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Abstract—Mobile crowdsensing is a new paradigm in which a requester can recruit a group of mobile users via a platform and
coordinate them to perform some sensing tasks by using their smartphones. In mobile crowdsensing, each user might perform multiple
tasks with different sensing qualities. Meanwhile, the users participating in the crowdsensing will ask for sufficient rewards to
compensate for their expenditures. Hence, an important problem is how to recruit the users with minimum cost while achieving a
satisfactory sensing quality for each task. Furthermore, in order to ease users’ worries about privacy disclosures, the user recruitment
process needs to protect each user’s sensing quality and recruitment cost information from being revealed to other users or to the
platform. In this paper, we propose two secure user recruitment problems for the cases where the recruitment costs of users are
homogeneous and heterogeneous. After proving the NP-hardness of the problems, we design two secure user recruitment protocols by
using secret sharing scheme. Both of the proposed protocols adopt greedy strategies, which can recruit nearly optimal users while
ensuring that the total sensing quality of each task is no less than a given threshold. The difference lies in that the two greedy
strategies are based on two unique utility functions. We analyze the approximation ratios of the two protocols and prove the security
under the semi-honest model. Finally, we demonstrate the significant performance of the proposed protocols through extensive
simulations and executions on real smartphones.
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1 INTRODUCTION

NOwadays, smartphones have become extremely preva-
lent in day-to-day life. Most smartphones have pow-

erful sensing, storage, and computation abilities, which can
be seen as powerful mobile sensors with different function-
alities. In order to make full use of these sensing resources,
a new sensing paradigm called mobile crowdsensing is pro-
posed [4]. Roughly speaking, mobile crowdsensing refers
to a group of mobile users being coordinated to perform
large-scale sensing tasks over urban environments through
their smartphones. Since mobile crowdsensing can perform
sensing tasks that individual users cannot cope with, it
has stimulated many applications such as urban WiFi char-
acterization, traffic information mapping, noise pollution
monitoring, and so on, attracting much attention [4].

A typical mobile crowdsensing system consists of a
collection of mobile users and a platform residing on the
cloud. The platform accepts sensing tasks from requesters
and recruits mobile users to perform these sensing tasks by
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using their smartphones. After accomplishing the sensing
tasks, mobile users will return the corresponding results
to requesters. In a mobile crowdsensing system, user re-
cruitment or task allocation is one of the most important
components. So far, many user recruitment or task allocation
algorithms have been proposed [9, 10, 14]. Also, many
incentive mechanisms such as [19, 28, 32–34] have been
designed for the user recruitment component.

In this paper, we focus on the privacy-preserving user re-
cruitment problem in sensing-quality-aware mobile crowd-
sensing systems. Consider that a requester wants to recruit
a group of mobile users to perform some sensing tasks via
a crowdsensing platform, while ensuring that each task can
be accomplished with a satisfactory quality. For example,
the sensing tasks might be taking some time-relative photos
at many locations for air quality analysis. In general, the
sensing quality depends on the heterogeneous smart devices
and mobile behaviors, which can be measured mainly by the
time of taking photos, the camera configurations of smart
devices, and the number of photos taken by users. As a
result, each user can determine the values of his sensing
quality according to a predetermined criterion. During the
user recruitment process, each mobile user needs to tell the
platform which tasks he/she can deal with and how many
sensing qualities he/she can contribute for each task. Ac-
cordingly, the mobile users will ask for variable rewards to
compensate for their expenditures. This might reveal some
private sensitive information. The reward requested by a
mobile user will reveal the tasks that he/she can perform
and the relevant sensing quality. Here, the tasks that a user
can perform will reveal which locations the user might visit,
while the sensing quality will reveal the frequency, time,
distance of the visit, and so on. In order to avoid privacy
disclosures and to make users willing participate in the
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Fig. 1: The crowdsensing model

crowdsensing, it is necessary to protect each user’s private
sensitive information from being revealed during the user
recruitment process.

Existing crowdsensing works rarely discuss privacy is-
sues. Only a few works, such as [3, 13, 27, 36], studied
the problem of protecting the privacy of sensing results
collected by mobile users. Nevertheless, none of them inves-
tigates the privacy-preserving issues in the user recruitment
process. To fill this gap, we study the problem of protect-
ing users’ input privacy during the process of recruiting
users. In the problem, the platform and mobile users need
to jointly make the user recruitment decision by conduct-
ing computations over their inputs. Meanwhile, each user
needs to protect his/her inputs from being revealed to the
platform or to other users. Moreover, the recruited users
should make all sensing tasks be performed with satisfacto-
ry sensing qualities. Here, the differential privacy schemes
[27, 36], which only can output the probabilistic results by
introducing randomness into the queries, are not competent
for this problem, since many precise and complex compu-
tations need to be conducted over users’ private inputs in
our problem. Although the homomorphic encryption and
garbled circuit protocols can solve this problem, they will
result in a huge computation or communication overhead
that is unacceptable to mobile users.

To solve the privacy-preserving user recruitment prob-
lem, we design two secure user recruitment protocols for
two different scenarios. To ensure the security, we apply
secret sharing techniques during the user recruitment pro-
cedures. More specifically, the major contributions include:

1) We propose and formalize the homogeneous and het-
erogeneous secure user recruitment problems for sensing-
quality-aware mobile crowdsensing systems. Here, “homo-
geneous” and “heterogeneous” mean that the recruitment
costs of mobile users are uniform and different, respectively.
Unlike the existing user recruitment problem, our problems
take into consideration the privacy-preserving issues.

2) We first prove the NP-hardness of the problem, and
then propose a greedy strategy for the homogeneous us-
er recruitment problem. According to this, we design a
hOmogeneous Secure User Recruitment protocol (O-SUR)
by using the secret sharing scheme. We not only analyze
the performance of the O-SUR protocol, but also prove
that O-SUR is secure against any semi-honest adversaries.
Furthermore, we demonstrate that as long as the compu-
tation function of the total sensing quality is an increasing
submodular function, the O-SUR protocol can still produce
a solution with a logarithmic approximation ratio.

3) We also propose another greedy strategy based on a

new utility function for the heterogeneous user recruitment
problem. Based on this, we design a hEterogeneous secret-
sharing-based Secure User Recruitment protocol (E-SUR).
After analyzing the correctness and approximation ratio of
E-SUR, we prove that E-SUR can protect the inputs of each
user from being revealed to the platform or to other users,
even if they might collude.

4) In addition, we prove that O-SUR and E-SUR are two
lightweight secure protocols, which do not depend on en-
cryption/decryption operations and any trusted third-party.
To the best of our knowledge, these are the first secure user
recruitment protocols designed for mobile crowdsensing.

5) We conduct extensive simulations to verify the sig-
nificant performance of the proposed protocols. We also
implement and run the O-SUR and E-SUR protocols on real
smartphones which demonstrates that O-SUR and E-SUR
can work well in real applications.

The remainder of the paper is organized as follows:
We introduce the models, problem, and preliminary in
Section 2. The O-SUR and E-SUR protocols are proposed
in 3 and 4, respectively. In Section 5, we evaluate the per-
formances of the two protocols. After reviewing the related
work in Section 6, we conclude the paper in Section 7.

2 MODELS, PROBLEM, AND PRELIMINARY
In this section, we first introduce the crowdsensing and

security models, and then propose the optimization prob-
lems. Additionally, we present the secret sharing scheme.

2.1 Crowdsensing Model
Consider a mobile crowdsensing system, in which a

requester has many sensing tasks to deal with, denoted
by S = {s1, s2,· · · , sm}. Some mobile users, denoted by
U={u1,· · · , un}, are willing to participate in the crowdsens-
ing. Each user ui ∈ U would determine a series of sensing
tasks that he can perform (i.e., a subset of all sensing tasks).
Since the sensing tasks that each user intends to perform are
different, the consumed resources including local storage,
battery, memory of the smart device, etc, are heterogeneous.
Moreover, the users participating in the crowdsensing also
suffer threats to their privacy [15, 22, 24]. Hence, all mobile
users will ask for sufficient rewards to compensate for the
expenditures and the risks. Let ci ∈Zp denote the recruited
cost for the user ui (∈ U ), in which Zp is a prime field.
Actually, ci is private and known to nobody except for ui

itself. In this paper, we consider that ci is the true consumed
cost, since the truthfulness of mobile users can be ensured
by using an incentive mechanism [5, 19, 28, 33, 34].

When users perform sensing tasks, the data collected
by them might be of different qualities due to their het-
erogeneous smart devices and mobile behaviors. In general,
multiple users need to be recruited to perform a common
task so as to achieve a satisfactory sensing quality. We use
qi,j ∈Zp to indicate the sensing quality of user ui (1≤ i≤n)
performing task sj (1 ≤ j ≤ m). Specially, qi,j = 0 means
that user ui cannot deal with task sj . In fact, the worse case
for a user is that he cannot perform a sensing task, so the
values of users’ sensing qualities are non-negative in our
crowdsensing system. Here, each user ui knows his sensing
qualities qi,1, · · · , qi,m, since he can determine the value of
each sensing quality qi,j by evaluating the corresponding
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TABLE 1: Description of major notations
Variable Description
U , S, Φ the sets of all users, all tasks, and recruited users, respectively.
ui, sj the i-th user, and the j-th task.
ci the recruitment cost of ui (∈U).
qi,j the sensing quality of user ui performing task sj .
Qj(Φ) the total sensing quality of sj based on Φ (Definition 2).
θj the threshold of the required total sensing quality of task sj (∈S).
f(Φ), g(Φ) two utility functions about recruited users, where g(Φ)=φf(Φ) in which φ is a constant (Eq. 24).
∆if(Φ), ∆ig(Φ) the incremental utility for the functions f(Φ) (Definition 7) and g(Φ) (Eq. 25) by adding ui into Φ.
bi a bit number that indicates whether ui is recruited, i.e., bi=1 is equivalent to ui∈Φ.
V IEWi, Mi the view and the set of received messages of ui in the whole protocol execution process (Definition 1).
s[i], [s] ui’s share of a secret s, and all shares of s (Eq. 11).
Zp, l a prime field, and l=⌈log2 p⌉.
κ a security parameter, i.e., the degree of the random polynomial in Shamir’s scheme (Definition 5).

sensing data according to a predetermined criterion. For
example, each user can map a sensed image to a sensing
quality value in Zp according to the clarity and size.

Fig. 1 shows the execution process of the mobile crowd-
sensing. First, the requester publishes all sensing tasks in
S to the users in U via a platform. Then, each user ui

determines the values of qi,1, · · · , qi,m, ci and sends them
to the platform. Next, the platform recruits some users from
U to perform the tasks in S while ensuring that the total
sensing quality of each task is no less than a given threshold.
Finally, each recruited user will go to perform the tasks in S
and return the results to the requester. During this process,
some incentive mechanisms such as [5, 19, 28, 33, 34] can be
adopted to stimulate users to participate in the crowdsens-
ing. In this paper, we will not discuss the detailed incentive
mechanism and will only focus on the privacy-preserving
user recruitment problem.

2.2 Security Model
When a user ui participates in the crowdsensing, his/her

sensing quality and recruitment cost values might reveal
his/her private sensitive information. In order to avoid
privacy disclosures, we need to protect each user’s sensing
qualities and cost from being revealed to the platform or to
other users. For this privacy-preserving issue, we consider
a typical security model, i.e., the semi-honest model [7]. In
this model, each user will follow the whole user recruitment
protocol, showing the honest aspect. On the other hand,
the user will also try to derive the extra information from
the received data, showing the dishonest aspect. The semi-
honest model is reasonable, since the user is generally
willing to follow and accomplish the secure protocol so as to
benefit from participating. Because of this, the semi-honest
model is widely-used [6, 7, 16, 17]. The privacy under the
semi-honest model can formally be defined as follows:

Definition 1 (Privacy under the Semi-honest Model [7]). Let
F(x1, · · · , xn)=(F1, · · · ,Fn) be an n-ary functionality,
where xi (∈ Zp) and Fi are the i-th user’s input and
output (1≤ i≤ n). Consider a protocol for computing
F . The view of the i-th party during an execution of this
protocol is denoted as V IEWi = (xi, r,Mi), in which
r represents the outcome of the i-th user’s internal coin
tosses and Mi represents the messages that this party
has received. In other words, V IEWi is all the data that
the i-th party can observe during the execution of the
protocol. Now, we suppose that κ (< n) parties might

collude, denoted as I = {ui1 , · · · , uiκ}. Moreover, we
let V IEWI denote the view of the κ collusion parties,
in which V IEWI ,(I, V IEWi1 , · · · , V IEWiκ). We say
that the protocol privately computes F if there exists a
polynomial-time algorithm, denoted as A, such that for
every I above

A(I, (xi1 , · · · , xiκ ,FI)) ≡ V IEWI . (1)

where ≡ denotes the computational indistinguishability.
Remarks: Eq. 1 asserts that the view of the users in I can

be efficiently simulated based solely on their inputs and out-
puts. In other words, they cannot derive extra information
during the execution of the protocol.

2.3 Problem
We focus on the secure user recruitment problem in the

above mobile crowdsensing under the semi-honest model.
We use set Φ to denote a user recruitment solution where
ui∈Φ indicates that user ui is recruited. The platform needs
to recruit some mobile users from U to perform the sensing
tasks while ensuring that the total sensing quality of each
task is no less than a given threshold. We use θj ∈ Zp for
∀sj ∈S to denote the threshold. At the same time, we give
the definition of the total sensing quality as follows:
Definition 2. The total obtained sensing quality of task sj

(∈S) based on a user recruitment solution Φ, denoted as
Qj(Φ), is computed in the following formula:

Qj(Φ),Q(qi,j |ui ∈ Φ), (2)
where Q(·) is a general function about qi,j .

In many existing applications, the total sensing quality
of a task is directly defined as the sum of the sensing
quality of each recruited user performing this task, i.e.,
Qj(Φ)=

∑
ui∈Φ qij . This is a special form of our definition of

the total sensing quality. Actually, in addition to the sum of
sensing quality, our definition can also be calculated in other
ways. For example, if the sensing quality qi,j represents the
probability of successful sensing, Qj(·) may be defined as
their joint probability, i.e., Qj(Φ) = 1−

∏
ui∈Φ(1−qi,j). In

fact, so long as Qj(Φ) is an increasing submodular function
with Qj(Φ=ϕ)=0, our proposed user recruitment protocol
can achieve a provably logarithmic approximation. We will
present the analysis in Section 3.5 in detail. For better
understanding, we directly use Qj(Φ)=

∑
ui∈Φ qij to denote

the total sensing quality in our user recruitment problem.
To solve the secure user recruitment problem, where

the sensing qualities and recruitment costs of mobile users
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need to be protected from being revealed simultaneously,
we define two optimization problems which are gradually
progressive and in-depth. First, we propose the homogeneous
secure user recruitment problem in which the recruitment
costs of all users are uniform. Since the recruitment costs of
users are homogeneous, minimizing the total cost is equiva-
lent to minimize the number of recruited users. Second, we
define the heterogeneous secure user recruitment problem,
where the recruitment costs of users are heterogeneous,
involving the privacy protection of sensing quality and
recruitment cost simultaneously. More specifically, we have
the following definitions.

Definition 3. The hOmogeneous Secure User Recruitment (O-
SUR) problem, in which the recruitment costs of all
users are homogeneous, is to privately find a minimum
number of recruited users to perform the sensing tasks
(i.e., determine a user recruitment solution Φ⊆U ) while
ensuring that the total sensing quality of each task is no
less than a given threshold, i.e.,

Minimize : |Φ| (3)
Subject to : Φ⊆U (4)

Qj(Φ)≥θj , 1≤j≤m (5)
Security : Eq. 1 holds. (6)

Definition 4. The hEterogeneous Secure User Recruitment (E-
SUR) problem is to select a set of users Φ from the alter-
native user set U with minimum cost under the sensing
quality constraints, while protecting the recruitment cost
and sensing qualities of each user from being revealed to
other users or to the platform. That is,

Minimize : C(Φ) =
∑

ui∈Φ ci (7)
Subject to : Φ⊆U (8)

Qj(Φ)≥θj , 1≤j≤m (9)
Security : Eq. 1 holds. (10)

Here, we assume that there always exists at least one
feasible solution for these two optimization problems. This
is reasonable because we can expand the alternative user
set (i.e., U ) by inviting more mobile users to participate in
the crowdsensing, until the solutions to the optimization
problems appear.

For ease of presentation, we also use an n-bit vector
(b1,· · · , bi,· · · , bn) to indicate the user recruitment solution
where bi=1 for ui∈Φ; otherwise, if ui ̸∈Φ, we set bi=0.

2.4 Preliminary
In this paper, we address privacy-preserving issues by

using secret sharing schemes. A widely-used secret sharing
scheme is Shamir’s scheme [21]. Denote the shares of a
secret s among n users as

[s],(s[1], · · · , s[i], · · · , s[n]), (11)
where s[i] is the i-th user’s share. Then, Shamir’s secret

sharing scheme can be defined as follows:

Definition 5. Let p be an odd prime, and Zp is a prime
field. To share a secret s (s ∈ Zp) among n users
(n < p), Shamir’s scheme determines a random poly-
nomial gs(x) = s+α1x+α2x

2+ · · ·+ακx
κ mod p with

randomly chosen αi ∈Zp for 1≤ i≤ κ, κ<n. Then, the
share of the i-th user is s[i]=gs(i).

It has been proved that in Shamir’s scheme, any h shares
with h≤κ give no information on s (called κ-privacy), while
any h shares with h>κ can uniquely disclose s (called (κ+1)-
reconstruction).

In the following, we will propose the corresponding
solutions to the O-SUR and E-SUR problems under the semi-
honest model in Sections 3 and 4, respectively. Additionally,
we list the main notations in Table 1.

3 THE O-SUR PROTOCOL
In this section, we propose a hOmogeneous Secure Us-

er Recruitment (O-SUR) protocol by using secret sharing
scheme. We first introduce some secure operations in the
secret sharing scheme. Then, we analyze the NP-hardness of
the O-SUR problem and propose the greedy user selection
strategy as the building blocks of the O-SUR protocol. Next,
we design the O-SUR protocol and present an example to il-
lustrate the user recruitment procedure. Finally, we analyze
the performance and security of the O-SUR protocol.

3.1 Secure Operations
In the O-SUR protocol, each sensing quality is turned to

be a secret shared among all users. When the users make
the user recruitment decision, they need to jointly conduct
some mathematical operations on the shared secrets, which
are defined as follows:

Definition 6. Let x, y ∈Zp be two secrets shared by n users
and [x], [y] be the corresponding polynomial shares.
Then, the secure mathematical operations are defined as
follows:

[z1]← SecAdd([x], [y]), [z2]← SecSub([x], [y]),
[z3]← SecMulti([x], [y]), [z4]← SecCmp([x], [y]),
[z5]← SecMax([x], [y]), [z6]← SecMin([x], [y]),

(12)

where z1=x+y mod p; z2=x−y mod p; z3=xy mod p;
z4=1 if x≤y, or z4=0 when x>y; z5=max{x, y}, and
z6=min{x, y}.

In Definition 6, the SecAdd and SecSub operations
can be conducted efficiently without any communication-
s among n users. For SecAdd, each user ui can locally
compute his/her share by letting z1[i] = x[i] + y[i]. For
example, assume x[i] = x + α1i + α2i

2 + · · · + ακi
κ mod

p and y[i] = y + β1i + β2i
2 + · · · + βκi

κ mod p, where
α1, · · · , ακ, β1, · · · , βκ are randomly chosen from Zp. Then,
z[i]=x+y+(α1+β1)i+· · ·+(ακ+βκ)i

κ mod p. Likewise, the
SecSub operation can also be locally conducted by letting
each user compute z2[i]=x[i]−y[i].

In contrast, the SecMulti and SecCmp operations are a
bit more complex, and they require users to communicate
with one another. In this paper, we realize the two opera-
tions by using the secure multi-party multiplication protocol
in [16] and the secure multi-party comparison protocol
in [17], respectively. The multiplication protocol in [16] is
a well-known and efficient protocol built on a verifiable
secret sharing scheme. It requires O(n2l) bit-operations per
user (l = ⌈log2 p⌉) and one round of communication. The
comparison protocol in [17] is one of the most efficient se-
cure comparison protocols. The computation complexity is
dominated by 15 rounds of invocations of the multiplication
protocol, and the communication complexity is 279l+5 times
of the multiplication protocol.
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Procedure 1 The User Recruitment Strategy of O-SUR
Input: U , S , {qi,j |ui∈U , sj ∈S}, {θj |sj ∈S}
Output: Φ

1: Φ=∅; f(Φ)=0;
2: while f(Φ)<

∑m
j=1 θj do

3: Select a user ui∈U\Φ to maximize ∆if(Φ);
4: Φ=Φ ∪ {ui};
5: return Φ

TheSecMin andSecMax operations can be realized by
usingSecMultiandSecCmp. More specifically, we can let

SecMax([x], [y]),SecAdd([x], SecMulti(SecCmp([x], [y]),

SecSub([y], [x]))) (13)
SecMin([x], [y]),SecAdd([x], SecMulti(SecSub(1−

SecCmp([x], [y])), SecSub([y], [x]))). (14)

Eq. 13 is correct, since the right part will be
SecAdd([x], [0]) if x> y; otherwise, it will be SecAdd([x],
SecSub([y], [x])). Likewise, Eq. 14 is also correct. Here,
the SecMax and SecMin operations can directly ob-
tain the maximum and minimum values of x and y,
respectively, without revealing which is the larger or s-
maller one. Moreover, the SecMin and SecMax op-
erations can be extended to support more than t-
wo operands. For example, SecMin([x1], [x2], [x3]) ←
SecMin([x1], SecMin([x2], [x3])). Additionally, all of these
secure operations can support the computation between
secret and public values. For example, when the secret x
in Definition 6 is replaced by a public value r ∈ Zp, the
SecAdd operation can be conducted by letting z1[i]=r+y[i].
Moreover, SecMulti can be computed directly by letting
z3[i] = r · y[i] for each user ui without any communica-
tions. The computation complexity of SecCmp becomes 7
rounds of invocations of the multiplication protocol, and
the communication complexity becomes 17l times of the
multiplication protocol [17].

3.2 The Building Blocks
Before the solution, we first prove the NP-hardness of

the user recruitment problem in the following theorem.

Theorem 1. The user recruitment problem is NP-hard.

Proof: We consider a special case of the user recruitment
problem: given a mobile crowdsensing, where the user set is
U , the task set is S , the recruitment costs of users {ci|ui∈U}
are uniform, each sensing quality qi,j ∈ {0, 1}, and the
threshold of total sensing quality is θj=1 for ∀sj ∈S ; deter-
mine a user recruitment solution Φ, such that the platform
can minimize |Φ|, while the total sensing quality of each task
sj is no less than θj . Here, if a user ui can perform a task
sj , i.e., qi,j =1, we say that ui can cover sj . Moreover, once
a task is covered by a user, the total sensing quality of this
task must be no less than θj . Then, when we replace each
ui in U by using the set of tasks that ui can cover, denoted
by Si (⊆S), this problem can be equivalently seen as a set
cover problem, a well known NP-hard problem: given a task
set S , a collection of subset {Si|1≤ i≤n}, find a minimum
size of subcollection of {Si|1≤ i≤n} that covers all tasks in
S . Thus, the special user recruitment problem is NP-hard.

Protocol 1 The O-SUR Protocol
Input: U , S , {qi,j |ui∈U , sj ∈S}, {θj |sj ∈ S}
Output: b1, · · · , bn
Phase 1: the requester publishes S to U via the platform;
Phase 2: users input their sensing quality vectors;
1: for i=1 to n do
2: user ui determines the sensing qualitiesqi,1, · · · , qi,m;
3: for j=1 to m do
4: user ui generates the polynomial sharing [qi,j ];
5: user ui sends the share qi,j [i

′] to user ui′ ;
Phase 3: users jointly make the decision of user recruitment;
6: for i=1 to n do
7: [bi]← [0];
8: for j=1 to m do
9: [Qj ]← [0];

10: for round=1 to n do
11: for i=1 to n do
12: [∆if ]← [0];
13: for j=1 to m do
14: [δ]←SecMin([qi,j ], SecSub(θj , [Qj ]));
15: [∆if ]←SecAdd([∆if ], [δ]);
16: [∆if ]←SecMulti([∆if ], SecSub([1], [bi]));
17: [∆maxf ]←SecMax([∆1f ], · · · , [∆nf ]);
18: for i=1 to n do
19: [z]←SecCmp([∆maxf ], [∆if ]);
20: [bi]←SecAdd([bi], SecMulti(SecSub([1], [bi]), [z]));
21: for j=1 to m do
22: [δ]←SecMin([qi,j ], SecSub(θj , [Qj ]));
23: [Qj ]←SecAdd([Qj ], SecMulti([z], [δ]));
Phase 4: the users reconstruct the results;
24: for i=1 to n do
25: user ui collects all shares of [bi];
26: user ui derives bi=

∑m
j=1 bi[j];

Consequently, the general user recruitment problem is also
at least NP-hard. �

Since the user recruitment problem is NP-hard, we adopt
a greedy strategy to recruit users. The greedy criterion is that
the user who can improve the total sensing qualities of all
tasks the most well will be recruited first. More precisely, the
greedy strategy is based on the following utility function:
Definition 7. Utility function f(Φ) indicates the total sensing

qualities of all tasks in S contributed by the users in set
Φ, until each task sj reaches the corresponding threshold
θj , defined as follows:

f(Φ)=
m∑
j=1

min{Qj(Φ), θj}=
m∑
j=1

min{
∑
ui∈Φ

qi,j , θj}. (15)

Moreover, for a given user set Φ, we denote the incre-
mental utility of recruiting a new user ui into Φ as

∆if(Φ)=f(Φ∪ {ui})−f(Φ). (16)

The procedure of recruiting users in the O-SUR proto-
col is based on the above defined utility, which not only
contains the optimization objective, but also takes the non-
linear constraints (i.e., the sensing quality constraints) into
consideration. Further, the greedy user recruitment strate-
gy is shown in Procedure 1. The whole user recruitment
procedure contains multiple rounds of iterations. At the
beginning, the set of recruited users is an empty set, i.e.,
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Φ = ∅. Then, in each round of iteration, the user who
can improve the utility f(Φ) the most, i.e., the user ui

who can maximize the value of ∆if(Φ), is recruited and
added into Φ. The user recruitment process terminates when
f(Φ) =

∑m
j=1 θj . After this process, the user recruitment

result Φ is produced.

3.3 The Detailed O-SUR Protocol
Then, we introduce the O-SUR protocol which adopts

the same utility function and greedy strategy as Procedure 1
to recruit users. The difference lies in that all inputs and
computations are conducted by using the secret sharing
techniques. First, each input qi,j is seen as a secret, and
it is replaced by its polynomial shares [qi,j ] in O-SUR.
Second, when users jointly make recruitment decisions,
all computations are conducted by using the secure op-
erations in Definition 6, and all intermediate results are
produced in the manner of shared secrets. To ensure this,
we replace ui ∈ Φ and ∆if(Φ) by using [bi] = [1] and∑m

j=1 min{qi,j , θj−Qj(Φ)}. Here, all users can communicate
with each other via the platform. Moreover, in order to
prevent the selected user from being revealed in each round
of iteration, we hide the maximum incremental utility and
the selected user in a SecMax operation and a SecCmp
operation. Only in the final phase, each user ui can collect
the corresponding shares to reconstruct the value of bi so
as to know whether he/she is recruited. Additionally, the
whole process is conducted in a distributed way.

The detailed O-SUR protocol is shown in Protocol 1,
which mainly contains four phases. First, the requester
generates tasks and publishes them to users via the platfor-
m. Second, mobile users determine their sensing qualities.
Moreover, all users construct the polynomial secret shares of
their sensing quality values as the inputs in Steps 3-5. Third,
all mobile users jointly make recruitment decisions by using
the secure operations in Definition 6. More specifically, Steps
6-9 initialize for the user recruitment decision process. In
Steps 11-17, users jointly find the maximum incremental
utility value, i.e., ∆if . In Steps 18-23, users determine the
recruited user and update the corresponding Qj . Note that
we will omit Φ in ∆if(Φ) and Qj(Φ) in Protocol 1 for
simplicity. Fourth (Steps 24-26), all users collect their corre-
sponding shares to reconstruct the recruitment results. After
the recruited users perform the sensing tasks and upload
the sensing results to the requester, the requester would pay
them accordingly. During the process, the platform does not
know the recruitment and sensing results.

The computation and communication complexity of the
whole protocol is dominated by the SecMin operations in
Steps 14 and 22, which are O(mn2) invocations of secure
multiplication operations. Therefore, the protocol will result
in O(mn4l) bit-operations per user and O(mn2l) rounds of
communication, where a round of communication means
that users communicate with one another once.

3.4 Example
To better understand Protocol 1, we use an example to

illustrate the user recruitment procedure. In the example,
there are two tasks and three users with six sensing qualities,
as shown in Fig. 2. The protocol is conducted as follows:

• First round: The three users jointly compute their in-
cremental utility values, of which [∆1f ] = [10] is the

Users

Tasks
s1 s2

Quality

[5] [5] [6]

[2]

u1 u2 u3

[5]

[4]

(a) Users, tasks and sensing qualities

round 1 round 2 

 !"#$ % &'

 !(#$ % )*)

 !+#$ %  ),)$

 !"#$ % )')

 !(#$ %  )-)$

 !+#$ %  ).)$

 /"$ ))% ) )&)

 /($ ))% ) )')

 /+$ ))% )  )')$

 /"$ )))% )&)

 /($ )))%  )&)$

 /+$ )))%  )')$

 0"$ )% ) ).)

 0($ )% ) ).)

 0"$ )))% ),)

 0($ )))% ),)

(b) Intermediate results

Fig. 2: Illustration of the O-SUR protocol (θ1=θ2=8)

largest. Thus, user u1 is recruited, i.e., [b1] = [1]. Ac-
cordingly, we have [Q1]=[Q2]=5.

• Second round: The users jointly compute their incre-
mental utility values again, based on [Q1] = [Q2] = 5.
Since [b1]= [1], [∆1f ] is set as [0]. This time, [∆2f ]= [6]
becomes the largest value. Thus, user u2 is recruited,
i.e., [b2]= [1]. Accordingly, [Q1]= [Q2]=θ1=θ2=8. No
more users will be recruited.

3.5 The Performance and Security Analysis
In this section, we first prove the correctness and analyze

the approximation ratio of the greedy strategy (i.e., Proce-
dure 1). Based on this, we analyze the performance of the
O-SUR protocol (i.e., Protocol 1). Afterwards, we prove the
security of O-SUR under the semi-honest model.

First, we prove three important properties of the defined
utility function f(Φ) in the following theorems.

Theorem 2. f(Φ) is an increasing function with f(∅)=0.

Proof: First, if Φ = ∅, then min{
∑

ui∈Φ qi,j , θj} = 0 for
∀j ∈ [1,m]. According to Definition 7, f(Φ=∅)=0. Second,
without loss of generality, we consider two user sets Φ1 and
Φ2, where Φ1 ⊆ Φ2. Then, we have min{

∑
ui∈Φ1

qi,j , θj}≤
min{

∑
ui∈Φ2

qi,j , θj}. Consequently, we have f(Φ1) =∑m
j=1 min{

∑
ui∈Φ1

qi,j , θj} ≤
∑m

j=1 min{
∑

ui∈Φ2
qi,j , θj} =

f(Φ2). Therefore, f(Φ) is an increasing function with f(∅)=
0. The theorem holds. �
Theorem 3. f(Φ)=

∑m
j=1 θj iff Φ is a feasible solution to the

user recruitment problem.
Proof: According to Eq. 15, f(Φ) =

∑m
j=1 θj iff

min{
∑

ui∈Φqi,j , θj}= θj holds for each j ∈ [1,m]. In fact,
min{

∑
ui∈Φ qi,j , θj}=θj and

∑
ui∈Φ qi,j≥θj are equivalent.

Therefore, we have that f(Φ)=
∑m

j=1 θj iff
∑

ui∈Φ qi,j ≥ θj
holds for each j∈ [1,m]. This means that the users in Φ can
perform each task sj in S with a total sensing quality no less
than θj . Thus, the theorem is correct. �
Theorem 4. f(Φ) is a submodular function. More specifically,

for two arbitrary user sets Φ1 and Φ2, Φ1 ⊆ Φ2, and
∀uh∈U\Φ2, the submodular property holds, i.e.,
f(Φ1 ∪ {uh})− f(Φ1)≥f(Φ2 ∪ {uh})− f(Φ2). (17)

Proof: To prove the submodular property of f(Φ), we
consider two cases:

Case 1: user uh cannot deal with task sj , i.e., qh,j=0. For
this case, we have
min{

∑
ui∈Φ1∪{uh}

qi,j , θj}−min{
∑

ui∈Φ1

qi,j , θj} =

min{
∑

ui∈Φ2∪{uh}
qi,j , θj}−min{

∑
ui∈Φ2

qi,j , θj}=0. (18)
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Case 2: user uh can perform task sj , i.e., qh,j > 0. We
divide this case into two sub-cases:

∑
ui∈Φ1∪{uh} qi,j ≤∑

ui∈Φ2
qi,j and

∑
ui∈Φ1∪{uh} qi,j>

∑
ui∈Φ2

qi,j .
For the first sub-case, since Φ1 ⊆ Φ2, we have∑

ui∈Φ1
qi,j ≤

∑
ui∈Φ1∪{uh} qi,j ≤

∑
ui∈Φ2

qi,j ≤∑
ui∈Φ2∪{uh} qi,j . Then, we can get:

min{
∑

ui∈Φ1∪{uh}
qi,j , θj}−min{

∑
ui∈Φ1

qi,j , θj}

=


qh,j , θj ≥

∑
ui∈Φ2∪{uh} qi,j ;

qh,j ,
∑

ui∈Φ2∪{uh} qi,j >θj ≥
∑

ui∈Φ2
qi,j ;

qh,j ,
∑

ui∈Φ2
qi,j >θj≥

∑
ui∈Φ1∪{uh} qi,j ;

θj−
∑

ui∈Φ1
qi,j ,

∑
ui∈Φ1∪{uh} qi,j >θj ≥

∑
ui∈Φ1

qi,j ;

0 , θj <
∑

ui∈Φ1
qi,j .

(19)

min{
∑

ui∈Φ2∪{uh}
qi,j , θj}−min{

∑
ui∈Φ2

qi,j , θj}

=


qh,j , θj ≥

∑
ui∈Φ2∪{uh} qi,j ;

θj−
∑

ui∈Φ2
qi,j ,

∑
ui∈Φ2∪{uh} qi,j >θj ≥

∑
ui∈Φ2

qi,j ;

0 ,
∑

ui∈Φ2
qi,j >θj≥

∑
ui∈Φ1∪{uh} qi,j ;

0 ,
∑

ui∈Φ1∪{uh} qi,j >θj ≥
∑

ui∈Φ1
qi,j ;

0 , θj <
∑

ui∈Φ1
qi,j .

(20)

Comparing Eqs. 19 and 20, we have:

min{
∑

ui∈Φ1∪{uh}
qi,j , θj}−min{

∑
ui∈Φ1

qi,j , θj}≥

min{
∑

ui∈Φ2∪{uh}
qi,j , θj}−min{

∑
ui∈Φ2

qi,j , θj} (21)

Similarly, for the second sub-case, we can still derive Eq.
21. In summary, we can conclude that Eq. 21 holds for all
cases. Now, according to Eq. 15, we have:

f(Φ1 ∪ {uh})− f(Φ1)≥f(Φ2 ∪ {uh})− f(Φ2). (22)

Therefore, f(Φ) is a submodular function. �
Second, based on the above properties of the utility

function, we can prove the correctness of Procedure 1.
Theorem 5. Procedure 1 is correct. That is, it will produce

a feasible solution for the user recruitment problem, as
long as the problem is solvable.

Proof: In each round of iteration in Procedure 1, a user
will be added into the user set Φ. Moreover, according to
Theorem 2, the utility f(Φ) will increase along with the
expansion of the user set Φ. Hence, the iteration processes
will certainly terminate. According to Procedure 1, when the
iteration processes terminate, there must be f(Φ)=

∑m
j=1 θj .

So, we can conclude that Φ is a feasible solution for the user
recruitment problem according to Theorem 3. �

Furthermore, we derive the approximation ratio of Pro-
cedure 1. Before this, we first prove that our user recruit-
ment can be re-formalized as a Minimum Integral Submod-
ular Cover with Submodular Cost (MISC/SC) problem.
Lemma 1. The O-SUR problem can be re-formalized as an

MISC/SC problem. Specifically, we have:
1) if the problem is solvable, it can be re-formalized as

Minimize{|Φ||f(Φ)=f(U),Φ⊆U}; (23)
2) both f(Φ) and |Φ| are polymatroid functions on 2U ,

i.e., both of them are increasing submodular functions, and
f(Φ)=0, |Φ|=0 when Φ=∅.

Proof: 1) If the user recruitment problem is solvable, the
user set U must be a feasible solution, since this set contains
all users. According to Theorem 3, f(Φ) =

∑m
j=1 θj iff Φ

is a feasible solution. Therefore, if Φ is another feasible

solution, we must have f(Φ) = f(U) =
∑m

j=1 θj . That is
to say, the constraint Eq. 5 can be equivalently replaced by
f(Φ) = f(U). Therefore, the user recruitment problem can
be re-formalized as Eq. 23.

2) According to Theorems 2 and 4, f(Φ) is an increas-
ing submodular function with f(∅) = 0. Thus, f(Φ) is a
polymatroid function on 2U . On the other hand, for two
arbitrary user sets Φ1 and Φ2, |Φ| satisfies the equation:
|Φ1|+ |Φ2| = |Φ1∩Φ2|+ |Φ1∪Φ2|. This means that |Φ| is a
modular function, which also implies the submodular prop-
erty. Moreover, it is easy to verify that |Φ| is an increasing
function with |Φ=∅| = 0. Thus, |Φ| is also a polymatroid
function. Therefore, the lemma holds. �

Next, we introduce a lemma about the approximation
ratio of MISC/SC problems, which is derived from [25].
Lemma 2. For an MISC/SC problem like Minimize{|Φ|
|f(Φ) = f(U),Φ⊆U}, if f(Φ) is a polymatroid integer-
valued function on 2U and |Φ| is a modular function, the
greedy strategy in Procedure 1 can achieve a (1+ln γ)-
approximation solution, where γ=maxui∈Uf({ui}).
Now, we derive the approximation ratio of the proposed

procedure in the following theorem.
Theorem 6. Procedure 1 can produce a (1 + ln γ)-

approximation solution, where γ=maxui∈U f({ui}).

Proof: According to Lemma 1, the O-SUR problem can be
re-formalized as an MISC/SC problem. Moreover, according
to Theorem 4, we have that f(Φ) is a polymatroid integer-
valued function on 2U . Additionally, in the proof of Lemma
1, we have shown that |Φ| is a modular function. Therefore,
according to Lemma 2, the greedy strategy in Procedure 1
can achieve a (1+ln γ)-approximation solution, where γ =
maxui∈Uf({ui}). The theorem holds. �

Theorems 5 and 6 show that if the user recruitment
problem is solvable, Procedure 1 will produce a nearly
optimal solution. Accordingly, we analyze the performance
of the O-SUR protocol. Essentially, Protocol 1 is a distribut-
ed version of Procedure 1, combined with secret sharing
schemes. Therefore, Protocol 1 can achieve the same user
recruitment result as Procedure 1. We can straightforwardly
get the following theorem:
Theorem 7. Protocol 1 is correct, and it can also pro-

duce a (1 + ln γ)-approximation solution, where γ =
maxui∈Uf({ui}).
Next, we prove that Protocol 1 is secure against any

semi-honest adversaries in the following theorem.
Theorem 8. Protocol 1 can protect the sensing qualities of

each user from being revealed to any κ semi-honest
adversaries and the platform, even if they might collude,
where κ (i.e., the degree of polynomial sharing) may be
any integer less than n.
Proof: First, SecMulti and SecCmp are secure according

to [16, 17]. Further, according to Eqs. 13 and 14 and the
composition security theorem in [7], SecMax and SecMin
are also secure. Thus, we only need to prove that O-SUR is
secure by itself. According to Definition 1, we first construct
a simulator for an arbitrary user such that its view can be
efficiently simulated by the output of the simulator. That is
to say, the output of the simulator and the view are com-
putational indistinguishability. Without loss of generality,
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we consider any κ users, denoted by I={ui1 , · · · , uiκ} ⊂
U , and construct the view of each user uit ∈ I , i.e.,
V IEWit . Going through the whole protocol, we have
Mit = {qi,j [it], bi[it], Qj [it], δ[it],∆if [it],∆maxf [it], z[it]}
and V IEWit = ({qit,j , n,m, θj}, r,Mit). Then, the simula-
tor for the user uit randomly selects a number q′it,j from
the prime filed Zp. Consider the received messages Mit in
V IEWit where the number of shares of each secret is no
larger than κ. Also, since both qit,j and q′it,j are the numbers
randomly selected from Zp, the output of the simulator and
the view are computational indistinguishability. That is to
say, each received message can be simulated by a number
randomly chosen from Zp. Thus, Eq. 1 holds for O-SUR.
According to the composition security theorem in [7], the
whole protocol is secure. Thus, this theorem is correct. �

In Theorem 8, let κ = n− 1, then no one except the
secret holder is able to gather all shares to reconstruct
the message. In addition, we prove that when the total
sensing quality function Qj(Φ) is a trivial function instead
of Qj(Φ)=

∑
ui∈Φ qi,j , Protocol 1 can still work well. In such

case, Eq. 5 becomes a non-linear constraint, and computing
the utility function f(Φ) becomes a little complicated. We
have the following theorems.

Theorem 9. When Qj(Φ) in Protocol 1 is a trivial function
that can be securely computed by using the secure oper-
ations in Definition 6, Protocol 1 will still be secure.
Proof: In Theorem 8, all parts, except the process of

computing Qj(Φ) in Protocol 1, have been proven to be
secure. Now, if Qj(Φ) can also be securely computed, the
whole protocol will be secure according to the composition
security theorem in [7]. �
Theorem 10. When Qj(Φ) is an increasing submodular

function with Qj(Φ = ∅) = 0, we have: 1) the utility
function f(Φ) is still submodular; 2) Protocol 1 can
still produce a (1+ln γ)-approximation solution where
γ=maxui∈Uf({ui}).
Proof: 1) Consider two arbitrary user sets Φ1 and Φ2,

Φ1 ⊆ Φ2, and ∀uh ∈ U\Φ2, we need to prove the sub-
modular property holds, i.e., f(Φ1∪{uh})−f(Φ1)≥f(Φ2∪
{uh})−f(Φ2). To prove this, we adopt the same method
as that in Theorem 4: 1) for the case qh,j = 0, we have
min{Qj(Φ1∪{uh}), θj}−min{Qj(Φ1), θj}=min{Qj(Φ2∪
{uh}), θj}−min{Qj(Φ2), θj} = 0; 2) for the case qh,j >
0 and Qj(Φ1) ≤ Qj(Φ1 ∪ {uh}) ≤ Qj(Φ2) ≤ Qj(Φ2 ∪
{uh}), when θj > Qj(Φ2∪{uh}), we have (min{Qj(Φ1∪
{uh}), θj}−min{Qj(Φ1), θj})−(min{Qj(Φ2∪{uh}), θj}−
min{Qj(Φ2), θj}) = (Qj(Φ1∪{uh})−Qj(Φ1))− (Qj(Φ2∪
{uh})−Qj(Φ2)) > 0, due to the submodular property of
Qj(Φ); 3) for other cases, it is straightforward to get a
similar result as that in Theorem 4. Thus, we have that
(min{Qj(Φ1∪{uh}), θj}−min{Qj(Φ1), θj})−(min{Qj(Φ2∪
{uh}), θj}−min{Qj(Φ2), θj})≥0 holds for all cases, which
implies f(Φ1∪{uh})−f(Φ1)≥f(Φ2∪{uh})−f(Φ2). Therefore,
f(Φ) is submodular.

2) Since Qj(Φ) is an increasing submodular function
with Qj(Φ = ∅) = 0, f(Φ) is also an increasing function
with f(Φ=∅)=0 according to Eq. 15. We has proved that
f(Φ) is submodular. Therefore, when we replace Qj(Φ) =∑

ui∈Φ qi,j by using a trivial increasing submodular func-
tion, the problem can still be re-formalized as an MISC/SC

Procedure 2 The User Recruitment Strategy of E-SUR
Input: U , S , {qi,j |ui∈U , sj ∈S}, {θj |sj ∈S}, {ci|ui∈U}
Output: Φ

1: Φ=∅; g(Φ)=0;
2: while g(Φ)<φ

∑m
j=1 θj do

3: Select a user ui∈U\Φ to maximize ∆ig(Φ)
ci

;
4: Φ=Φ ∪ {ui};
5: return Φ

problem. Moreover, f(Φ) is a polymatroid integer-valued
function on 2U . Further, according to Lemma 2, Protocol 1
can still achieve a (1+ln γ)-approximation solution, where
γ=maxui∈Uf({ui}). �

Theorems 9 and 10 show that as long as the quality
function is an increasing submodular function which can
be secretly computed by using the secure operations in
Definition 6, the proposed secure user recruitment protocol
can be applied to other existing works.

4 THE E-SUR PROTOCOL
In this section, we propose a hEterogeneous Secure User

Recruitment (E-SUR) protocol based on the secret sharing
scheme, where users’ costs are heterogeneous. Here, users’
costs and sensing qualities as input privacy need to be
protected simultaneously. We first propose the basic user
recruitment strategy used in E-SUR protocol. Based on this,
we propose the E-SUR protocol, followed by performance
and security analysis.

4.1 The Building Blocks
Different from the defined utility function f(Φ) used in

O-SUR, we propose a new utility function g(Φ) = φ · f(Φ)
in E-SUR. That is,

g(Φ)=φ
m∑
j=1

min{Qj(Φ), θj}=φ
m∑
j=1

min{
∑
ui∈Φ

qi,j , θj}. (24)

where φ = max{φ1, φ2} is a constant related to the ap-
proximation ratio of the E-SUR protocol, in which φ1 =

max{ ci|1≤i≤n
θj−Qj(Φ)|1≤j≤m,Qj(Φ)<θj ,Φ⊂U } and φ2 =

∑n
i=1 ci∑m
j=1 θj

. The
derivation of φ1 and φ2 is shown in the proof of the
approximation ratio (i.e., Theorem 13). Also, we use ∆ig(Φ)
to denote the incremental utility g(Φ) of adding a new user
ui into Φ, i.e.,

∆ig(Φ)=g(Φ ∪ {ui})− g(Φ). (25)

According to this, the procedure of recruiting users
adopted in the E-SUR protocol is shown in Procedure 2.
Here, the adopted greedy strategy in Procedure 2 is based on
∆ig(Φ)

ci
. That is to say, the user who improves the utility g(Φ)

per cost the most, i.e., the user ui who can maximize the
value of ∆ig(Φ)

ci
, will be selected first. The user recruitment

process terminates when g(Φ)=φ
∑m

j=1 θj .

4.2 The Detailed E-SUR Protocol
According to the building blocks, we propose the E-

SUR protocol adopting the same utility function (i.e., g(Φ))
and greedy strategy as Procedure 2 to recruit users. In the
E-SUR protocol, the inputs including all sensing qualities
(i.e., {qi,j |∀ui ∈ U , sj ∈ S}) and recruitment costs (i.e.,
{ci|∀ui ∈U}), and the computation are conducted by using
the secret sharing techniques. That is, each input qi,j (also
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for ci) is seen as a secret and it is replaced by its polyno-
mial shares [qi,j ] (accordingly [ci]). Similar to the O-SUR
protocol, when users jointly make recruitment decisions, all
computations are conducted by using the secure operations
in Definition 6, and all intermediate results are produced in
the manner of shared secrets. To this end, we replace ui∈Φ
and ∆ig(Φ) with [bi]=[1] and φ

∑m
j=1 min{qi,j , θj−Qj(Φ)},

and further hide the maximum incremental utility and the
selected user in a SecMax operation and a SecCmp opera-
tion to prevent the selected user from being revealed in each
round of iteration. Only in the final phase, each user ui can
reconstruct the result of bi by collecting the corresponding
shares. Afterwards, each user ui knows whether she/he
is recruited or not. After the recruited users conduct the
sensing tasks and upload the results to the requester, the
requester will pay the recruited users.

The detailed E-SUR protocol is shown in Protocol 2,
which has the similar structure as the O-SUR protocol. The
difference lies in that the recruited cost (i.e., ci) of each user
ui is also protected from being revealed, and the adopted
greedy strategy is to maximize [∆̂ig] (i.e., [∆ig][αi] where
αi =

1
ci

) in Protocol 2 instead of [∆if ] in Protocol 1. More
specifically, in Steps 3-4, each user constructs the polynomial
secret shares of their cost values as the input in addition to
their sensing quality values. In Steps 18-21, the users jointly
determine the maximum incremental utility value per cost,
i.e., ∆ig(Φ)

ci
, which is denoted by [∆̂maxg] in Protocol 2. After

n rounds of iterations, the protocol terminates and each user
reconstructs the final recruited results.

Now, we analyze the computation and communication
complexity of Protocol 2. We get that the operations SecMin
in Steps 16 and 25, SecMulti in Steps 18-19, and SecMax
in Step 20 involve n2m, n2 and n invocations of secure
multiplication operations, respectively. The complexity of
the whole protocol is dominated by the three parts. Ac-
cording to Eqs. 13 and 14, we grasp that the SecMin and
SecMax operations require n2l (l= ⌈log2 p⌉) bit-operations
per user and l rounds of communications, respectively.
Thus, Protocol 2 will lead to O(mn4l) bit-operations per
user and O(mn2l) rounds of communications.

4.3 The Performance and Security Analysis
We first prove the correctness of Procedure 2, i.e.,

Theorem 11. Procedure 2 is correct. That is, 1) Procedure 2
will terminate; 2) g(Φ) = φ

∑m
j=1 θj iff Φ is a user set

that can execute the tasks in S so that the total sensing
qualities of all tasks are not less than their thresholds.
Proof: 1) In Procedure 2, only one user will be added into

the user set Φ in each round of iteration. In the worst case,
after all n users are added into Φ, we have g(Φ)=φ

∑m
j=1 θj

and the protocol will terminate.
2) On one hand, g(Φ) = φ

∑m
j=1 θj only when

min{Qj(Φ), θj}= θj for ∀j ∈ [1,m], indicating θj ≤Qj(Φ)
for ∀j ∈ [1,m]. Based on this, the total sensing qualities of
tasks are not less than their thresholds. On the other hand, if
Φ is a user set which can ensure that the total sensing qual-
ities of tasks are not less than the threshold, i.e., θj≤Qj(Φ)
for ∀j∈ [1,m]. We directly have g(Φ)=φ

∑m
j=1 θj . Thus, the

theorem is correct. �
Next, we analyze the performance of Procedure 2. Before

this, we explore several features of g(Φ) and C(Φ).

Protocol 2 The E-SUR Protocol
Input: U , S , {qi,j |ui∈U , sj ∈S}, {θj |sj ∈S}, {ci|ui∈U}
Output: b1, · · · , bn
Phase 1: the requester publishes S to U via the platform;
Phase 2: users input their sensing quality vectors;
1: for i=1 to n do
2: user ui determines the sensing qualitiesqi,1, · · · , qi,m;
3: user ui generates αi=

1
ci

and polynomial sharing [αi];
4: user ui sends the share αi[i

′] to user ui′ ;
5: for j=1 to m do
6: user ui generates the polynomial sharing [qi,j ];
7: user ui sends the share qi,j [i

′] to user ui′ ;
Phase 3: users jointly make the decision of user recruitment;
8: for i=1 to n do
9: [bi]← [0];

10: for j=1 to m do
11: [Qj ]← [0];
12: for round=1 to n do
13: for i=1 to n do
14: [∆ig]← [0], [∆̂ig]← [0];
15: for j=1 to m do
16: [δ]←SecMin([qi,j ], SecSub(θj , [Qj ]));
17: [∆ig]←SecAdd([∆ig], [δ]);
18: [∆ig]←SecMulti([∆ig], SecSub([1], [bi]));
19: [∆̂ig]←SecMulti([∆ig], [αi]);
20: [∆̂maxg]←SecMax([∆̂1g], · · · , [∆̂ng]);
21: for i=1 to n do
22: [z]←SecCmp([∆̂maxg], [∆̂ig]);
23: [bi]←SecAdd([bi], SecMulti(SecSub([1], [bi]), [z]));
24: for j=1 to m do
25: [δ]←SecMin([qi,j ], SecSub(θj , [Qj ]));
26: [Qj ]←SecAdd([Qj ], SecMulti([z], [δ]));
Phase 4: the users reconstruct the results;
27: for i=1 to n do
28: user ui collects all shares of [bi];
29: user ui derives bi=

∑m
j=1 bi[j];

Lemma 3. g(Φ) and C(Φ) are submodular functions.

Proof: 1) Since f(Φ) is a submodular function (Theorem
4) and we let g(Φ)=φ · f(Φ) where φ is a constant, we get
that g(Φ) is also a submodular function.

2) C(Φ) =
∑

ui∈U ci is submodular iff, for two sets Φ1

and Φ2, Φ1⊆Φ2, and ∀uh∈U\Φ2, we have C(Φ1∪{uh})−
C(Φ1)≥C(Φ2∪{uh})−C(Φ2). It is straightforward to verify
that the equation holds. Actually, C(Φ1∪{uh})−C(Φ1) is
always equal to C(Φ2 ∪{uh})−C(Φ2). Hence, C(Φ) is a
submodular function. �
Theorem 12. g(Φ) and C(Φ) are two polymatroid functions

on 2U .
Proof: According to Theorems 2, 4 and Lemma 3, g(Φ)

and C(Φ) are two increasing, submodular functions with
g(ϕ) = 0 and C(ϕ) = 0, we get that g(Φ) and C(Φ) are two
polymatroid functions on 2U . �

Now, we analyze the performance of Procedure 2.
First, the E-SUR problem can be re-formalized a Mini-

mum Fractional Submodular Cover with Submodular Cost
(MFSC/SC) problem by replacing the constraint (i.e., Eq.9)
with g(Φ)=g(U), i.e.,

Minimize {C(Φ)|g(Φ) = g(U),Φ ⊆ U}, (26)
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where g(Φ) and C(Φ) are two increasing submodular and
further polymatroid functions with g(Φ = ϕ) = 0 and
C(Φ = ϕ) = 0 according to Theorems 2 and 12 and
Lemma 3. Note that “fractional” here means that g(Φ) is a
polymatroid fraction-valued function on 2U . This is because
g(Φ)=φf(Φ), while φ=max{φ1, φ2} is a fraction constant.

Second, we introduce a lemma about the approximation
ratio of MFSC/SC problems in [25].
Lemma 4. Consider an MFSC/SC problem: Minimize
{C(Φ)|g(Φ) = g(U),Φ ⊆ U}, in which g(·) is a poly-
matroid function on 2U , and g(U)≥opt where opt is the
optimal recruited cost of satisfying the sensing quality
threshold constraints. If the selected criterion of a greedy
algorithm for this problem always satisfies ∆ig(Φ)

ci
≥ 1,

then the greedy algorithm can achieve a (1+ρln g(U)
opt )-

approximation solution. Moreover, if C(Φ) is a modular
function, then ρ=1.
Based on this, we have the following theorem:

Theorem 13. Procedure 2 can produce a (1+ ln
φ
∑m

j=1 θj
opt )-

approximation solution, in which opt is the cost of the
optimal solution for the E-SUR problem.
Proof: 1) Since the user set U must be a feasible solution,

we have g(U)=φ
∑m

j=1 θj . According to φ=max{φ1, φ2} in
which φ1 = max{ ci|1≤i≤n

θj−Qj(Φ)|1≤j≤m,Qj(Φ)<θj ,Φ⊂U } and φ2 =∑n
i=1 ci∑m
j=1 θj

, we get that g(U)≥φ2

∑m
j=1 θj≥

∑n
i=1 ci≥opt.

2) Without loss of generality, we denote the recruited
user in the last round of iteration as uh, and denote the
recruited user set of this round as Φ′ (excluding uh). More-
over, we have Φ⊆Φ′. At this moment, there must be at least
a task whose obtained total sensing quality is less than its
threshold; otherwise, the algorithm would have terminated
before. For simplicity, let sj be such a task. Based on this, we
have Qj(Φ

′)<θj while Qj(Φ
′∪{uh})≥θj . Thus, we have

g(Φ ∪ {ui})− g(Φ)

ci
≥ g(Φ ∪ {uh})− g(Φ)

ch
(27)

≥ g(Φ′ ∪ {uh})− g(Φ′)

ch
(28)

≥ φ

(
min{Qj(Φ

′ ∪ {uh}), θj} −min{Qj(Φ
′), θj}

)
ch

(29)

≥ φ
θj −Qj(Φ

′)

ch
≥ φ1

θj −Qj(Φ
′)

ch
≥ 1, (30)

where Eq. 27 indicates that user ui is the optimal selection
for user set Φ, while Eq. 28 is based on the submodular
property of g(Φ). Now, we get that our greedy strategy
satisfies the property of Lemma 4. Based on this, we get that
Procedure 2 is a (1+ln

φ
∑m

j=1 θj
opt )-approximation solution. �

Since Protocol 2 is actually a distributed version of
Procedure 2 combined with secret sharing schemes, Protocol
2 can achieve the same user recruitment result as Procedure
2. So we have the following theorem:
Theorem 14. Protocol 2 is correct, and it can also pro-

duce a (1+ ln
φ
∑m

j=1 θj
opt )-approximation solution, where

opt means the cost of the optimal solution for E-
SUR problem, and φ = max{φ1, φ2} in which φ1 =

max{ ci|1≤i≤n
θj−Qj(Φ)|1≤j≤m,Qj(Φ)<θj ,Φ⊂U } and φ2=

∑n
i=1 ci∑m
j=1 θj

.
Also, we can prove the security of Protocol 2 against any

semi-honest adversaries.

Theorem 15. Protocol 2 can protect the sensing qualities and
recruitment cost of each user from being revealed to any
κ semi-honest adversaries and the platform, even if they
might collude. Here, κ means the degree of polynomial
sharing, which may be any integer less than n.
Proof: Compared to Protocol 1, the E-SUR protocol (i.e.,

Protocol 2) involves the privacy-preserving issue about
the recruitment costs of all users during the secure user
recruitment process. In the security proof of Protocol 1,
we have proved that all mathematical operations used
in Protocols 1 and 2 are secure according to [7, 16, 17].
Here, we prove the security of E-SUR from itself. Simi-
lar to Protocol 1, we also consider any κ users, denot-
ed by I = {ui1 , · · · , uiκ} ⊂ U , and construct the view
of each user V IEWit (uit ∈ I). During the whole us-
er recruitment process of Protocol 2, we get that Mit =

{qi,j [it], αi[it], bi[it], Qj [it], δ[it],∆ig[it], ∆̂ig[it], ∆̂maxg[it],
z[it]} and V IEWit =({qit,j , αit , n,m, θj}, r,Mit). Then, we
also construct a simulator for an arbitrary user in I such
that its view can be efficiently simulated by the output of
the simulator. The simulator for the user uit ∈ I randomly
selects two numbers q′it,j and α′

it
from the prime filed Zp.

Since both qit,j , αit and q′it,j , α′
it

are the numbers randomly
selected from Zp, the output of the simulator and the view
are computational indistinguishability. Thus, we get that Eq.
1 holds for E-SUR, and further conclude that the whole
protocol is secure [7]. �

5 PERFORMANCE EVALUATION
We evaluate the O-SUR and E-SUR protocols from two

aspects: the user recruitment and the privacy-preserving
mechanism, i.e., the secret sharing technique. When we
assess the user recruitment performance, we do not take
the privacy-preserving mechanism into consideration since
it has no effect on the user recruitment results. When
evaluating the performance of the adopted secret sharing
technique, we only focus on the time efficiency because the
security has been verified by theoretical analysis. Further-
more, in order to demonstrate the advantage of our adopted
privacy-preserving mechanism, we also compare it with
other theoretically-provable security schemes in terms of
time efficiency. More specifically, we first introduce the com-
pared protocols used in our simulations and experiments,
and then present the detailed simulation settings as well as
the evaluation metrics. At last, we present and analyze the
obtained simulation/experiment results.

5.1 Protocols in Comparison
First, to evaluate the user recruitment performance of

the O-SUR and E-SUR protocols, we design two other user
recruitment protocols adopting different selection strate-
gies for comparison. Existing user recruitment protocols
or algorithms involve various crowdsensing models (e.g.,
competition-based model, probabilistic model, etc.), con-
straints (e.g., delay constraint, budget constraint, etc.), and
optimization objectives (e.g., maximizing spatial/temporal
coverage, maximizing sensing qualities, etc.). Most of them
adopt the greedy strategy to recruit users (e.g., [10, 11, 14,
20, 26, 31]). In these works, the users who can accomplish
all sensing tasks with minimum costs are recruited first.
Meanwhile, these users are subject to the constraints of
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TABLE 2: Evaluation Settings
parameter name default range
number of users n 200 100-500
number of tasks m 100 50-250
average sensing quality q 30 10-90
variance of sensing qualities σ 0.4 0.2-1.0
average sensing quality threshold θ 100 50-250
variance of thresholds µ 0.2 0.1-0.5
largest number of tasks per user ρ 20 15-35
average recruited cost of users c 30 10-50
variance of recruited costs κ 0.3 0.1-0.5

some mobility models. For comparison, we borrow the basic
strategy by ignoring other constraints in these works to
design two compared user recruitment protocols, which
are applicable to our model. We call the first protocol
MCUR, in which the user who can perform the most
tasks (per cost in E-SUR scenario) is recruited first [14, 26],
i.e., ui∗ = argmaxui∈U/Φ

∑m
j=1[qi,j ]. Here, [qi,j ] = 0 when

qi,j =0; otherwise, [qi,j ]=1. Another protocol is denoted as
MQUR, in which the user who performs tasks with the most
sensing qualities (per cost in E-SUR scenario) is recruited
first [10, 11, 20, 31], i.e., ui∗ = argmaxui∈U/Φ

∑m
j=1 qi,j .

Together, the two compared protocols and our proposed
protocols constitute the most typical greedy user recruit-
ment strategies in crowdsensing.

Second, to prove that O-SUR and E-SUR can work well
in real applications, we realize and run them on real smart-
phones. Here, to evaluate the time efficiency of the O-SUR
and E-SUR protocols which adopt the secret-sharing-based
secure user recruitment approach, we realize two other
privacy-preserving techniques during the user recruitment
process for comparison. Besides the secret sharing schemes,
the homomorphic encryption and garbled circuit protocols
can also be utilized to solve the privacy-preserving user
recruitment problem [7]. Based on this, we implement two
compared protocols as follows: Homomorphic-Encryption-
based User Recruitment (HEUR) protocol [18] and Garbled-
Circuit-based User Recruitment (GCUR) protocol [12]. In
HEUR and GCUR, we turn each secure multi-party multipli-
cation operation among n users to n(n−1)

2 secure two-party
multiplication operations, and we use the homomorphic
encryption and garbled circuit protocols to conduct these
secure two-party multiplication operations.

5.2 Simulation Settings and Evaluation Metrics
We first introduce the simulation settings in the O-SUR,

E-SUR, MCUR and MQUR protocols. For the simulations,
synthetical traces are adopted, in which we can evaluate the
user recruitment performance with different parameters as
needed, while ignoring users’ mobility models. Here, since
O-SUR and E-SUR are designed for two different crowd-
sensing settings, we divide the simulations into two parts.
The O-SUR protocol and two compared user recruitment
protocols are conducted in the same simulation settings,
and E-SUR is conducted with the compared recruitment
protocols in other settings. Note that the simulation settings
in the O-SUR and E-SUR problems are same, except for
the recruitment costs of all mobile users. Hence, we first
present the same simulation settings in both scenarios and
then introduce the unique settings.

More specifically, we consider seven shared parameters,
including the number of users n, the number of tasks m,
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Fig. 4: |Φ| vs. m

the average sensing quality (denoted by q), the variance of
sensing qualities (denoted byσ), the largest number of tasks
performed by each user (denoted byρ), the average sensing
quality threshold θ, and the variance of thresholds (denoted
by µ). In each simulation, we change one parameter while
keeping the other parameters fixed. In all simulations, each
user ui randomly selects a value from (0, ρ] as the number of
tasks that he/she can perform. For each selected task sj , the
sensing quality qi,j is set as a value randomly chosen from
a range [(1−σ)q, (1+σ)q]. Moreover, for each sensing task
sj (∈S), its total quality threshold θj is randomly generated
from a range [(1−µ)θ, (1+µ)θ].

Then, we present the unique setting in the O-SUR and
E-SUR simulations. In the O-SUR simulations, the recruited
costs of all mobile users are homogeneous and the O-SUR
protocol does not involve the values, so the values of cost are
not specifically given; while in the E-SUR simulations, the
values of recruited cost are heterogeneous. Here, we use c
and κ to denote the average recruited cost and the variance
of cost, respectively. Then, for user ui (∈ U ), its recruited
cost ci is randomly generated from [(1−κ)c, (1+κ)c]. The
range and default values of each parameter are illustrated
in Table 2. Note that the default settings are used in all
simulations unless otherwise specified.

Next, we present the experiment settings on real smart-
phones. To evaluate time efficiency, we realize and run
O-SUR, E-SUR, HEUR and GCUR on a real smart phone
(Huawei P9: EVA-AL00) with a 2.0GB memory and a pro-
cessor of 4-core 2.2GHz plus 4-core 1.5GHz. We record the
execution time of O-SUR, E-SUR, HEUR, and GCUR in this
smartphone, while ignoring the communication time. Dur-
ing the execution, we use another smart phone to simulate
the remaining (n−1) users.

At last, we introduce the evaluation metrics in our
simulations. We evaluate the performance of the proposed
protocols mainly from two aspects: the total recruitment cost
and time efficiency. Since the recruitment costs of all users
are uniform in the O-SUR scenarios, we evaluate the number
of recruited users in the O-SUR problem.

5.3 Simulation Results
First, we present the simulation results about the O-

SUR and two compared protocols. Figs. 3 and 4 depict the
number of recruited users vs. different numbers of users
and tasks. The results show that the number of users re-
cruited by O-SUR is much smaller than MCUR and MQUR.
Moreover, when the number of tasks increases, more users
are recruited. When we increase the number of users, less
users are recruited. This is because when more candidate
users emerge, there may be better selections than before,
so fewer users are required to accomplish the same tasks.
We record the number of recruited users while changing
the other parameters (i.e., q, σ, θ and µ), as shown in
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Fig. 5: |Φ| vs. q
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Fig. 6: |Φ| vs. σ
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Fig. 7: |Φ| vs. θ
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Fig. 8: |Φ| vs. µ
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Fig. 9: C(Φ) vs. n
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Fig. 10: C(Φ) vs. m
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Fig. 11: C(Φ) vs. q

0.2 0.4 0.6 0.8 1.0

1000

1500

2000

 

T
o
ta

l 
R

e
c
ru

it
e
d
 C

o
s
t

Variance of Sensing Qualities

 E-SUR

 MCUR

 MQUR

Fig. 12: C(Φ) vs. σ

50 100 150 200 250

1000

2000

3000

4000

 

T
o
ta

l 
R

e
c
ru

it
e
d
 C

o
s
t

Average Sensing Quality Threshold

 E-SUR

 MCUR

 MQUR

Fig. 13: C(Φ) vs. θ
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Fig. 14: C(Φ) vs. µ
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Fig. 15: C(Φ) vs. c
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Fig. 16: C(Φ) vs. κ
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Fig. 17: |Φ| vs. ρ
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Fig. 18: C(Φ) vs. ρ

Figs. 5, 6, 7, and 8. Also, the performance results about the
largest number of tasks per user is shown in Fig. 17. These
results prove that O-SUR has a much better performance
than MCUR and MQUR. Moreover, when we increase either
the average sensing quality (i.e., q) or the largest number
of tasks performed by each user (i.e., ρ), the number of
recruited users decreases. When the average sensing quality
threshold (i.e., θ) increases, the number of recruited users
increases accordingly.

Second, the simulation results about the E-SUR protocol
are presented as follows. The performance comparisons in
terms of the number of mobile users n, the number of
tasks m, the average sensing quality q and the variance
of sensing quality σ, are shown in Figs. 9, 10, 11, and 12.
It also demonstrates the significant performance of E-SUR
compared to MCUR and MQUR. Furthermore, we get that
E-SUR achieves about 45.4% and 46.8% percent smaller
total recruitment costs than MCUR and MQUR, respectively.
On the other hand, the simulation results about the average
sensing quality threshold θ, the variance of quality threshold
µ, the average recruited cost of users c, the variance of cost
κ and the largest number of tasks performed by each user
ρ are shown in Figs. 13, 14, 15, 16, and 18. By analyzing
the results, we conclude that E-SUR achieves about 42.4%
and 42.7% percent smaller total recruitment costs than the
MCUR and MQUR protocols as a whole, respectively. At
the same time, we get that when the number of tasks m, the
average sensing quality θ or the average recruitment cost

of users c increases, the total costs of all protocols increase.
However, along with the increase of the number of users n,
the average sensing quality of tasks q or the largest number
of tasks performed by each user ρ, the total costs decrease.
These simulations validate our theoretical analysis results.

Third, we present the evaluation results of O-SUR, E-
SUR, HEUR and GCUR on smartphones. We run the O-SUR,
E-SUR, HEUR, and GCUR protocols in the smartphones by
changing the number of users from 5 to 10, while setting
m= 6, q = 30, σ = 0.4, θ = 100, µ= 0.2, ρ=m, c= 50 and
κ=0.1. The results are depicted in Fig. 19. When the number
of users is larger than 5, HEUR cannot work well in the real
smartphone since its run time has exceeded 105 ms. GCUR
performs even worse than HEUR. Even 5 users can result
in a run time of over 107 ms. In contrast, the run time of O-
SUR is far less than that of HEUR and GCUR in magnitudes.
This is because that the GCUR protocol needs to conduct
considerable precise and complex Boolean circuit opera-
tions while the HEUR protocols requires massive encryption
and decryption operations. As shown in Fig. 20, when the
number of users is 50 and the number of tasks is 20, the
execution time of O-SUR is less than 150s. Compared to the
execution time of HEUR and GCUR (dozens of minutes or
even hours), our protocol is quite efficient, which means
that it can work well in real smartphones. Similarly, the time
efficiency of E-SUR is also outstanding compared to HEUR
and GCUR, as shown in Figs. 21 and 22. More precisely,
the execution time of E-SUR is less than 200s, when the
numbers of users and tasks are set as 50 and 20, respectively.
The results indicate that both O-SUR and E-SUR can work
well in real applications. So, implementing and running the
proposed protocols on smartphones in reality is feasible.

6 RELATED WORK
Most works about mobile crowdsensing focus on the

user recruitment problem [5, 8, 10, 11, 14, 20, 26, 31] and
the task allocation problem [1, 2, 9, 23, 29, 35].
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On one hand, M. Karaliopoulos et al. in [14] propose two
greedy algorithms to recruit some mobile users who can per-
form location-related sensing tasks with a minimum cost; Y.
Han et al. in [8] propose a dynamic programming algorithm,
and further design two distributed algorithms to solve
the competition-based participant recruitment problem for
delay-sensitive crowdsensing scenarios; Z. He et al. in [10]
propose a greedy approximation algorithm and a genetic
algorithm for the user recruitment problem in vehicle-based
crowdsensing, which can achieve nearly optimal spatial
and temporal coverage with a limit budget; L. Pu et al.
in [20] advocate a mobile crowdsourcing paradigm called
Crowdlet in which the service quality based on keywords
is considered; D. Zhang et al. in [31] propose a novel par-
ticipant recruitment framework, called CrowdRecruiter, for
the energy-efficient Piggyback Crowdsensing task model,
which focus on minimizing incentive payments under the
probabilistic coverage constraint. But none of them has
taken the privacy-preserving issues into consideration when
conducting user recruitment in crowdsensing.

On the other hand, A. Chatterjee et al. in [1] studied
the task allocation problem, in which each task might in-
clude multiple steps, and each step requires different skills;
M. Cheung et al. in [2] design an asynchronous and dis-
tributed task selection algorithm for the deadline-sensitive
and location-dependent task allocation problem in mobile
crowdsensing; S. He et al. in [9] considered the maximum
net reward task allocation problem with the constraint of
time budgets; W. Sun et al. in [23] propose a fairness-aware
distributed approach to maximize the aggregate data utility
of heterogeneous sensing tasks within a given budget. None
of these studies has taken into consideration the secure user
recruitment problem for mobile crowdsensing.

Additionally, many incentive mechanisms such as [19,
28, 32–34] have been designed for stimulating mobile users
to participate in mobile crowdsensing. For example, D. Peng
et al. in [19] design an incentive mechanism to motivate the
rational crowdsensing participants to perform data sensing
efficiently. In other words, the participants get payments
according to their effective contributions in the form of
qualities of sensing data. Y. Wei et al. in [28] firstly propose
the two-sided online interactions among service users and
service providers for dynamic mobile crowdsensing. Q.
Zhang et al. in [33] propose an incentive mechanism to
stimulate crowd workers to undertake crowd labeling tasks
under a budget constraint. H. Zhang et al. in [32] propose
a multi-market dynamic double auction mechanism for the
proximity-based mobile crowd service systems.

So far, only a few works have studied the privacy issues
in mobile crowdsensing systems. For example, Q. Wang et
al. in [27] investigate the problem of continuous real-time s-

patiotemporal crowd-sourced data publishing, and design a
privacy-preserving online data publishing scheme based on
differential privacy. G. Zhuo et al. in [36] propose a privacy-
preserving verifiable data aggregation and analysis scheme
based on homomorphic encryption for cloud-assisted mo-
bile crowdsourcing. X. Jin et al. in [13] present a framework
for a crowdsourced spectrum sensing service provider to
select spectrum-sensing participants, in which the differen-
tial privacy is adopted to protect the locations of mobile
participants. However, none of these studies investigates the
privacy-preserving problem in the user recruitment process.
To the best of our knowledge, our proposed protocols are the
first privacy-preserving user recruitment protocols designed
for mobile crowdsensing systems.

7 CONCLUSION
We propose two secure user recruitment protocols, i.e.,

O-SUR and E-SUR, for sensing-quality-aware mobile crowd-
sensing systems. O-SUR applies to the scenario where the
recruitment costs of users are homogeneous, while E-SUR
is designed for the case in which the recruitment costs
are heterogeneous. Both of them adopt greedy strategies
to recruit users and use secret sharing schemes to protect
users’ privacy. The difference lies in that O-SUR and E-SUR
adopt two unique utility functions. We prove that both O-
SUR and E-SUR can produce a solution with a logarithmic
approximation ratio, and they can protect the inputs of each
user from being revealed to the platform or to other users,
even if they might collude. The simulation results show that
O-SUR and E-SUR can work well in real smartphones.
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