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Abstract—Changes in network state are a common source of instabil-
ity in networks. An update event typically involves multiple flows that
compete for network resources at the cost of rescheduling and mi-
grating some existing flows. Previous network updating schemes tackle
such flows independently, rather than as the entity of an update event.
They only optimize the flow-level metrics for the flows involved in an
update event. In this paper, we present an event-level abstraction of
network update that groups flows of an update event and schedules
them together to minimize the event completion time (ECT). We then
study the scheduling problem of multiple update events for achieving
high scheduling efficiency and preserving fairness. The designed least
migration traffic first (LMTF) method schedules all update events in
the FIFO order, but it avoids head-of-line blocking by randomly fine-
tuning the queue order of some events. It can considerably reduce the
update cost, the average, and tail ECTs of update events. In addition, we
design a general parallel-LMTF (P-LMTF) method to guarantee fairness
and further improve scheduling efficiency among update events. This
improves the LMTF method by opportunistically updating multiple events
simultaneously. The comprehensive evaluation results indicate that the
average ECT of our approach is up to 10× faster than the flow-level
scheduling method for network update events, and its tail ECT is up to
6× faster. Our P-LMTF method incurs a 75% reduction in the average
ECT compared with FIFO when the network utilization exceeds 70%,
and it achieves a 42% reduction in tail ECT.

Index Terms—Network update, fairness, efficiency.

1 INTRODUCTION

DUE to updating issues, such as upgrades of switches
and VM migrations [1], triggered by operators, ap-

plications, and network devices, network condition consis-
tently undergoes changes. When upgrading a switch, all
flows initially passing through it should be rerouted along
other parts of the network to ensure the normal execution of
network applications. There are two general consequences
of such update issues: change of the network topology
and change of the traffic matrix. These updating issues are
common sources of instability in networks. Therefore, each
network update should be planned well in advance and
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should be tackled by designing effective and efficient update
schemes.

For a network update event under the initial network
configuration, the update plan usually includes the net-
work topology and traffic distribution to the desired fi-
nal network state. The update process usually undergoes
many intermediate network states, and it may result in
serious traffic congestion and other issues. For this reason,
previous updating schemes focus on realizing the correct
transition from an initial network state to a final network
state. Previous approaches can be roughly divided into two
categories. One is the consistent update [2], in which a
packet/flow traverses the network obeying either the old or
new network configurations. The two-phase update method
and its variants [3–5] fall into such a category. The other is
the congestion-free update, which creates an update plan for
any update event in advance. This plan contains a series of
intermediate states, but the transition across adjacent states
is lossless. SWAN [6], zUpdate [1] and their variants [7, 8]
fall into this category.

An update event typically involves a collection of new
flows, such as a set of flows caused by VM migration. The
update event is not finished until all flows in it have been
scheduled. However, existing updating schemes treat each
flow in such a collection in isolation rather than organizing
involved flows of an update event as an entity. Updating
schemes that attempt to optimize flow-level metrics will fail
to optimize event-level metrics like the event completion
time (ECT) of an update event or the average and tail
ECTs of multiple update events. In fact, the abstraction of
a per-flow update cannot capture event-level or inter-event
level requirements in a collection of update events. Previous
updating schemes fail to provide a frame to represent event-
level update semantics. For example, some flows of an
update event may be blocked because the network resources
they required are occupied by the heavy flows of other
update events. This would lead to high average and tail
ECTs.

In this paper, we define an event-level abstraction of
network update and schedule flows together contained in
an update event. If the network cannot serve any flow
in such an update event, a few existing flows are locally
migrated to other appropriate paths (if they exist) to satisfy
the bandwidth requirement of the new flows in the update
event. The event-level abstraction can decrease the ECT by
cooperatively allocating network resource for an update
event. This considerably speeds the network update pro-
cess and proves very important for network management
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[9]. We define the update cost of an update event as the
total amount of occupied bandwidth of migrated existing
flows caused by an update event. However, it is a NP-
complete problem to identify which existing flows should be
migrated, guarantee a minimal update cost and satisfy the
requirements of an update event. Accordingly, we propose
an efficient method to calculate the set of migrated flows to
approximate the optimal solution.

Operators, applications, and network devices create
multiple update events in a shared network. For example,
a switch upgrade can be treated as an update event which
contains all flows passed through it. VM migration also can
be an update event where incoming flows will be rerouted
to the new location of VMs. Within one time slot, there may
exist multiple such update events, which exhibit wide varia-
tions in flow number, the size of individual flows, and in to-
tal size. They may lead to different bandwidth requirements
for the migrated traffic. Simple scheduling mechanisms like
FIFO [10] remain inapplicable to this type of inter-event
scheduling problem. Using a scheduling method like FIFO
usually incurs the serious head-of-line blocking problem.
That is, the head-event may be heavy, and it requires more
network resources which are available after a longer period
of time because of the occupation by other applications.
Therefore, many light-weight update events, which arrive
later, would wait a long time in the update queue. This
would increase the average ECT and tail ECT of a set of
update events.

In this paper, we investigate the scheduling problem
of multiple update events, and we focus on two different
objectives: 1) speeding up the network-update process by
decreasing the average and tail ECTs and 2) preserving
update fairness. We propose the least migration traffic first
(LMTF) method, which schedules update events based on
their arrival order, but dynamically fine-tune the execution
order while facing the heavy-weight update events. A direct
method to arrange execution order is to dynamically com-
pute the update costs for all update events in the queue
and execute the update event with the lowest cost first.
However, this would cause non-trivial computation and
time overhead. In contrast, LMTF compares the head-event
with a few update events randomly selected from the queue,
and the executes the one with the least cost first. This policy
ensures that not all small update events are blocked behind
the heavy-weight update events as the smaller events at
least have a chance to be executed earlier in each round.
Additionally, LMTF considerably simplifies and accelerates
the decision-making process.

Although LMTF can effectively decrease the average
and tail ECTs, it delays some heavy events and affects the
FIFO fairness of queued events. To further improve update
efficiency and fairness, we design a more general method
called P-LMTF, which introduces opportunistic updating.
After getting the new head-event like LMTF method, P-
LMTF checks whether the other chosen update events can
be executed alongside the head-event. A heavy-weight up-
date event that arrives earlier but is delayed by LMTF still
has a chance to be executed in time. It will be scheduled
in a timely manner during the process of opportunistic up-
dating. This opportunistic updating policy further increases
scheduling efficiency and fairness. The major contributions

of this paper are summarized as follows:

• We give an event-level abstraction of network up-
date and minimize the migration cost of an update
event to guarantee fairness and efficiency in network
update.

• We formulate the problem of updating multiple
events as an optimization problem, and we devise
the LMTF and P-LMTF methods to reduce the aver-
age and tail ECTs effectively.

• We evaluate the scheduling performance via trace-
driven simulations. The results indicate that the
average and tail ECTs of our approaches is up to
10× faster than the flow-level scheduling method for
network update events.

The remainder of this paper is organized as follows.
In §2, we discuss related work and motivation. In §3, we
present an event-level abstraction of network update. In
§4, we discuss multiple events scheduling model. In §5,
we design multiple events scheduling methods for achiev-
ing both fairness and efficiency. We report the evaluation
methodology and results in §6. Finally, we discuss future
work in §7 and conclude this paper in §8.

2 OVERVIEW

2.1 Related Work
Consistent update. Reitblatt et al. present the concept of
per-packet/per-flow consistent network update [2]. This
means that a packet/flow traverses the network according
to either the old network configuration or the new config-
uration. In addition, they propose a two-phase method to
guarantee a consistent update. Katta et al. try to reduce the
overhead of keeping both the new and old configurations
at related switches at the cost of increasing the overall
update duration [3]. Dionysus finds a consistent migration
sequence by searching through a dependency graph of
possible migrated steps [9]. Moreover, timed-based update
methods [4, 5] aim to achieve consistent update using an
accurate time to trigger a network update at each phase.
Such methods effectively reduce the duration of flow rules
on the switches and the update duration. In addition, the
authors in [8] propose an effective method to decide if
a consistent update is possible. Foerster et al. study the
power of random choices in consistent network update
for updating forwarding rules in a loop-free manner and
migrating flows without congestion [11]. They propose an
effective algorithm to migrate two-splittable flows and an
alternative when no consistent migration exists.

Congestion-free update. zUpdate [1], SWAN [6], and
Caesar [12] try to make a congestion-free update plan in
advance for any update event. This plan contains a sequence
of intermediate states – from an initial network state to
the final network state – so that the transition across any
pair of adjacent states is lossless. However, this strategy
has several drawbacks. First, achieving such an update
plan means solving a series of LPs. The time complexity is
very high for large-scale network update events. Second, to
guarantee a series of congestion-free transitions, a portion
(10% − 15%) of the link capacity has to be obligated in
advance, which decreases the network utilization [6]. Cupid
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Fig. 1. The success probability of accommodating an update event
without migrating other flows.

locally constructs a dependency graph among key-nodes so
that congested links to avoid high overhead among updates
and congestion-free data plane update can be guaranteed.
This work also proposes a heuristic algorithm to update
flow tables consistently and effectively [13]. Zheng et al.
apply timed-based update thoughts [4, 5, 14] to achieve
congestion-free update [15, 16].

Accelerate the update process. B4 speeds up the update
process using custom hardware [17, 18]. The work in [7]
speeds the update process at the cost of incurring a given
level of congestion. The basic idea is to minimize the tran-
sient congestion during the network update and achieve a
better tradeoff between the update speed and the transient
congestion.

For any update event, the aforementioned updating
schemes focus on optimizing flow-level metrics; they do
not perform well in optimizing event-level metrics. More-
over, they cannot capture the inter-event requirements in
a queue of update events. In summary, previous updating
schemes do not provide an abstraction to represent event-
level update semantics. Event-level abstract, expressing the
semantics of a collection of flows caused by an update event,
is different from the network abstraction Coflow [19], which
is a collection of flows between two groups of machines with
associated semantics and a collective objective.

2.2 Motivation

An update event is completed only when all flows of the
update event are scheduled. The event completion time
(ECT) starts at the time an update event is pushed in the
scheduling queue and ends at the time the update event
is performed successfully. That is, the ECT also means the
time duration for the new network configuration be in effect
for that update event which includes the completion time
of the migrated existing flows. Therefore, given an update
event, ECT partly depends on the last scheduled flow in an
update event; hence, the group-based scheduling can help
to get a better performance when tacking all involved flows
of multiple update events. We assume that these incoming
flows are divided into several groups based on update
events.

All flows in the same group have to compete for network
resources along desired routing paths. However, the desired
paths for such an update event may not offer sufficient
residual bandwidth resources. In this scenario, the desired
paths will exhibit congestion once the flows of an update
event are inserted into the network, especially when the
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Fig. 2. The update orders of flows under flow-level and event-level
methods.

link utilization is high. As shown in Fig. 1, the success
probabilities of updating events with small flows, middle
flows and big flows decrease along with the increase of link
utilization under the trace from the Yahoo! data center [20]
and random trace with a distribution of traffic [21] in an
8-pods Fat-Tree data center network.

For this reason, it is necessary to first check if all links
along the desired path could offer sufficient link bandwidth
when tackling each flow of an update event. If they do not,
then the update event needs to be carefully addressed. A
straightforward method is to assign priorities to all flows in
the network [22]. Existing flows with lower priorities will
be removed if they block new flows with higher priorities.
This policy incurs a large volume of burst traffic due to
the retransmission of all removed flows. What is worse,
determining which flows should be removed in an update
event is an NP-hard problem, as proved in [8].

Another method is to re-route all the existing flows
to supply the flows of the update event with sufficient
network resources. This policy aims to achieve a better
network performance, in terms of load balance and link
utilization, when the network topology or traffic changes.
Solving a series of linear programming (LP) problems is
time-consuming. Moreover, globally re-routing all existing
flows will lead to serious network-scale traffic migration.

Despite such considerations, the network update prob-
lem still lacks efficient solutions. In this paper, we present
a novel strategy to locally adjust a few existing flows on
the congested links of the desired path to accommodate
each new flow in an update event. To update a new flow,
we first check if there exists a feasible path with suffi-
cient residual network resource, which can meet the new
flow’s requirement. If not, we locally migrate a few existing
flows on the bottleneck links to accommodate the new
flow. Because of the aggregate communication pattern, the
number of existing flows in the bottleneck links can be very
large [21]. Therefore, such migration of existing flows may
incur considerable extra overhead and significantly disrupt
other network applications as explained in our previous
work [23]. Furthermore, reconfiguration of those existing
flows also hurts the quality of service (QoS) and the system
stability [24]. Paris et al. optimize the gap of the flow
reconfiguration and the price paid for per unit of a routed
flow [25]. In this paper, we do not consider price but prefer
to find a local re-routing solution to minimize the amount
of the migrated existing traffic, so as to release sufficient
network resource to accommodate new flows of a given
update event.
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TABLE 1
Symbols and notations.

V The set of all switches
E The links between all switches
G The direct network graph G = (V,E)
ei,j The link connecting node i and node j,

where i, j ∈ V
ci,j The residual bandwidth of the link ei,j
C The matrix of available bandwidth of each link
Cfi The matrix of bandwidth requirements of

transforming the flow fi and migrating several
existing flows on the congested links.

CUi
The matrix of bandwidth requirements of updating
an event and migrating several existing flows on
the congested links.

D The network diameter
F All existing flows in the network
f A flow in the network
df The bandwidth requirement of a flow f

dfi,j The occupied bandwidth by a flow f on the link ei,j
p A path taken by a flow f . p ∈ P (f)
Ecfa The set of congestion links caused by the flow fa
FA The set of existing flows which pass any congested

links on the path p allocated for the flow fa
Fa The set of existing flows which will be migrated

caused by the new flow fa, where Fa ⊂ FA
Sum(Fa) The sum of bandwidth requirements of flows in Fa.

U An update event is defined as U = {f1, f2, ..., fw}
Cost(U) The update cost of the update event U

Consider a series of flows caused by three update events.
We may schedule such flows independently, as shown in
Fig. 2(a). Alternatively, we may regard the flows of an
update event as a collection and schedule them in a certain
order, as shown in Fig. 2(b). The average ECT of the three
events is (3+7+12)/3=22/3 under the event-level schedul-
ing manner, which is lower than (9+11+12)/3=32/3 under
the flow-level scheduling manner. Since we assume that
each flow of an update event can get enough bandwidth
and the time for migration of existing background traffic to
insert each flow of an update event is the same, the tail ECTs
of these three update events under these two scheduling
manners are the same. In real networks, the migration of
background traffic for each flow of an update event usually
varies from each other. Therefore, the tail ECTs of these three
update events will change as well.

3 EVENT-LEVEL ABSTRACTION OF NETWORK UP-
DATE

In this section, we start with the event-level abstraction of
a network update and discuss the cost optimization of an
update event. Accordingly, we characterize the inter-event
scheduling problem of multiple update events.

3.1 Abstraction of event-level network update

Before characterizing our model, we first report all used
notations and symbols in Table 1. The network is defined as
a graph G=(V,E), where V and E denote a set of switches
and a set of links connecting those switches. Let ci,j be the
residual bandwidth of link ei,j∈E, while D denotes the
network diameter. In addition, F refers to all flows in the
network. For any flow f∈F , its bandwidth requirement is

defined as df . Flow f is routed along a selected path p from
set P (f), which denotes feasible shortest paths for that flow.
For each link ei,j in the selected path p, dfi,j denotes the
consumed bandwidth by a flow f on link ei,j . The network
is congestion-free if the following constraints are satisfied:

• ∀ei,j∈E, ci,j≥0.

The aforementioned constraints ensure that each flow
f∈F is unsplit and is forwarded along a certain path p.
The last condition indicates that each link in the network is
congestion-free after the network accommodates the entire
flow set F .
Definition 1 (Migration of existing flows for a new flow).

When a new flow fa from an update event is inserted
into the network, we first try to find a feasible path
p with sufficient residual bandwidth on each link to
accommodate it. If the flow fa would cause congestions
on some links of the path p. Then, we define the set of
congested links as Ec

fa
, i.e.:

• ∀ei,j∈p, if dfi,j>ci,j , then ei,j∈Ec
fa
,

where ci,j denotes the residual bandwidth of the link
ei,j . A set FA contains existing flows, each of which
passes through at least one congested link ei,j (ei,j ∈
Ec

fa
) on the path p. We can denote FA as:

• ∀fi.j∈F, if ∃ei,j∈Ec
fa
, then fi,j∈FA.

3.2 Cost optimization problem
Since a remote controller knows the load of each link,
it can migrate existing flows on the congestion links to
satisfy the bandwidth requirement of the new flows. We
consider the negative impact of traffic migration on the
network application. In this paper, we attempt to minimize
the possible existing migrated flows because of the potential
congested links while inserting new flows to the network,
which we call the cost optimization problem. The goal of
the cost optimization problem is to find an optimal subset
Fa of FA (Fa ⊆ FA) for each new flow fa. Consequently,
the flow fa could be accommodated by the network, if only
these existing flows in the subset Fa are migrated to other
feasible paths of the network. That is

• Fa⊆FA,∀ei,j∈Ec
fa
,
∑

f∈Fa

dfi,j + ci,j≥dfa

We can get the minimum subset Fa of the set FA for
each flow fa∈U if and only if equality holds in the above
formula. However, it is NP-complete to calculate such an
optimal subset Fa for any flow fa∈U (see appendix A for
the proof of theorem 1).
Theorem 1. The problem of identifying an optimal subset

Fa from set FA is NP-complete.

In this paper, we design a novel strategy to reduce the
amount of migrated existing flows and get a set Fa. Any
flow fa∈U will get enough bandwidth after migrating these
existing flows.
Definition 2 (Event-level abstraction of network update).

We abstract an update event U as a set of new flows
which need to be inserted in the network. We denote
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them as U={f1, f2, · · · , fa, · · · , fw}. A flow fa is deliv-
ered from the source sa to the destination da. A new
flow fa (fa∈U ) leads to the migration of existing flows
of the set Fa. To complete an update event quickly, these
existing flows must be migrated during network update.

Then, the cost of an update event U is the total amount of
occupied bandwidth of those migrated existing traffic. That
is,

Cost(U) =
w∑

a=1

∑
Fa⊆FA,f∈Fa

df.

4 SCHEDULING MODELS AMONG MULTIPLE UP-
DATE EVENTS

A shared network usually needs to schedule a series up-
date events to reduce the average and tail ECTs. Simple
scheduling mechanisms like FIFO [10] do not perform well
in this environment. If the head-event is heavy and has a
long execution time, it would block many smaller events
and increase the average and tail ECTs. Therefore, we study
inter-event scheduling among multiple update events and
give scheduling models for network update.

Fine-tuning the order of update events. As shown in
Fig. 1, an update event with small flows is easier to be
inserted into a Fat-Tree data center than the other two
types of flows. Thus, the event with less migrated traffic
have more possibilities to be updated faster. For example,
if the bandwidth of each link is sufficient for executing
an update event, the amount of migrated traffic is zero
(Cost(U) = 0). This event will be executed more quickly
than other update events, which incurs a less mount of
traffic migration of existing flows. Therefore, preferentially
scheduling these events with less amount of migrated traffic
helps to reduce the average ECT of all update events where
the principle is similar to the shortest job first [26] when
scheduling a set of jobs over a shared cluster. However,
rerouting of these existing flows means that we need to
reconfigure flows which will hurt quality of service (QoS)
and system stability [24]. Therefore, we utilize the cost of
an update event as defied in Definition 2 as the metric to
schedule all update events in a queue.

A simple way to do this is to reorder all queued events
based on their update costs and choose the smallest event to
execute first. Note that the network is in flux due to the
changing of traffic. Consequently, we have to reorder all
queued events frequently. This causes non-trivial computa-
tion and time overhead, especially for large-scale networks
and update events. Moreover, the entire reordering fully
breaks the order of the queue and destroys fairness among
update events.

Therefore, in this paper, we prefer to schedule update
events based on their arrival order, but dynamically fine-
tunes the execution sequence to tackle the head-of-line
blocking problem. Moreover, locally rerouting a set of ex-
isting flows also hurts quality of service (QoS) and system
stability [15]. Thus, we must minimize the migrated traffic.
Considering a set of n update events {U1, U2, · · · , Un}, we
randomly choose two update events Ui and Uj and then

compare the head-event with these two selected update
events. Finally, we execute the one with the smallest update
cost first.

Parallel updating. Let Q = {U1, · · · , Un} stand for an
update queue, the aforementioned scheduling model fine-
tunings the order of update events to reduce the average
ECT. However, if multiple events can be updated simultane-
ously, it will provide an enormous speed boost for network
update. Note that we assume that multiple events will not
migrate the same existing flow. For an update event Uk, let
the matrix CUk

stand for the traffic distribution of the flows
in update event Uk and several migrated existing flows on
the congested links. (CUk

)i,j is the element of the ith row,
jth column of CUk

, which stands the bandwidth require-
ment on link ei,j for accommodating the update event Uk.
ci,j is the residual bandwidth on link ei,j . Each boolean
variable xk denotes whether the event Uk is chosen to be
updated. Then, the optimization problem (PE) of getting the
maximum number of parallel events can be formed as an
integer linear programming (ILP).

max x1 + x2 + · · ·xk + · · ·+ xn (1)

s.t.



x1(CU1)0,0+ · · ·+xk(CUk
)0,0+ · · ·+xn(CUn)0,0

≤c0,0
x1(CU1)0,1+ · · ·+xk(CUk

)0,1+ · · ·+xn(CUn)0,1
≤c0,1
· · ·
x1(CU1

)|v|,|v|+ · · ·+xk(CUk
)|v|,|v|+ · · ·

+xn(CUn
)|v|,|v|≤c|v|,|v|

(2)

∀ei,j ∈ E, (CUk
)i,j≤Ci,j , 0≤k≤n (3)

xk ∈ {0, 1} (4)

Formula 2 guarantees that the bandwidth requirement
on any link ei,j is less than the residual link capacity ci,j of
this link. Formula 3 guarantees that we can at least get one
update event that can be executed.

For a queue of n events, if each event owns w flows, each
of which has v feasible paths. Then, the optimization space
consists of vwn combinations for updating those n update
events. Even if we randomly select a path from multiple
feasible shortest paths for a flow, there still exists wn combi-
nations. Thus, getting an exact scheduling sequence, which
takes into account of the impact of the reconfiguration on
future scheduled events, would cost much time and become
infeasible. However, PE is NP-hard (see appendix B for the
proof of theorem 1).
Theorem 2. The problem PE under the constraints of

Formulas (2), (3) and (4) is NP-hard.

Opportunistic updating. The parallel updating model
can decrease the average and tail ECTs. However, to get the
maximum number of parallel events in each round, we must
very first get the matrix of bandwidth requirements of each
queued event. If the number of queued events is too big, the
time overhead of getting these matrixes is unsustainable,
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especially when the network utilization is high and lots
of update events compete for common scarce bandwidth
resources.

Therefore, we propose another opportunistic updating
model based on the parallel updating strategy. The basic
idea is to find the first event following the same policy as the
Fine-tuning scheduling model. In addition, we check other
random selection of update events to decide whether they
can be updated alongside the first event based on paral-
lel updating model. A heavy-weight update event, which
arrives earlier but is delayed by the fine-tuning model,
will have a chance to be quickly executed in the process
of opportunistic updating. This model increases scheduling
efficiency and improves fairness.

5 EFFICIENT METHODS FOR MUTILPLE EVENTS
SCHEDULING

In this section, we propose an approximation method to
reduce the update cost of each flow from a single update
event and then reduce the ECT. Finally, we design two
event scheduling methods, LMTF and P-LMTF to guarantee
the fairness and efficiency for scheduling multiple network
update events.

5.1 Cost optimization method for any update event

For any update event, the following two questions dominate
the event completion time. First, is it necessary to reroute
some existing flows if the desired paths lack sufficient
bandwidth to transmit the flows of an update event? If
some existing flows need to be migrated, which paths
should be reallocated to ensure sufficient bandwidth for
the migrated flows? Second, if needed, which existing flows
should be migrated so that the network resource becomes
just enough to accommodate the flows of an update event?
This problem is NP-complete. Therefore, we aim to design
an approximation algorithm to determine the minimum set
of the migrated flows that can provide sufficient bandwidth
both for the flows in the update event and for the migrated
existing flows.

Any migrated flow for an update event competes for
network resources with other traffic during the rerouting
process. This behavior further affects the network’s ability
to handle more update events. Migrating existing flows
would take non-trivial time and decrease the completion
process of the update event. Thus, reducing the updating
cost, i.e., the bandwidth requirements of migrated existing
flows, is crucial for reducing the ECT for each update event.
However, for an update event in the queue, the update
cost of this event usually changes due to the dynamics of
network traffic. This brings more challenges to reduce the
update cost.

Given an update event U = {f1, f2, · · · , fw} with w
flows, the flow sequence and their paths are fixed. If the
allocated path does not have enough link bandwidth, we
need to migrate a mount of existing traffic to accommodate
the new flow, especially when the network utilization is
high. Therefore, different migration scheme of existing flows
exhibit different update costs. The path selection for each
flow of an update event and migrated traffic caused by the

Algorithm 1 Cost optimizing method(U ,δ)
Require: An update event U and a variable δ=ε/2n, where

0≤ε≤1 and n=|FA|.
1: for flow fa ∈ U do
2: Let an array FA record all sizes of existing flows passing

through any congested link in Ecfa .
3: Append −sum(FA) to an array L0.
4: for i=1 to |FA| do
5: for j=0 to |Li−1| do
6: Append Li−1[j] and Li−1[j] + dFA[i] to the array Li
7: Sort Li in the ascending order
8: for j=1 to |Li| do
9: if Li[j] > Li[j − 1]/(1 + δ) then

10: Append Li[j] to an array L
′
i

11: Li←L
′
i

12: Select the biggest value −k in Li but smaller than −dfa
13: Cost(fa)← k
14: Cost(U)←Cost(U) + Cost(fa)
15: return Cost(U)

flows of an update event both will effect the update cost of
each event. However, it appears reasonable to choose the
path with very few congested links. This method, however,
does not mean to migrate less amount of traffic from these
congested links. Furthermore, we can choose a path, which
incurs the minimum migration cost of existing flow. That
is, we have to calculate the migration cost of each feasible
path for a flow. This would cost much time and considerably
increase the decision-making time in each scheduling round.
Therefore, to get the update cost of each event, we allocate
a fixed path to each flow of an update event when we
optimize the update cost of a flow. Algorithm 1 illustrates
our cost optimization method, which minimizes the amount
of existing flows to be migrated for flows in an update
event and its approximation ratio is at most 2 (see proof
for theorem 3 in appendix C).
Theorem 3. The approximation ratio of Algorithm 1 is at

most 2.

It takes an update event U and a variable δ as inputs. For
each flow fa in the update event, the candidate set FA

contains all existing flows, each of which passes through
at least one of potential congested links of the path which
the flow fa will pass through. We first sum the amount of
traffic in set FA and record the opposite number of it as
−sum(FA) and then put it in an array L0 (line 3). For each
flow in FA, we will take it out from the sum −sum(FA) to
see if any number in Li−1 can approximate it (lines 4 - 9).
If no, the new sum will be added to the array Li (lines 10 -
11). Finally, we can get the biggest value -k from the array
and get the cost (lines 12-15).

5.2 Fine-tuning the order of update events
The aforementioned optimization method can effectively
decrease the completion time of a single update event. How
to schedule multiple update events that form a queue ac-
cording to their arrival order is still unknown. The schedul-
ing order determines not only the average and tail ECTs
(two metrics related to efficiency), but also the fairness of
such update events. In this environment, FIFO is attractive
because it is easy to implement and guarantees strict fair-
ness. If the durations of such update events are similar, FIFO
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Fig. 3. Our LMTF can reduce the average ECT against the FIFO. U1, U2

and U3 stand for three update events with various event durations.

Algorithm 2 LMTF(Uall,α)
Require: A set Uall contains all queued update events

1: Invoke Algorithm 1 to get the update cost Cost(U) for
the head-event.

2: if Uall contains at least α+ 1 update events then
3: Randomly sample other α events except the head-

event and calculate their update costs
4: else
5: Randomly sample other α ≥ 1 events except the head-

event and calculate their update costs
6: Let U denote the new head-event with the least cost

among α+ 1 candidates, which will be scheduled first
7: return U

is proven to be optimal for minimizing the tail ECT and
achieving tight fairness [27]. If the duration exhibits heavy-
tailed distribution, FIFO usually leads to the head-of-line
blocking, caused by the heavy update events which arrived
earlier. This problem will increase the average and tail ECTs.
In this scenario, FIFO guarantees strict fairness, but fails to
supply efficiency to update events. Therefore, for a queue
of update events, we first focus on decreasing the average
and tail ECTs at the cost of slightly relaxing the fairness
requirement.

A straightforward method is to reorder all queued events
based on their update costs and choose the lowest-cost event
to execute first. Fig. 3 shows an example of the scheduling
of three update events. The execution time of each update
event is 1 second. The update cost is 4 seconds for event U1

and 1 second for events U2 and U3. The average ECT of such
update events is (5+7+9)/3=7 seconds, and the tail ECT is
9 seconds under the FIFO method, as shown in Fig. 3(a).
If we order those update events according to their update
costs, the ideal sequence is shown in Fig. 3(b). The average
ECT is reduced to (2+4+9)/3=5 seconds and the tail ECT
is the same. Theoretically, such a reordering of all update
events could tackle the head-of-line blocking problem, and
consequently, reduce the wait time of the lower-cost events
that arrive later. As discussed in Section 5, this method
suffers from huge computation and time overheads, the loss
of fairness.

In this paper, we propose the least migration traffic
first method (LMTF), a lightweight but effective schedul-
ing method. Algorithm 2 reports the details of our LMTF
method. It prefers to schedule update events based on their
arrival order, but it can dynamically fine-tune the execution
sequence of a few selected events to tackle the head-of-line
blocking problem. The basic idea is to randomly sample α
update events except for the head-event from the queue.
At the same time, we compare these chosen events with
the head-event and the update event with the lowest cost

Algorithm 3 P-LMTF(Uall)
Require: A set Uall contains all queued update events and

a parameter α.
1: Invoke Algorithm 2 to get the update cost of each

queued event.

2: if
n∑

k=1
(CUk

)i,j≤ci,j , (0≤i, j≤n) then

3: return Uall

4: while U 6=UALL do
5: Select α update events from the set Uall − Uhead

randomly. Then, the event with the least update cost
chosen from these α+1 events becomes the new head-
event.

6: Find the max number m (1≤m≤α) of parallel events
Ur1 , · · · , Urm from the rest of α update events that

satisfy
m∑

k=1
(CUrk

)i,j≤ci,j≤
m+1∑
k=1

(CUrk
)i,j , (0≤i, j≤n).

7: U←{Ur1 , · · · , Urm}
8: Execute events Uhead and Ur1 , · · · , Urm simultane-

ously.
9: Check the queue to delete some events from Uall,

which do not have to be updated at this moment.
10: return U

among the α+1 candidates is chosen to be executed first
(lines 2-3). The head-of-line blocking problem, however, is
well-tackled by selecting the update event with the lowest
cost among α+1 events. Note that LMTF does not persist
in sampling α update events when the queue contains less
than α + 1 update events (line 5). The evaluation results
indicate that our LMTF method effectively decreases the
average and tail ECTs for any queue of update events, even
when the sampling number α is set as 2. This is a regular
pattern inspired by the load-balance theory of the power of
two random choices [28].

5.3 Opportunistic updating
In this section, we will present the opportunistic updating
method, a general inter-event scheduling policy to improve
fairness based on fine-tuning policy. The basic idea is first to
select α update events randomly and compare them with
the head-event to get the new head-event with the least
update cost. At the same time, it tries to search opportunities
for updating other α events, including the heavy events,
which are always scheduled later even if they arrive earlier
by LMTF. The opportunistic updating process, however,
would check whether those α events can be updated with
the selected new head-event simultaneously. If yes, they will
have the chance to be executed quickly.

A heuristic schedule method, parallel-LMTF (P-LMTF),
is proposed to realize this design. As shown in Algorithm 3,
we form a candidate set consisting of the initial head-event
and the other α update events sampled randomly from the
queue. The event with the lowest update cost among the
α+1 candidates is selected to be the new head-event (line
5) as in LMTF. In the second step, only the other α can-
didates will be checked, to determine whether performing
them simultaneously with the new head-event (line 6). That
is, the second step offers priority for update events that
are heavy but arrive earlier; hence, it effectively improves
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fairness compared with fine-tuning updating strategy and
guarantees update efficiency using the parallel updating.
Finally, it updates the traffic distribution of the network and
checks the queued events to delete the events which do not
have to be updated after waiting a while in the queue (lines
8− 9).

Note that P-LMTF does not check the entire queue to
search for update events that can be executed alongside the
new head-event because it would cause huge computation
and time overheads, especially for large-scale networks and
in a long queue. Instead, P-LMTF reduces the variables
space to the chosen α+1 events which reduces the difficulty
greatly and increases the operation-rate to get the answer
when we search for parallel update events. The evaluation
results indicate that the α random update events still effec-
tively exploit the benefits of opportunistic updating, even in
the case of α=2.

Since OpenFlow controller can handle 4175 packet-in
requests per second [29] and the method in Time4 [30]
can trigger network configurations on different network de-
vices simultaneously, the generated configuration schemes
of multiple parallel events can go into effect simultaneously
and these parallel events can be executed in parallel.

6 EXPERIMENTAL EVALUATION

We start with the settings of our trace-driven evaluations in
an 8-pod Fat-Tree datacenter network. We then compare the
performance of our event-level and flow-level abstractions
of network update. Finally, we evaluate our LMTF and P-
LMTF scheduling methods against the FIFO method over a
real data-set from Yahoo!’s data center [20]. Note that we use
Gurobi Optimizer (version 7) to solve the ILP problems [31].

6.1 Evaluation settings

Topology. We consider an 8-pod Fat-Tree [32] datacenter
network where the bandwidth of each link is fixed as 1
Gbps. In a Fat-Tree data center, the number of servers and
switches is determined by the setting of parameter k. A
Fat-Tree topology accommodates 5k2/4(80) switches and
k3/4(128) servers, which form k pods. The parameter k is
set to 8 in our experiments.

Workloads. To enable the trace-driven evaluation of our
methods and related work, we inject a large amount of
traffic into the Fat-tree datacenter as the background traffic
and observe the expected link utilization. All injected flows
are generated from a real traffic data-set from Yahoo!’s data
center [20]. This trace records the basic information of each
flow, including the IP addresses of both the source and
destination servers, the size and duration of each flow, etc.
Note that the real IP addresses in the trace are anonymous.
We use a hash function to map the IP addresses of the source
and destination of each flow into our datacenter network.
We further generate a set of heterogeneous network update
events which differ in the number of flows, flow sizes, and
flow durations. We set the average number of flows caused
by each update event as a random integer ranging from 10
to 100. We then generate new flows with demand ranging
from 20 Mbps to 40 Mbps for randomly chosen source-
destination top-of-rack switch pair for each events.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

15 25 35 45 55 65

A
v
g
. 
E

C
T

 (
N

o
rm

a
liz

e
d
)

Number of flows in an update event

flow-level
event-level

(a) Average ECT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10 20 30 40 50 60

T
a
il 

E
C

T
 (

N
o
rm

a
liz

e
d
)

Number of flows in an update event

flow-level
event-level

(b) Tail ECT

Fig. 4. The changing trends of two metrics under 10 update events when
network utilization approaches 50%. The average number of flows in
each event increases from 15 to 60.

Metrics. For a queue of network update events, we
evaluate the benefits of event-level abstraction by compar-
ing six metrics of the flow-level scheduling method, our
LMTF method, and our P-LMTF method. The metrics are
as following: the total update cost of all update events, the
average event completion time (ECT), the tail ECT, the total
plan time, the event queuing delay and fairness. The update
cost of an update event means the amount of occupied
bandwidth of migrated existing flows. The average and tail
ECTs indicate the average and tail completion times of all
update events in the queue. The total plan time indicates the
time it takes to make the update plan for all queued events.
The event queuing delay is the time from the moment
an update event is pushed in an update queue until its
execution starts. Finally, we evaluate the updating fairness
ζ . Let η be the total number of queued events, and δ denote
the number of the update events that are scheduled no latter
than the corresponding time under the FIFO principle. Then,
the updating fairness can be defined as:

• ζ=δ/η (0≤ζ≤1).

As the increase of ζ towards to 1, the updating method is
close to be an absolute fair updating method, vice versa.
Specially, ζFIFO=1, hence, FIFO method is an absolute
fairness updating.

We first compare the flow-level and event-level schedul-
ing methods in a queue of update events. We then regulate
several essential factors to evaluate their impacts on the per-
formance metrics. They are the number of queued events,
network utilization, the type of queued events, the event
queueing delay and the fairness.

6.2 Flow-level vs. Event-level scheduling methods
To evaluate the effectiveness of our event-level abstraction,
we compare it with the flow-level method which schedules
the flow with the smallest bandwidth demand first. We
construct a set of update events, each of which has 10 to
100 flows. We report only the normalized results of each
metric, which are achieved by dividing the maximum value
of the flow-level method.

Fig. 4 plots the average and tail ECTs of 10 update events
where the average number of flows in each event varies
from 15 to 60. The average and tail ECTs of our event-level
method are up to 10× faster than the flow-level method. Fig.
5 shows that more events in the queue would lead to larger
average and tail ECTs for both methods. Scheduling the flow
with the smallest bandwidth demand has a higher probabil-
ity to have a lower update cost and thus a lower average
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Fig. 5. The changing trends of two metrics under different numbers of
update events when network utilization is 50%. Note that the number of
flows in each event ranges from 10 to 100 randomly.

ECT for all flows of all events. However, such flow-level
scheduling methods do not mention which events these
flows belong to and thus cannot help to reduce average and
tail event ECTs. Our event-level scheduling method groups
the flows belonged to the same event and schedules them
together. Therefore, it gives a chance to the event with lower
update cost to be executed first and significantly reduces
average and tail ECTs.

6.3 Impact of the number of update events

We evaluate our LMTF and P-LMTF scheduling methods
against the fairness scheduling method FIFO as we vary the
number of update events in the queue. The parameter α is
set as 4, which means that we choose 4 events randomly
from the update queue and compare the update costs of
these 4 update events with the cost of the initial head-event.
The network utilization varies from 50% to 70%; while each
update event has 10 to 100 flows. Fig. 6 plots the evaluation
results.

Fig. 6(a) reports reduction in the total update cost of our
method against the FIFO method. P-LMTF achieves a stable
reduction by 34% − 45% as the number of queued events
varies from 10 to 50, which means the ratio of the difference
between FIFO and our methods to FIFO is 34% − 45%. In
this setting, LMTF also reduces the total update cost, but its
achievement is always smaller than that of P-LMTF. Note
that the total update costs of P-LMTF are less then LMTF
method. Because the update sequence leads to the different
residual bandwidth of each link which will effect the traffic
migration for following update events. On the other hand,
P-LMTF tries to find more update events which can be
performed with the head event in parallel using remaining
network capacity. That is, if we can find more events to
be performed with the head event, the cost of multiple
events can be reduced. As expected, the changing trends of
average and tail ECTs are similar to the total update cost. For
example, in the setting of 20 update events, the reduction in
the update cost by LMTF is dramatic. At the same time,
the average and tail ECTs also decrease, especially the tail
ECT. That is to say, there must exist multiple heavy update
events in the update queue that perform before light-weight
events. Such heavy events arrive earlier, and therefore, block
later events. As a result, they increase the ECT of some later
events. This scenario, however, will not affect the perfor-
mance of P-LMTF. As the analysis in Section 5.3 shows,
P-LMTF improves LMTF by appending an opportunistic
updating process and has a better performance.

Fig. 6(b) indicates that P-LMTF achieves a 69% − 80%
reduction in the average ECT compared with FIFO, and
LMTF achieves a 22% − 36% reduction. This significant
improvement comes from the introduction of opportunistic
updating. It permits multiple events to be executed simulta-
neously if possible, i.e., heavy events that arrive earlier have
a chance to be executed at the same time as the head-event.
Thus, P-LMTF further decreases the average ECT. On the
other hand, P-LMTF reduces the tail ECT by 35% − 48%
and LMTF reduces by 5% − 26% compared with FIFO, as
shown in Fig. 6(c).

Finally, we measure the total plan time for all queued
update events, as shown in Fig. 6(d). As expected, FIFO
takes the least amount of time because it does not conduct
other actions during the decision process. Our LMTF and
P-LMTF methods cause a longer plan time because LMTF
calculates the update costs for α + 1 update events to find
the new head-event with lowest update cost. LMTF and
P-LMTF take about 4.5 times and 2 times more plan time
than FIFO, respectively, regardless of the number of update
events. P-LMTF takes less plan time than LMTF since it
has the chance to make an update plan for multiple events
simultaneously in one round. This is an acceptable tradeoff
to achieve significant reductions in the other three metrics.

6.4 Impact of the network utilization

Network utilization reflects the network’s ability to provide
services and it influences the execution of update events. In
this section, we evaluate the performance of involved meth-
ods over a longer period. The network utilization fluctuates
from 10% to 90% when the number of update events is 10.
The number of flows in each update event varies from 10 to
100.

Fig. 7(a) reports reduction in the total update cost of our
method against the FIFO method. P-LMTF achieves a stable
reduction by 29% − 52%. The benefit of P-LMTF smoothly
grows with the increase of the network utilization, while
the benefit of LMTF decreases when the network utilization
reaches 70%. P-LMTF tries to find more update events
which can be performed in parallel with the head event
using the remaining network capacity. That is, if we can
find more events to be performed with the head event, we
can avoid migrating background traffic multiple times and
reduce the the cost of multiple update events. Therefore,
P-LMTF has a lower update cost than LMTF.

Fig. 7(b) indicates that P-LMTF achieves a 63% − 82%
reduction in average ECT, and LMTF reduces by 21%−38%
compared with FIFO. P-LMTF and LMTF reduce the tail
ECT by 28% − 53% and 5% − 26%, respectively, com-
pared with FIFO, as shown in Fig. 7(c). That is, both of
our methods effectively reduce the average and tail ECTs
compared with FIFO, regardless of the network utilization.
The benefit of P-LMTF is more remarkable for its higher
network utilization.

Fig. 7(d) plots the ratio of the total plan time of our two
methods in relation to the FIFO method. We can see that
the metric of our methods, except for the LMTF at 90%,
grows as the network utilization increases. In this setting,
FIFO also takes more time to make the update plan. In
summary, LMTF and P-LMTF reduce 4 times and 2 times on
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Fig. 6. Reductions in three metrics against FIFO and the changing trend of the plan time of our scheduling methods under different numbers of
events where the network utilization fluctuates between 50% and 70% and α=4. Note that the number of flows in each update event is a random
integer from 10 to 100.
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Fig. 7. Reductions in three metrics against FIFO and the changing trend of the plan time under different scheduling methods where the network
utilization varies from 10% to 90% and α=4. Note that the number of update events is 10 and the number of flows in each update event ranges from
10 to 100.
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Fig. 8. Reduction in two metrics with our LMTF method against FIFO
under different settings of α and different numbers of events where the
network utilization fluctuates from 50% to 70%.
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Fig. 9. Reduction in two metrics with our P-LMTF method against FIFO
under different settings of α and different numbers of events where the
network utilization fluctuates from 50% to 70%.

plan time than FIFO, respectively, irrespective of the value
of network utilization. We can infer that such extra plan
time is reasonable when achieving significant reductions in
the other three metrics.

6.5 Impact of the number of sampled events from the
queue
Note that LMTF and P-LMTF are dominated by the parame-
ter α since they focus on α+1 sampled events in each round.
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Fig. 10. Reduction in two metrics with our LMTF method against FIFO
under different settings of α and different network utilizations where the
number of update events is 30.

For the P-LMTF method, α still means the largest number
of update events to be executed alongside the head-event.
A larger α brings more sampled events to be processed by
the two methods in each round but more decision time, and
therefore, we can make a tradeoff and optimize the average
and tail ECTs.

Varying the number of events. We first measure the
average and tail ECTs of our two methods under varied
settings of α and different numbers of update events when
the network utilization fluctuates from 50% to 70%. Fig. 8
reports the results of our LMTF method against the FIFO
method. The gains of LMTF actually reduce when the α
value becomes 5 from 4. Note that we have to compute the
update costs of α+1 events only for selecting the new head-
event in each scheduling round. It will cost much time to get
such update costs while facing the heavy-events when the
network utilization is high. Sampling more events means
that we have to get the update cost of each event and com-
pare them, which increases the decision time. Sometimes, if
we can get more reduction in average ECT by less sampling,
we do not have to sample more events.
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Fig. 11. Reduction in two metrics with our P-LMTF method against FIFO
under different settings of α and different network utilizations where the
number of update events is 30.

As expected, the reduction in average and tail ECTs of
LMTF against FIFO decreases for any fixed setting of α,
when the number of queued events changes from 10 to 50.
This is because the sampled α+1 events become sparse dur-
ing this process compared with the total number of queued
events. Thus, the probability of finding a desired update
event with the lowest update cost from α+1 sampled events
decreases with the increase of the event number. That is, it is
easier to find a desired update event with lowest-cost from α
update events chosen randomly from n(n ≥ α) candidates
than from 2n candidates. Obviously, there exists no explicit,
optimal solution for any fixed queue length. The reduction
in average and tail ECTs of LMTF against FIFO changes
irregularly while the setting of α is increasing, because of
the cost comparison among multiple sampled events.

Fig. 9 depicts the results of our P-LMTF method against
the FIFO method. The performance of the two metrics
remains relatively stable as the number of events increases
form 10 to 50. It incurs 61%−89% and 27%−59% reductions
in average and tail ECTs, respectively, when compared
with FIFO. Additionally, it is clear that higher values of
α achieve better performances in terms of the reduction of
both average and tail ECTs. Consequently, it is impossible to
compute an optimal solution for the fixed length of a queue.
The results indicate that P-LMTF always outperforms LMTF
under the same evaluation scenario, regardless of the setting
of α, due to the gain of opportunistic update.

Varying network utilization. To understand the influ-
ence of parameter α under different network load, we
measure two metrics under various parameters, when the
network utilization changes from 50% to 90%. Fig. 10 shows
the reduction in average and tail ECTs of LMTF against
FIFO. It is obvious that the achievements decrease along
with the increase of the network utilization, irrespective of
the setting of parameter α. When the network utilization
increases, it costs much time to migrate existing flows for
each update event, which leads to more time overhead to get
the head-event in each scheduling round. In addition, the
gains of LMTF actually reduce when α becomes 5 from 4 for
the same reason as in Fig. 8. However, our P-LMTF method
has solved this problem by introducing parallel updating
mechanism.

Fig. 11 shows a reduction in average and tail ECTs with
P-LMTF against FIFO. More precisely, it offers 56% − 87%
and 18% − 57% reductions in average and tail ECTs, re-
spectively. Additionally, it is clear that our P-LMTF achieves
a better performance under higher α, regardless of the
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Fig. 12. Reduction in two metrics with our P-LMTF and LMTF methods
against FIFO under different settings of k where the network utilization
approaches 50% and α=4. Note that the number of update events is 10
and that the average number of flows in each update event is 20.
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Fig. 13. Reduction in queuing delay of each event with our methods
against FIFO, where the network utilization fluctuates from 50% to 70%
and α=4. Note that the number of update events is 30 and that the
number of flows in each update event ranges from 10 to 100.

network utilization.

6.6 Impact of the network scale
Fig. 12 shows the reduction in average and tail ECTs with
P-LMTF and LMTF against FIFO when k equals to 8, 12,
16 and 20. Since the benefits of P-LMTF and LMTF increase
with the number of flows in each update event as shown
in Fig. 4, we use 20 as the average flow number of each
event in our experiments. The benefits of P-LMTF do not
decrease as the increase of network scale when the network
utilization approaches to 50%. The reason is that the number
of paths between two servers is the same as the parameter
k of network scale for Fat-Tree topology. Therefore, even
though network scale increases, P-LMTF still has a higher
probability to find more parallel events in each round.

6.7 Event queuing delay and Fairness
We first observe the queuing delay of 30 events in the up-
date queue. Then, we study the average event queuing delay
during a network update with multiple events. Finally, we
quantify the updating fairness of a queue with multiple
update events. Our results are depicted in Fig. 13 and Fig.
14.

Fig. 13 and Fig. 14 plot the reductions in queuing delay of
each event and the average queuing delay of all events with
LMTF and P-LMTF compared with FIFO. As shown in Fig.
13(a), because of the fine-tuning of the execution sequence,
LMTF leads to the delay of several update events. Even so,
we can see from the Fig. 14(a), LMTF provides 20% − 40%
reduction in average event queuing delay and 10% − 30%
reduction in the worst-case delay. Moreover, P-LMTF, based
on the LMTF and parallel updating, provides more op-
portunities for update events with high update costs to
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Fig. 14. Reduction in average event queuing delay with our methods
against FIFO under different number of events where the network uti-
lization fluctuates from 50% to 70% and α=4.

be executed earlier. Therefore, it both reduces the queuing
delay of an update event and guarantees the fairness, as
shown in Fig. 13(b). With P-LMTF, the event queuing delay
of the worst-case reduces by 60%− 74% and the average by
67% − 83%, as shown in Fig. 14(b). As expected, with the
increase of the number of event, the benefits have a stable
fluctuation.

We can get the metric of updating fairness from Fig. 13.
For each update event, if the reduction in event queueing
delay is greater than or equal to 0, this update event is
scheduled earlier than its scheduling time under the FIFO
principle. The evaluation results show that our scheduling
methods achieve ζLMTF = 0.63 and ζP−LMTF = 0.87,
respectively. Note that the FIFO scheduling method achieves
ζFIFO = 1. Our LMTF and P-LMTF significantly improve
the update efficiency at the cost of relaxing the fairness
slightly. That is, there exists a tradeoff between the efficiency
and fairness when dealing with multiple update events.
Fortunately, P-LMTF achieves a higher fairness than LMTF
when performing a queue of update events, due to exploit
the opportunities of parallel updating.

7 DISCUSSION AND FUTURE WORK

Multiple update events may compete for the same scarce
bandwidth resources. The update event that queues in the
back has to wait for resource releasing of other events. We
may expect to migrate the same existing flows. However,
there may exist some cases that we cannot find the paths
with enough link bandwidth for these existing flows using
the solutions provided by Brandt et al. and Foerster et
al. about how to check the network capacity for splittable
flows [8] or unsplittable flows [33]. As a result, these existing
flows will be migrated to other paths and have to share
the limited link bandwidth with other existing flows. If the
other path cannot provide enough bandwidth for migrated
flows, they may experience the rate limitation. Note that
we assume that the migrated flows have the lowest priority,
rate limitation will not affect the application performance
which they belong to. Since we just migrate the part of
existing flows on the possible congested links even if the
existing flows pass through multiple paths, this imposes no
constraint on the routing algorithm for the existing flows.
Therefore, our event scheduling algorithms are compatible
to employing multi-path routing algorithms.

In this paper, we treat flows from any update events as
the new flows and existing flows as the background traffic
which can be migrated to make space for new flows. It is

true that some update events caused by a latency-sensitive
application may have a strict deadline and the same existing
flows may be expected to be migrated by different update
events. Currently, we only consider the cases that no mi-
gration collision during the update process and the update
events are independent to each other with no deadline
and priority. It remains as the future work to investigate
more complex scenarios [34] to deal with their correlative
dependence and avoid migrating the same existing flow
multiple times. The priority queue can be used to solve
these problems by allocating queue for update events with
different priorities.

With the development of the fast programming data
planes on switches, many applications have been moved to
the network, to the dataplane to get more details and fast
processing within line-rate transmission. Since the event-
level scheduling algorithms need the global information,
such as background traffic and their paths to compute the
cost of each event and then decide the update sequence,
they cannot be achieved only in the data plane. How-
ever, scheduling packets in the dataplane can help us to
guarantee that the flows are processed in the order as we
expect. For example, if queueing time of a flow exceeds the
limitation, we can enqueue/dequeue packets of this flow
in/from any place of a queue and schedule them as we want
on the programmable data plane [35, 36].

8 CONCLUSION

Due to updating issues, the network condition is constantly
in flux. Prior updating schemes tackle all the flows affected
by such updating issues individually while ignoring the
event-level update requirements. In this paper, we use the
event-level abstraction of network update to optimize the
update cost and event completion time (ECT) of each update
event. We further propose two efficient approaches, LMTF
and P-LMTF, to schedule multiple update events while
simultaneously improving the average and tail ECTs of
queued update events and preserving fairness. Trace-driven
evaluations indicate that our event-level LMTF method
achieves a performance 10× better in average ECT and 6×
better in tail ECT compared to flow-level method. When
network utilization exceeds 70%, P-LMTF method reduces
average ECT by 75% and tail ECT by 42% compared with
FIFO.
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APPENDIX A
PROOF FOR THEOREM 1
The problem of identifying an optimal subset Fa from set FA is NP-
complete.

Proof: According to Formula (1), we try to find a subset of
migrated existing flows, i.e., f1, · · · , fn, from the candidate set FA. The
amount of bandwidth occupied by such migrated flows justly satisfies
the bandwidth requirement dfa of flow fa. This is the certification to
verify that there is a solution for this problem. We can find a set of
migrated flows in polynomial time and judge whether the remaining
bandwidth is sufficient to satisfy the requirement dfa of flow fa. Thus,
this problem is NP.

Consider a case of 3-Dimensional Matching [37], which is a well-
known NP-complete problem. It consists of three sets–X,Y and Z–of
size n, and a set of n triples W , each of which is expressed as β =
(xi, yj , zk). We construct a vector of 3n bits where the ith, (n + j)th,
(2n + k)th bits are all 1 and all other bits are 0. In other words, to a
certain radix d > 1, fβ = di−1 + dn+j−1 + d2n+k−1. In the case of
update cost, according to the rule mentioned above, let m stand for the
number of tuples in W ; we construct fβ as base m + 1, and for each
triple β = (xi, yj , zk) ∈ W . Let dfa be a vector with 3n bits, and let
m + 1 be the basis for it. Each bit of this vector is 1. Thus, we have

dfa =
3n−1∑
i=0

(m+ 1)i.

We state that a triple set W meets a perfect 3-Dimensional Matching
if and only if there is a subset whose cardinality equals dfa in the set
{fβ |β ∈ W}. Consider a perfect 3-Dimensional Matching consisting of
triples β1, · · · , βn. Then, the 3n bits of fβ1 +· · ·+fβn are all 1, equaling
dfa . On the contrary, assuming that there exists a set {fβ1 , · · · , fβn},
whose sum equals dfa , each fβi contains three bits of 1 and no carry.
Naturally, k = n. For each bit among the 3n bits, there exists one bit
fβi , which is 1. Therefore, β1, · · · , βn form a perfect 3-Dimensional
Matching. Then, identifying an optimal subset Fa from Formula (1)
NP-complete.

APPENDIX B
PROOF FOR THEOREM 2
The problem PE under the constraints of Formulas (2), (3) and (4) is
NP-hard.

Proof: To show that problem PE is NP-hard, we can show that
the associated recognition problem PE-r is NP-complete for instead.
The problem PE-r is to decide whether the bandwidths occupied by the
chosen parallel update events or by migrated traffic (caused by update
events), satisfy the capacity limitation of each link ei,j ∈ E. Note
that we will migrate several existing flows to satisfy the bandwidth
requirement of each update event. This is the certification to verify that
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there is a solution for this problem, i.e., at least an update event can
be executed. Given a binary vector xk ∈ {0, 1}n, we can verify in
polynomial time that the residual bandwidths satisfy the bandwidth
requirements of parallel update events. Thus, PE-r is NP.

We consider a case of SAT [38], which is a well-known NP-complete
problem. It consists of n boolean variables y1, · · · , yn and |v| clauses
z1, · · · , z|v| (disjunctions over the boolean variables y1, · · · , yn and
their complements ȳ1, · · · , ȳn). We can construct a particular instance
of PE-r with n binary variables x1, · · · , xn and |v| linear inequalities
such that the instance of SAT has answer yes if and only if the
corresponding instance of PE-r has answer yes. For each clause zj ,
with 1 ≤ j ≤ |v|, we construct a linear inequality as follows. If the k-th
variable in clause zj is yi, the k-th term of the j-th constraint is xi. If the
k-th variable is ȳi, the k-th term is (1 − xi). Moreover, the disjunction
operator in zj is replaced with the addition operator.

Clearly, this is a one-to-one correspondence between the truth
assignments of the boolean variables y1, · · · , yn which make all the
clauses (z1, · · · , z|v|) true and the binary vectors x = (x1, · · · , xn)
which satisfy all the linear inequalities of the corresponding ILP-r
instance. Indeed, yi = true if and only if xi = 1. Then, PE problem
is NP-hard.

APPENDIX C
PROOF FOR THEOREM 3
The approximation ratio of Algorithm 1 is at most 2.

Proof: In Algorithm 1, the value obtained in line 5 takes the
negative number of the sum of a subset of FA. Supposing Pi denotes
a set, each of its different elements is the sum of a subset got from FA.
Let y∗∈Pn denote one of the optimal solutions. We can infer from line
13 that m∗ ≤ y∗.

When we trim Li, the relative error between the number before
the trimming and the remaining, representative number is no more
than ε/n. By inducting i, we can prove that there exists m∈Li for any
element y ∈ Li that is no more than dfa . Thus, we can establish the
following formula:

y/(1 + ε/n)i ≤ y/(1 + ε/2n)i ≤m ≤ y∗. (5)

Inequality (6) is established for y∗∈Pn, and then m ∈ Ln satisfies
the following formula:

y∗/m ≤ (1 + ε/2n)n. (6)

Consider that the value of m∗ is the biggest element in Li and that
the involved migrated flows can be removed. Therefore, Inequality (7)
is established for m∗. That is,

y∗/m∗ ≤ (1 + ε/2n)n. (7)

Obviously, lim
n→∞

(1+ε/2n)n = eε/2. In addition, we can prove

that d
dn

(1+ε/2n)n>0. So the formula (1+ε/2n)n is monotonically
increasing. Thus,

(1 + ε/2n)n ≤ eε/2 ≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε. (8)

Therefore, from Inequality (7) and Inequality (8) we can conclude
that m∗/y∗ ≤ 1 + ε. The approximation ratio of Algorithm 1 is at most
2.
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