2(K+1). Next, we analyze∑K

i=1 ξ
l
i(⋆)r

l
s⋆(i) <

∑K
i=1 ξ

l
i(t+1)(rls(i) + 2θt,s(i)).

We choose λ to make the above inequality false, i.e.,
K∑
i=1

ξli(⋆)r
l
s⋆(i)−

K∑
i=1

ξli(t+1)rls(i)−2
K∑
i=1

ξli(t+1)θt,s(i)

= ∆r−2
K∑
i=1

ξli(t+1)fmax
εminQt,s(i)+Ct,s(i)

ε2min

≥ ∆r−2Kfmax

εmin

√
(K+1) ln(NMτ(B))

λ|M|min
+
√

(K+1) ln τ(B)
λ

ε2min

≥ ∆r−2Kfmax
(εmin+1)

√
(K+1) ln(NMτ(B))

λ

ε2min
≥ 0.
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Algorithm 3 The FAUWR Algorithm

Require: N , M, P = {pli|i ∈ N , 1 ≤ l ≤ L}, {wj |j ∈ M},
{ηi|i∈N}, B, K, ϱ

Ensure: Pt⊆P for ∀t≥1, uB and τ(B).
1: Initialization: t=1, select the first option of all workers,

i.e., P1 = {p1i |i ∈ N}, and obtain the quality q1i,j for
p1i ∈P1, and set the virtual length as Vi(t)=0 for i∈N .

2: Let uB =u(P1), Bt=B −
∑

p1
i∈P1 c1i , ni(t)= |M1

i | and
qi(t)=(

∑
j∈M1

i
qti,j)/|M1

i | for ∀i∈N ;
3: while 1 do
4: t ⇐ t+ 1, Pt = ϕ;
5: while |Pt| < K do
6: Let Pt′ = {pl′i | for ∀pli ∈ Pt};

7: Get pli = argmax
pl′
i′∈(P\Pt′ )

{
u[q̂i(t−1)](Pt∪{pl′

i′})−u[q̂i(t−1)](Pt)

cl
′
i′

+ϱ · Vi(t− 1)
}

based on Eq. (43);

8: Add pli into Pt, i.e., Pt = Pt + {pli};
9: if

∑
pl
i∈Pt cli ≥ Bt−1 then

10: return Terminate and output uB and τ(B)= t;
11: Obtain the qualities qti,j for ∀pli∈Pt;
12: Update the worker profiles: nl

i(t), ni(t), qi(t), q̂i(t),
and Vi(t) based on Eq. (42);

13: Bt = Bt−1 −
∑

pl
i∈Pt cli, and uB=uB+u(Pt);

Thus, we choose

λ ≥ (K+1) ln(NMτ(B))
(
2Kfmax(εmin+1)

∆rminε2min

)2

,

such that Eq. (41) is impossible. Let’s continue Eq. (37):

Cl
i(τ)≤(K+1) ln(NMτ(B))

(
2Kfmax(εmin+1)

∆rminε2min

)2

+1 +
∑τ

t=1 t
2K2K(2t−2(K+1))

≤(K+1) ln(NMτ(B))
(
2Kfmax(εmin+1)

∆rminε2min

)2

+1+ 2Kπ2

3

=φ6 ln τ(B) + φ6 ln(NM) +1+2Kπ2/3.

Similarly, we have ln τ(B) ≤ Kcminτ(B)/(2NLφ6) +
ln(2NLφ6/(Kcmin)−1. Then, we get the bound of τ(B),

τ(B)≤τ⋆(B)+ NL
Kcmin

E[Cl
i(τ(B))]

≤B/c⋆+τ(B)/2+φ7≤2B/c⋆+2φ7,

and get the lower bound as follows,
τ(B)≥(B−NLE[Cl

i(τ(B))])/c⋆ − 1

≥ B
c⋆ − 1− NL(1+ 2Kπ2

3 )

c⋆ − NLφ6 ln(NM( 2B
c⋆

+2φ7))

c⋆ .

Finally, we prove the expected regret of Alg. 2 as follows:

RA2
α (B) ≤

∑τ⋆(B)
t=1 u[rli]

(P⋆)− E[
∑τ(B)

t=1 u[rli]
(Pt)]

≤u⋆(B+1
c⋆ −τ(B))+

∑
i∈N

∑L
l=1C

l
i(τ(B))∆rmax

≤(NLφ6)(
u⋆

c⋆ +∆rmax) ln(NM( 2Bc⋆ +2φ7))+φ8

= O
(
NLK3 ln(NMB+N2K2ML ln(N2K2ML))

)
.

Theorem 2 holds. �

5 FAIRNESS CONSTRAINT OF WORKERS
In this section, we consider an extended case where the
fairness constraint of workers is involved. The term “fair-
ness” means that the crowdsensing platform must guaran-

TABLE 2: Evaluation Settings

parameter name default range
the budget B 3 ∗ 103 5 ∗ 102–104

the number of tasks M 300 100–500
the number of workers N 50 50–100
the parameter K N/3 N/6–3N/5
the cardinality of Ml

i 5–15
the parameter ϱ 0.1–10

Fig. 3: Exhibition of the real-world dataset.

tee a minimum selection fraction for each registered worker,
so that the MC system can avoid the scenario that some
workers are over-recruited but some others may be under-
recruited. This is because the under-recruited workers
may leave the crowdsensing system forever, while fewer
workers will certainly harm the sensing results for other
requesters. That is, the fairness constraint can potentially
guarantee the overall and long-term sensing performance
for all requesters. We first introduce the extended optimiza-
tion problem and then propose the detailed solution.

5.1 Extended Problem
First, we introduce a parameter ηi to denote the required
minimum fraction of rounds in which the worker i would be
recruited. Based on the definition of ni(t), i.e., the number of
the worker i being selected up to round t, we can formalize
the fairness constraint as follows:

lim inf
B→∞

E[ni(τ(B))] ≥ τ(B) · ηi, for ∀i ∈ N . (41)

where τ(B) means the total rounds under the budget
B, ni(τ(B)) indicates the total number of worker i being
selected under the budget B.

Here, we suppose that there exists at least one worker
recruitment solution so that the fairness constraint, i.e., Eq.
(41), can be satisfied. That is to say, the MC system would
compute the parameter ηi for i ∈ N in advance. After
considering the fairness during the process of unknown
worker recruitment, the extended problem becomes more
complicated. Note that the extended problem has the same
objective as the original optimization problem, that is, max-
imizing the total weighted completion qualities of all tasks
under the budget. The difference lies in that the fairness
constraint of workers is taken into account. Next, we will
introduce the detailed solution to the extended problem.

5.2 Extended Solution
In order to solve this extended problem, we introduce a con-
cept of virtual queue [36] to handle the fairness constraint.
More specifically, we first use Vi to denote the virtual queue
for the worker i, and then let Vi(t) denote the queue length
of Vi in round t. Note that we initialize Vi(0)=0 for ∀i∈N .
Furthermore, Vi(t) is updated as follows:

Vi(t) = max
{
0, Vi(t− 1) + ηi − I{it−1= i}

}
, (42)
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Fig. 4: UWR and FAUWR: total qualities vs. budget
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Fig. 5: UWR and FAUWR: total rounds vs. budget
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Fig. 6: Qualities vs. K
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Fig. 7: Rounds vs. K
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Fig. 8: Qualities vs. N
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Fig. 9: Rounds vs. N

where I{true}=1 and I{false}=0. Moreover, it represents
the index for the unknown worker which is selected in
round t. Here, for each option pli (1≤ l≤L) of the worker i,
if pli is selected in the round t, it indicates it = i in Eq. (42).
Thus, the index I{it−1= i}=1 is obtained.

Based on the virtual queue technique, we design a
Fairness-Aware Unknown Worker Recruitment algorithm,
called FAUWR. The FAUWR algorithm has the same struc-
ture and procedures as the UWR algorithm. The difference
lies in the computation of the option index at the beginning
of each round. Concretely speaking, the computation of
option index pli will involve the virtual queue length to
address the fairness constraint. That is, at the beginning
of each round t, the platform would choose the option
according to the following equation:

pli = argmax
pl′
i′∈(P\Pt)

{
u[q̂i(t−1)](Pt∪{pl′

i′})−u[q̂i(t−1)](Pt)

cl
′
i′

+ϱ · Vi(t)
}
. (43)

Here, ϱ > 0 denotes the controlling parameter, which
is used to manage the balance between the total weighted
quality and the virtual queue lengths. Also, each option pli
(1≤ l≤L) of a same worker i∈N shares the same virtual
queue lengths, i.e., Vi(t). Actually, when the parameter ϱ is
set as 0, we get that the option index computation here is
the same as that of the UWR algorithm.

Then, we present the FAUWR algorithm in detail, as
shown in Alg. 3. Same as the original settings, we con-
sider that the recruitment cost can be acquired in advance.
Therefore, the extended algorithm has the same structure as
Alg. 1. In fact, the FAUWR algorithm can also deal with the
case where the recruitment cost is unknown a priori. The
only difference is the index computation for each option at
the beginning of each round. Moreover, the computation
complexity of Alg. 3 is denoted by O(NMLK). Note that
as long as the number of total rounds (i.e., τ(B)) is large
enough, the practical selection fraction for each worker will
be higher than that of the required values in Alg. 3. We will
verify the fairness performance of the FAUWR algorithm
through lots of experimental simulations based on the real-
world datasets in Section 6.
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Fig. 10: Qualities vs. M
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Fig. 11: Rounds vs. M

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithms with extensive simulations. We first introduce
the evaluation methodology which mainly includes the
detailed simulation settings (such as the real-world datasets,
parameter values, etc.) and two compared algorithms. Then,
we present and analyze the simulation results in detail.

6.1 Evaluation Methodology
Simulation Settings: We adopt the widely-used trace [37] in
our simulations. The trace consists of the GPS coordinates of
approximately 320 taxi cabs collected over 30 days in Rome,
Italy. The trace on a day (i.e., 2014-02-01) is shown in Fig.
3. We first select M locations from the trace as the task
locations, in which M is produced from [100, 600]. Then,
we choose N vehicles from the trace as workers, where N
is selected from [50, 100]. Here, we exclude those vehicles
that visit the selected locations with low frequency in our
simulations. The default values are M = 300 and N = 50.
Next, we determine the subset of tasks that a worker can
perform, and we let the number of tasks in a subset (i.e.,
|Ml

i|) be randomly selected from [5, 15]. Also, we change
the budget from [500, 104] and let B=3000 in default.

Now, we focus on determining two parameters: the
expected quality qi and the expected cost parameter εi.
First, we generate the sensing area for each task. For each
task, we use a geographic region with radius 200m within
its location to denote the sensing area. The workers within
this region can perform this task. Based on this, we use the
frequency value of a worker i visiting these areas to denote
the expected mean qi, in which qi is normalized into (0, 1].
Then, we generate εi randomly from (0, 1). We directly use
the function f(x) = x to determine the cost of each subset,
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Fig. 12: ϱ = 0.1
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Fig. 13: ϱ = 1
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Fig. 14: ϱ = 10

and εif(|Ml
i|) is normalized to (0, 1]. Moreover, we let

the values of wj be uniform and let K = N/3 by default.
In the experimental simulations, we adopt the Gaussian
Distributions to generate the quality and cost parameters.
Here, in order to ensure that the generated quality values
are located in (0, 1], we let the variance of the Gaussian
Distribution for the worker i, denoted as σi, be selected from
the range (0,min{ qi

2 ,
1−qi
2 }]. In such settings, the generated

quality values in each round (i.e., qti,j) is located in the range
(0, 1] with the probability of at least 95.4%.

Compared Algorithms: Since our optimization problem
involving the budget-limited maximum weighted coverage
problem is a novel CMAB problem, there are no existing
bandit algorithms that can be directly applied in our model.
For comparison, we borrow the basic strategy in the existing
ϵ-first bandit algorithm [38] to design a compared algorithm.
That is, we randomly selected K workers in each round
under the first ϵ · B budget. In the remaining (1 − ϵ) · B
budget, we always recruit the K workers who perform
best under the previous ϵ · B budget. We evaluate the ϵ-
first algorithm by choosing ϵ = 0.1, ϵ = 0.5, and ϵ = 1.
Note that ϵ = 1 indicates that the ϵ-first algorithm will
select K workers in each round randomly. Additionally, we
implement the α-optimal algorithm in which all parameters
are known in advance.

Moreover, since the UWR and FAUWR algorithms are
designed for the case where only the sensing quality of
workers is unknown in advance, while the EUWR algorithm
is applied to the settings in which both the sensing quality
and recruitment cost of workers are unknown a priori,
we divide the experimental simulations into two groups.
In the first group, we compare the performance of UWR
and FAUWR with other algorithms; in the second group,
we verify the performance of EUWR in other settings. The
main simulation metrics include the total achieved weighted
qualities and the rounds. Additionally, we also evaluate the
fairness constraint of workers in the FAUWR algorithm.
More specifically, when we change the controlling param-
eter ϱ, we compare the required minimum selection fraction
for each worker with the corresponding achieved values.
Here, we set the parameter ϱ as ϱ=0.1, ϱ=1, and ϱ=10 in
the FAUWR algorithm.

6.2 Evaluation Results
First, we display the evaluation results of the UWR and
FAUWR algorithms. To evaluate the effects of budget B,
we let B change from 500 to 10000. Clearly, we find that
the achieved total weighted qualities and total rounds of all
four algorithms rise along with the increase of the budget
B, as shown in Fig. 4 and Fig. 5. Moreover, we see that our
algorithms perform much better than the compared ϵ-first
algorithm. At the same time, the total weighted qualities

and the total rounds achieved by the UWR and FAUWR
algorithms almost catch up with the α-optimal algorithm.
Here, we calculate that the achieved weighted qualities of
UWR and FAUWR are at least 139.34% and 132.57% higher
than that of the 0.1-first algorithm on average, respectively.
Also, we compute that UWR and FAUWR can achieve about
87.86% and 85.41% of the total weighted qualities of the α-
optimal algorithm on average, respectively. Meanwhile, the
performance for total rounds has a similar conclusion to the
quality performance. These observations exactly validate
our theoretical analysis results.

Moreover, we also evaluate the performance on the size
of K , as shown in Fig. 6 and Fig. 7. The results indicate
that the UWR and FAUWR algorithms still outperform the
compared ϵ-first algorithm in terms of the achieved total
quality and rounds. The smaller K is, the higher total qual-
ity can be achieved. However, this will also result in higher
recruitment rounds (i.e., more running time). From the
simulation results, we get that the selection of the parameter
K has a big impact on the performance of our algorithms.
Also, we have that the total weighted quality achieved by
the α-optimal algorithm is about 10.07% and 18.35% higher
than that of the UWR and FAUWR algorithms on average,
respectively. The total rounds of UWR and FAUWR are even
higher than that of the α-optimal algorithm. This indicates
that UWR and FAUWR perform well in terms of the total
weighted qualities and total rounds. Then, we evaluate
the performance of UWR and FAUWR by changing the
numbers of sensing tasks and crowd workers, as shown
in Fig. 8, Fig. 9, Fig. 10, and Fig. 11. According to the
simulation results, we observe that our proposed UWR and
FAUWR algorithms can obtain more than 173% and 168%
larger weighted completion quality than the compared ϵ-
first algorithm on average, respectively, and is even going to
catch up to the α-optimal algorithm that knows all parame-
ters in advance. Furthermore, the total rounds achieved by
our algorithms and the α-optimal algorithm almost have
the same trends. Along with the increase in the number of
workers, the total rounds of all algorithms decrease, and
meanwhile, the total weighted quality of all tasks has a
slight downward trend. Additionally, when we increase the
number of tasks from 100 to 500, the total weighted quality
and total rounds of all algorithms show a slight upward
trend. This is because the total weighted quality is highly
related to the distribution of all tasks. These observations
are still consistent with our theoretical analysis results.

On the other hand, the total weighted completion quality
of the FAUWR algorithm is a bit smaller than that of the
UWR algorithm. This is because FAUWR must handle the
fairness constraint of workers by sacrificing a part of the
total weighted quality. Here, along with the increase of
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Fig. 15: EUWR: total qualities vs. budget
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Fig. 16: EUWR: total rounds vs. budget
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the parameter ϱ, the FAUWR algorithm would achieve less
weighted completion quality. This indicates that FAUWR
would spend more budget on the fairness constraint. In
order to evaluate the fairness constraint of workers in the
FAUWR algorithm, we present the number of times each
worker has been selected under the given budget, as shown
in Fig. 12, Fig. 13, and Fig. 14. In the simulations, we set the
number of workers as N = 100. For each worker i, we use
the uniform distribution to generate the minimum selection
fraction, i.e., ηi. Then, in the experimental simulations for
FAUWR, we record the total rounds (i.e., τ(B)) and the
numbers of times each worker i has been recruited (i.e.,
ni(τ(B))) under the budget B. Note that we set the budget
to B = 5000 here. After we get the values of ηi, τ(B), and
ni(τ(B)) for ∀i ∈N , we compare ηi×τ(B) with ni(τ(B))
to verify the fairness constraint of workers. Actually, only
when ni(τ(B)) ≥ ηi× τ(B), we can say that the fairness
constraint is satisfied. We first let ϱ = 0.1 and then we
display the simulation results in Fig. 12. We see that the
numbers of times some workers have been selected are
larger than 900. This means that the workers with good
completion quality will be recruited first. However, if we
increase the parameter ϱ = 1 and ϱ = 10, we observe
that the number of times the “good” workers have been
recruited decreases, while the number of times other (“not
good”) workers are recruited raises. This demonstrates that
the fairness constraint of workers dominates in the worker
selection process. These results still remain consistent with
our theoretical analysis.

Second, we demonstrate the evaluation results of the
EUWR algorithm in other settings where both the sens-
ing quality and recruitment cost are unknown a priori.
As shown in Fig. 15, we first investigate the relationship
between the achieved quality and budget. We get that
the total weighted quality achieved by EUWR does not
have an overwhelming advantage over the compared ϵ-
first algorithm. More precisely, we calculate that the total
weighted quality of EUWR is about 17.61%, 26.44%, and
35.79% higher than that of the 0.1-first, 0.5-first, and 1.0-first
algorithms on average, respectively. Also, the difference in
achieved quality between EUWR and the compared ϵ-first
algorithm increases when the budget rises. This means the

EUWR algorithm is efficient because the platform has more
confidence in the estimation of the unknown parameters.
Moreover, we present the total rounds of all algorithms in
Fig. 16. With the increase in the given budget B, the total
rounds of all algorithms raise. The simulation results have
the similar trends with the quality performance.

We then evaluate the performance of EUWR by changing
the size of the selected workers (i.e., K), as shown in Fig.
17 and Fig. 18. We also find that, in these settings, the
advantage of EUWR over the compared ϵ-first algorithm is
not as overwhelming as that of UWR and FAUWR, due to
two unknown parameters existing in the general problem.
In all simulation settings, the total weighted completion
quality achieved by EUWR is about 44.98% higher than
that of the ϵ-first algorithm on average. Although the total
rounds of the compared ϵ-first algorithm may be higher than
that of EUWR, the total achieved quality is less than that
of the EUWR algorithm. In addition, we also evaluate the
EUWR algorithm in terms of the number of sensing tasks
(i.e., M ) and the number of workers (i.e., N ), as shown in
Fig. 19 and Fig. 20. The total quality achieved by EUWR
is about 33.62%, 39.54%, and 44.53% higher than that of
the 0.1-first, 0.5-first, and 1.0-first algorithms on average,
respectively. Here, when we change the numbers of workers
and sensing tasks, the total weighted quality has the same
trend as before. These observations are also consistent with
our theoretical analysis.

7 RELATED WORK
In this paper, we study the combinatorial multi-armed ban-
dit (CMAB) based budget-limited unknown worker recruit-
ment for the heterogeneous mobile crowdsensing (MC). So
far, there have been lots of researches on the worker recruit-
ment problem in MC, such as [5], [13], [14], [39]–[43]. More
precisely, [39] investigates how to optimally recruit crowd
workers in opportunistic network based crowdsening such
that the required space-time paths across the network for
collecting data from a set of fixed locations can be generated,
where workers are seen as the nodes in the space-time
paths. For the case of deterministic node mobility, the au-
thors formulate the worker recruitment as a minimum cost
set cover problem with a submodular objective function.

Authorized licensed use limited to: Soochow University. Downloaded on April 04,2021 at 01:48:36 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3064324, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2020 13

For the more general settings with uncertainty about the
worker mobility, they translate the statistics of individu-
al worker mobility to statistics of space-time path forma-
tion and feed them to the set cover problem formulation.
[13] proposes an optimal worker recruitment mechanism,
called Crowdlet, for the self-organized MC paradigm. In the
Crowdlet system, a task requester can proactively exploit
a massive crowd of encountered workers in real-time for
quick and high-quality results. By combining the factors of
worker ability, real-timeness and task reward, the authors
design an optimal online worker recruitment policy through
the dynamic programming principle, so that the expected
sum of service quality can be maximized. [43] studies the
high quality worker recruitment problem in vehicle-based
crowdsourcing by involving the predictable mobility of
vehicles, that is, the proposed worker recruitment strategy
can guarantee that the vehicle-based crowdsourcing system
can perform well using the currently recruited worker for
a period of time in the future. However, most of the ex-
isting work assumes that the sensing qualities or costs of
workers are known in advance, thus focusing on the quality
maximization or cost minimization problems under various
constraints. Unfortunately, the sensing qualities or costs of
workers are generally unknown a priori in real life.

In fact, only a few researches [17]–[20], [44]–[48] consider
the unknown sensing qualities or costs in MC systems. For
instance, [17] proposes a distance-reliability ratio algorithm
to maximize the task completion ratio by considering the
unknown reliability of workers and dynamic arrivals of
tasks, which is based on a combinatorial fractional program-
ming approach; [45] studies to maximize the total sensing
revenue for the budget limited robust mobile crowdsens-
ing, and further proves that the logarithmic regret bound
can be achieved in the proposed framework; [20] designs
a context-aware hierarchical online learning algorithm for
performance maximization of MC, in which the workers’
acceptance rate and sensing quality are taken into considera-
tion. Also, the authors analyze that their proposed algorithm
can converge to the optimal task assignment strategy; [19]
investigates how to select the most informative contributors
with unknown costs for budgeted MC and a budgeted
multi-armed bandit based worker recruitment algorithm
with theoretically proven low-regret guarantee is devised.
However, the works [18], [19] either assume that the MC
system only contains one task or that the sets of tasks for
all workers are identical, while other works [17], [44] focus
on the one-to-one matching problem between workers and
tasks. Actually, all of them are based on the homogeneous
MC model. Differing from the existing work, we study
the unknown worker recruitment problem for the hetero-
geneous MC system. Particularly, our research involves a
budget-limited maximum weighted coverage problem.

We model our problem as a novel combinatorial multi-
armed bandit problem. The existing algorithms for tradi-
tional multi-armed bandits [21], [24], [25], [36], [49], [50]
cannot be applied to our problem. The most related works
are [32], [51], in which they study the top K bandit selection
problem. The authors in [32] consider the CMAB model,
where multiple random arms with unknown means can
be chosen under the constraints of weights associated with
the selected arms in each round. Although the reward for

each selected individual arm would be observed by the
player, a linearly weighted combination of these selected
arms is yielded as the final reward at each round. To this
end, the authors propose an efficient algorithm that can
achieve a good regret bound, denoted as O(N4 lnT ), where
T represents the total rounds. Also, the proposed algorithm
only requires linear storage and polynomial computation.
On the other hand, the authors in [51] focus on the budget-
limited CMAB problem for both the stochastic and the
adversarial settings. In addition to observing the selected
individual arms’ rewards in each round, the player also
needs to learn the cost vector of all selected arms. For the
stochastic setting, the authors design a UCB-based algorith-
m with a O(NK4 lnB) regret bound that is actually on the
same order of magnitude as ours. For the adversarial setting
where the entire sequences of rewards and costs for all arms
are fixed in advance, they devise an algorithm based on the
well-known Exp3 algorithm. The upper and lower bounds
on the magnitude of regret are given: O(

√
NB ln(N/K))

and Ω((1−K/N)2
√
NB/K), respectively. Nevertheless, nei-

ther of them involves the budget-limited maximum weight-
ed coverage problem or considers that each arm (i.e., a
worker) has multiple candidate options.

In contrast, we model our unknown worker recruitment
problem as a novel CMAB problem, in which each worker is
seen as an arm, the sensing quality of a worker completing
a task is seen as the reward of pulling arms, and the worker
recruitment is equivalent to the arm-pulling action. Com-
pared to the traditional CMAB models, our proposed CMAB
model has two novel characteristics. The first one is that
each arm has multiple options and each option is composed
of a subset of all sensing tasks and the corresponding cost.
The platform (i.e., the player) needs to select the arms and
at the same time to determine the option for each arm.
The second characteristic is that the objective of our CMAB
problem is to maximize the total weighted completion
qualities of all tasks under the given budget, i.e., so-called
the budget-limited maximum weighted coverage problem.
Here, each arm is attached with a weight to indicate its
importance for the player. In addition, one sensing task
might be covered by several workers, so the computation
of the total rewards in a round is more challenging. To solve
this problem, we first extend the upper confidence bound to
denote the sensing quality of workers, and further propose
an unknown worker recruitment algorithm. We prove that
the proposed algorithm can achieve a good bound on the re-
gret, i.e., O(NLK3 ln(B+NLK2 ln(MLN2K2))), in which
B, N , M , and L denote the budget, the number of workers,
the number of tasks, and the number of options for each
worker, respectively. Also, we study an extended case where
both the sensing quality and cost parameters of all workers
are unknown a priori. We devise an extended unknown
worker recruitment algorithm with a provable performance
guarantee O(NLK3 ln(NMB+N2K2ML ln(N2K2ML))).

8 CONCLUSION & FUTURE WORK
We study the unknown worker recruitment problem in het-
erogeneous crowdsensing, where workers’ sensing qualities
are unknown in advance but follow an independent and
identically distribution. In our problem, each task may be
performed by multiple workers, but its completion quality
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only depends on these workers’ maximum sensing quality.
In future works, we will consider a new function that
can combine the sensing results from multiple workers to
improve the completion quality, and will refer to the truth
discovery method when calculating each worker’s comple-
tion quality. In this paper, we focus on how to recruit K
unknown workers in each round so that the total weighted
completion quality of all tasks can be maximized under
the budget constraint. We model this problem as a novel
combinatorial multi-armed bandit problem. To this end, we
propose an extended UCB based unknown worker recruit-
ment algorithm with a good regret bound. Furthermore,
we study another case where both workers’ sensing quality
and cost are unknown a priori. A new algorithm with a
provable performance guarantee is designed. Additionally,
we investigate the unknown worker recruitment problem
with fairness constraints and further propose a fairness-
aware unknown worker recruitment algorithm. Extensive
simulations on real-world traces are conducted to show the
significant performance of the proposed algorithms.
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