A Privacy-Preserving Social-Aware Incentive System for Word-of-Mouth Advertisement Dissemination on Smart Mobile Devices

Wei Peng1 Feng Li1 Xukai Zou1 Jie Wu2

1Indiana University-Purdue University Indianapolis (IUPUI)
2Temple University

21 June 2012
Smartphones allow innovative advertising.

From the **direct** model (B2C)…
Smartphones allow innovative advertising.

...to the word-of-mouth model (C2C).
Word-of-mouth?

cost effectiveness + user intelligence

“..., send forth thy word, and let it fly.”

— Thomas Gibbons
Word-of-mouth?

cost effectiveness + user intelligence
Word-of-mouth?

cost effectiveness + user intelligence

Our friends know us better than strangers.
What is interesting for a computer scientist?

- **Incentive.**
 - Why shall a user care?
 - Align the interests of users and businesses.
 - Encourage users to invite their interested friends.
 - Encourage businesses by empowering them with control over budget.
 - No spamming, please.

- **Enforcement.**
 - Detect misbehavior.
 - No one takes blame for others’ wrongdoings.

- **Privacy.**
 - Do not inadvertently divulge relationship to strangers.
What is interesting for a computer scientist?

- **Incentive.**
 - Why shall a user care?
 - Align the interests of users and businesses.
 - Encourage users to invite their interested friends.
 - Encourage businesses by empowering them with control over budget.
 - No spamming, please.

- **Enforcement.**
 - Detect misbehavior.
 - No one takes blame for others’ wrongdoings.

- **Privacy.**
 - Do not inadvertently divulge relationship to strangers.
What is interesting for a computer scientist?

- **Incentive.**
 - Why shall a user care?
 - Align the interests of users and businesses.
 - Encourage users to invite their interested friends.
 - Encourage businesses by empowering them with control over budget.
 - No spamming, please.

- **Enforcement.**
 - Detect misbehavior.
 - No one takes blame for others’ wrongdoings.

- **Privacy.**
 - Do not inadvertently divulge relationship to strangers.
What is interesting for a computer scientist?

- **Incentive.**
 - Why shall a user care?
 - Align the interests of users and businesses.
 - Encourage users to invite their interested friends.
 - Encourage businesses by empowering them with control over budget.
 - No spamming, please.

- **Enforcement.**
 - Detect misbehavior.
 - No one takes blame for others’ wrongdoings.

- **Privacy.**
 - Do not inadvertently divulge relationship to strangers.
What is interesting for a computer scientist?

- **Incentive.**
 - Why shall a user care?
 - Align the interests of users and businesses.
 - Encourage users to invite their interested friends.
 - Encourage businesses by empowering them with control over budget.
 - No spamming, please.

- **Enforcement.**
 - Detect misbehavior.
 - No one takes blame for others’ wrongdoings.

- **Privacy.**
 - Do not inadvertently divulge relationship to strangers.
What is interesting for a computer scientist?

- Incentive.
 - Why shall a user care?
 - Align the interests of users and businesses.
 - Encourage users to invite their interested friends.
 - Encourage businesses by empowering them with control over budget.
 - No spamming, please.

- Enforcement.
 - Detect misbehavior.
 - No one takes blame for others’ wrongdoings.

- Privacy.
 - Do not inadvertently divulge relationship to strangers.
What is interesting for a computer scientist?

- **Incentive.**
 - Why shall a user care?
 - Align the interests of users and businesses.
 - Encourage users to invite their interested friends.
 - Encourage businesses by empowering them with control over budget.
 - No spamming, please.

- **Enforcement.**
 - Detect misbehavior.
 - No one takes blame for others’ wrongdoings.

- **Privacy.**
 - Do not inadvertently divulge relationship to strangers.
What is interesting for a computer scientist?

- Incentive.
 - Why shall a user care?
 - Align the interests of users and businesses.
 - Encourage users to invite their interested friends.
 - Encourage businesses by empowering them with control over budget.
 - No spamming, please.

- Enforcement.
 - Detect misbehavior.
 - No one takes blame for others’ wrongdoings.

- Privacy.
 - Do not inadvertently divulge relationship to strangers.
What is interesting for a computer scientist?

- **Incentive.**
 - Why shall a user care?
 - Align the interests of users and businesses.
 - Encourage users to invite their interested friends.
 - Encourage businesses by empowering them with control over budget.
 - No spamming, please.

- **Enforcement.**
 - Detect misbehavior.
 - No one takes blame for others’ wrongdoings.

- **Privacy.**
 - Do not inadvertently divulge relationship to strangers.
What is interesting for a computer scientist?

- **Incentive.**
 - Why shall a user care?
 - Align the interests of users and businesses.
 - Encourage users to invite their interested friends.
 - Encourage businesses by empowering them with control over budget.
 - No spamming, please.

- **Enforcement.**
 - Detect misbehavior.
 - No one takes blame for others’ wrongdoings.

- **Privacy.**
 - Do not inadvertently divulge relationship to strangers.
What is interesting for a computer scientist?

- Incentive.
 - Why shall a user care?
 - Align the interests of users and businesses.
 - Encourage users to invite their interested friends.
 - Encourage businesses by empowering them with control over budget.
 - No spamming, please.

- Enforcement.
 - Detect misbehavior.
 - No one takes blame for others’ wrongdoings.

- Privacy.
 - Do not inadvertently divulge relationship to strangers.
Incentive tickets, aka *coupons*.

A user can **redeem** a coupon (when **paying** for a service/merchandise) or **duplicate** it.

<table>
<thead>
<tr>
<th>Content T_C</th>
<th>What is the coupon good for?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray width W_C</td>
<td>Duplication restriction.</td>
</tr>
<tr>
<td>Available slots L_C</td>
<td>Number of available slots.</td>
</tr>
<tr>
<td>Authentication slots</td>
<td>For authentication.</td>
</tr>
</tbody>
</table>

Assume a Public-key Infrastructure (PKI).
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>The incentive authority.</td>
</tr>
<tr>
<td>s</td>
<td>A shop.</td>
</tr>
<tr>
<td>u, v, w</td>
<td>Users.</td>
</tr>
<tr>
<td>p_u</td>
<td>User u’s redemption probability.</td>
</tr>
<tr>
<td>k_u</td>
<td>The number of user u’s contacts.</td>
</tr>
<tr>
<td>M</td>
<td>A text segment.</td>
</tr>
<tr>
<td>$M_1</td>
<td>M_2$</td>
</tr>
<tr>
<td>C_n</td>
<td>Coupon cached by n.</td>
</tr>
<tr>
<td>T_C</td>
<td>Front-page section of coupon C.</td>
</tr>
<tr>
<td>W_C</td>
<td>Spray width of coupon C.</td>
</tr>
<tr>
<td>L_C</td>
<td>Available slots of coupon C.</td>
</tr>
<tr>
<td>K_n^+ / K_n^-</td>
<td>n’s public/private key.</td>
</tr>
<tr>
<td>${M}_{K_n^-}$</td>
<td>n’s digital signature on the hash of M.</td>
</tr>
<tr>
<td>$E_I(M)$</td>
<td>Encrypt M with I’s public key.</td>
</tr>
<tr>
<td>x_n</td>
<td>A cryptographic nonce generated by n.</td>
</tr>
<tr>
<td>R_C</td>
<td>Reward amount for coupon C.</td>
</tr>
<tr>
<td>i_1, i_2, \cdots, i_l</td>
<td>Identifiers in coupon circulation chain.</td>
</tr>
</tbody>
</table>
A coupon’s life cycle.

1. Shop s requests a coupon from authority I.

\[s \rightarrow I : \ T_C, W_C, L_C \]
A coupon’s life cycle.

2. **Authority I issues** the coupon to shop s.

$$C_s = T_C, W_C | \langle L_C - 1 \rangle, E_I(\{T_C | W_C | L_C | s \}_{K_I} | x_s | I | s \).$$
A coupon’s life cycle.

3. Shop s offers the coupon to user u.

$$C_u = T_C, W_C |(L_C - 2),$$

$$E_I(\{C_s | u\}_K^{-} | x_u | s | u)$$

$$| E_I(\{T_C | W_C | L_C | s\}_K^{-} | x_s | I | s).$$
A coupon’s life cycle.

4. User u duplicates the coupon to user v.

$$C_v = T_C, W_C | (L_C - 3),$$

$$E_I(\{C_u \mid v\}_{K_u}^{-} | x_v \mid u \mid v)$$

$$| E_I(\{C_s \mid u\}_{K_s}^{-} | x_u \mid s \mid u)$$

$$| E_I(\{T_C \mid W_C \mid L_C \mid s\}_{K_I}^{-} | x_s \mid I \mid s).$$
A coupon’s life cycle.

5. User v redeems the coupon at shop s.

$$v \rightarrow s : C_v$$
Prior-redemption verification.

Authority I iteratively decrypts each slot and reconstructs the coupon’s circulation chain starting from the shop s.
Protocol-compliant behaviors.

- Verify before accepting.
 - Signing transfers responsibility.
 - Never over-duplicate.
Protocol-compliant behaviors.

- Verify before accepting.
- Signing transfers responsibility.
- Never over-duplicate.
Protocol-compliant behaviors.

- Verify before accepting.
- Signing transfers responsibility.
- Never over-duplicate.
What if...?
Tampering.

- \(\cdots \rightarrow u \rightarrow v \rightarrow w \rightarrow \cdots \).
- \(u \) and \(w \) are honest. \(v \) is malicious and tampers with the coupon.
- \(u \)'s signature protects \(u \) from being framed by \(u \).
- \(v \)'s signature holds \(v \) responsible for tampering.
What if...?

Tampering.

- $\cdots \rightarrow u \rightarrow v \rightarrow w \rightarrow \cdots$.

- u and w are honest. v is malicious and tampers with the coupon.
 - u’s signature protects u from being framed by u.
 - v’s signature holds v responsible for tampering.
What if...?
Tampering.

- $\cdots \to u \to v \to w \to \cdots$.
- u and w are honest. v is malicious and tampers with the coupon.
- u’s signature protects u from being framed by u.
- v’s signature holds v responsible for tampering.
What if...?
Tampering.

- \(\cdots \rightarrow u \rightarrow v \rightarrow w \rightarrow \cdots \).
- \(u \) and \(w \) are honest. \(v \) is malicious and tampers with the coupon.
- \(u \)'s signature protects \(u \) from being framed by \(u \).
- \(v \)'s signature holds \(v \) responsible for tampering.
What if...?
Collusion.

► ⋯ → u → v → ⋯.

► v is honest. u is malicious, tampers with the coupon, and colludes with w by having w sign the tampered coupon.
► v will not notice.
► u will not be detected for misbehavior in verification...
► ... but w will be.
► Nobody wants to be scapegoat: w will not vouch for u.
What if...?
Collusion.

- ... → u → v → ...

- v is honest. u is malicious, tampers with the coupon, and **colludes** with w by having w sign the tampered coupon.

 - v will not notice.

 - u will not be detected for misbehavior in verification...

 - ... but w will be.

 - Nobody wants to be **scapegoat**: w will not vouch for u.
What if...?
Collusion.

- $\cdots \rightarrow u \rightarrow v \rightarrow \cdots$.

- v is honest. u is malicious, tampers with the coupon, and **colludes** with w by having w sign the tampered coupon.

- v will not notice.

- u will not be detected for misbehavior in verification...

- ...but w will be.

- Nobody wants to be **scapegoat**: w will not vouch for u.
What if...?
Collusion.

- \(\cdots \rightarrow u \rightarrow v \rightarrow \cdots \).
- \(v \) is honest. \(u \) is malicious, tampers with the coupon, and \textbf{colludes} with \(w \) by having \(w \) sign the tampered coupon.
- \(v \) will not notice.
- \(u \) will not be detected for misbehavior in verification...
- \(\ldots \) but \(w \) \textbf{will} be.
- Nobody wants to be \textbf{scapegoat}: \(w \) will not vouch for \(u \).
What if...?
Collusion.

- \[\ldots \rightarrow u \rightarrow v \rightarrow \ldots. \]
- \(v \) is honest. \(u \) is malicious, tampers with the coupon, and \textit{colludes} with \(w \) by having \(w \) sign the tampered coupon.
- \(v \) will not notice.
- \(u \) will not be detected for misbehavior in verification...
- \(\ldots \) but \(w \) will be.
- Nobody wants to be \textit{scapegoat}: \(w \) will not vouch for \(u \).
What if...?
Collusion.

- $\cdots \rightarrow u \rightarrow v \rightarrow \cdots$.
- v is honest. u is malicious, tampers with the coupon, and colludes with w by having w sign the tampered coupon.
- v will not notice.
- u will not be detected for misbehavior in verification...
- ... but w will be.
- Nobody wants to be scapegoat: w will not vouch for u.
Signatures hold users accountable

- Encryption keeps identifiers concealed.
- Abiding by the protocol is in each user’s best interest.
- The circulation chain reconstructed from a redeemed incentive ticket faithfully reflects the incentive ticket’s circulation among users.
Morale of the story.

- Signatures hold users accountable
- Encryption keeps identifiers concealed.
- Abiding by the protocol is in each user’s best interest.
- The circulation chain reconstructed from a redeemed incentive ticket faithfully reflects the incentive ticket’s circulation among users
Morale of the story.

- Signatures hold users accountable
- Encryption keeps identifiers concealed.
- Abiding by the protocol is in each user’s best interest.
- The circulation chain reconstructed from a redeemed incentive ticket faithfully reflects the incentive ticket’s circulation among users
Morale of the story.

- Signatures hold users accountable
- Encryption keeps identifiers concealed.
- Abiding by the protocol is in each user’s best interest.
- The circulation chain reconstructed from a redeemed incentive ticket faithfully reflects the incentive ticket’s circulation among users
Incentive.

- **Where** are the rewards from?
- **Who** should be rewarded?
- **How** should the rewards be dispensed?
Incentive.

- **Where** are the rewards from?
- **Who** should be rewarded?
- **How** should the rewards be dispensed?
Incentive.

- **Where** are the rewards from?
- **Who** should be rewarded?
- **How** should the rewards be dispensed?
Where?

From the shop’s profits in sales where a coupon is redeemed: Shop s tells authority I the reward upper limit R_C.

- Only reward effective advertisement.
- Budget control: think about real-world coupon ("duplication not not valid").
Who?

\[s = i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l \ (l \leq L_C) \]

\(i_2, \cdots, i_{l-1}\) are rewarded for their effort of duplicating.
How?

- **Uniform.**
 - Everybody receives the **same**.
 - Disadvantage: **diminished attractiveness** and **looping strategy**.

- **Geometric.**
 - p: sharing ratio between consecutive users $(0 < p < 1)$.
 - $p \approx 1$: degenerate to **uniform**.
 - $p \approx 0$: degenerate to **single-level** scheme; under-use user intelligence.

- **Social-aware.**
 - Insight: Reward level should be **fixed** and as **few** as **full** user-intelligence utilization allows.
 - Privacy mandates the level to be **2**.
 - $i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l$ $(l \geq 2)$.
 - $l \geq 4$: i_{l-1} gets $\frac{1}{1+\alpha} R_C$; i_{l-2} gets $\frac{\alpha}{1+\alpha} R_C$. $l = 3$: i_{l-1} gets $\frac{1}{1+\alpha} R_C$. $l = 2$: no rewards.
 - α: social weight.
How?

- **Uniform.**
 - Everybody receives the **same**.
 - Disadvantage: *diminished attractiveness* and *looping strategy*.

- **Geometric.**
 - p: sharing ratio between consecutive users ($0 < p < 1$).
 - $p \approx 1$: degenerate to uniform.
 - $p \approx 0$: degenerate to single-level scheme; under-use user intelligence.

- **Social-aware.**
 - Insight: Reward level should be **fixed** and as **few** as **full** user-intelligence utilization allows.
 - Privacy mandates the level to be **2**.
 - $i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l$ ($l \geq 2$).
 - $l \geq 4$: i_{l-1} gets $\frac{1}{1+\alpha} R_C$; i_{l-2} gets $\frac{\alpha}{1+\alpha} R_C$. $l = 3$: i_{l-1} gets $\frac{1}{1+\alpha} R_C$. $l = 2$: no rewards.
 - α: social weight.
How?

- **Uniform.**
 - Everybody receives the **same**.
 - Disadvantage: **diminished attractiveness** and **looping strategy**.

- **Geometric.**
 - p: sharing ratio between consecutive users $(0 < p < 1)$.
 - $p \approx 1$: degenerate to uniform.
 - $p \approx 0$: degenerate to single-level scheme; under-use user intelligence.

- **Social-aware.**
 - Insight: Reward level should be **fixed** and as **few** as **full** user-intelligence utilization allows.
 - Privacy mandates the level to be 2.
 - $i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l$ ($l \geq 2$).
 - $l \geq 4$: i_{l-1} gets $\frac{1}{1+\alpha} R_C$; i_{l-2} gets $\frac{\alpha}{1+\alpha} R_C$. $l = 3$: i_{l-1} gets $\frac{1}{1+\alpha} R_C$. $l = 2$: no rewards.
 - α: social weight.
How?

- **Uniform.**
 - Everybody receives the same.
 - Disadvantage: diminished attractiveness and looping strategy.

- **Geometric.**
 - p: sharing ratio between consecutive users ($0 < p < 1$).
 - $p \approx 1$: degenerate to uniform.
 - $p \approx 0$: degenerate to single-level scheme; under-use user intelligence.

- **Social-aware.**
 - Insight: Reward level should be fixed and as few as full user-intelligence utilization allows.
 - Privacy mandates the level to be 2.
 - $i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l$ ($l \geq 2$).
 - $l \geq 4$: i_{l-1} gets $\frac{1}{1+\alpha} R_C$; i_{l-2} gets $\frac{\alpha}{1+\alpha} R_C$. $l = 3$: i_{l-1} gets $\frac{1}{1+\alpha} R_C$. $l = 2$: no rewards.
 - α: social weight.
How?

- **Uniform.**
 - Everybody receives the same.
 - Disadvantage: *diminished attractiveness* and *looping strategy*.

- **Geometric.**
 - \(p \): sharing ratio between consecutive users \((0 < p < 1)\).
 - \(p \approx 1 \): degenerate to uniform.
 - \(p \approx 0 \): degenerate to *single-level* scheme; under-use user intelligence.

- **Social-aware.**
 - Insight: Reward level should be fixed and as few as full user-intelligence utilization allows.
 - Privacy mandates the level to be 2.
 - \(i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l \) \((l \geq 2)\).
 - \(l \geq 4 \): \(i_{l-1} \) gets \(\frac{1}{1+\alpha} R_C \); \(i_{l-2} \) gets \(\frac{\alpha}{1+\alpha} R_C \). \(l = 3 \): \(i_{l-1} \) gets \(\frac{1}{1+\alpha} R_C \).
 - \(l = 2 \): no rewards.
 - \(\alpha \): social weight.
How?

- **Uniform.**
 - Everybody receives the **same**.
 - Disadvantage: **diminished attractiveness** and **looping strategy**.
- **Geometric.**
 - \(p \): sharing ratio between consecutive users \((0 < p < 1)\).
 - \(p \approx 1 \): degenerate to **uniform**.
 - \(p \approx 0 \): degenerate to **single-level** scheme; under-use user intelligence.
- **Social-aware.**
 - Insight: Reward level should be **fixed** and as few as **full** user-intelligence utilization allows.
 - Privacy mandates the level to be **2**.
 - \(i_1 \to i_2 \to \cdots \to i_l \) (\(l \geq 2 \)).
 - \(l \geq 4 \): \(i_{l-1} \) gets \(\frac{1}{1+\alpha} R_C \); \(i_{l-2} \) gets \(\frac{\alpha}{1+\alpha} R_C \). \(l = 3 \): \(i_{l-1} \) gets \(\frac{1}{1+\alpha} R_C \). \(l = 2 \): no rewards.
 - \(\alpha \): social weight.
How?

- **Uniform.**
 - Everybody receives the same.
 - Disadvantage: diminished attractiveness and looping strategy.

- **Geometric.**
 - p: sharing ratio between consecutive users ($0 < p < 1$).
 - $p \approx 1$: degenerate to uniform.
 - $p \approx 0$: degenerate to single-level scheme; under-use user intelligence.

- **Social-aware.**
 - Insight: Reward level should be fixed and as few as full user-intelligence utilization allows.
 - Privacy mandates the level to be 2.
 - $i_1 \to i_2 \to \cdots \to i_l$ ($l \geq 2$).
 - $l \geq 4$: i_{l-1} gets $\frac{1}{1+\alpha} R_C$; i_{l-2} gets $\frac{\alpha}{1+\alpha} R_C$. $l = 3$: i_{l-1} get $\frac{1}{1+\alpha} R_C$. $l = 2$: no rewards.
 - α: social weight.
How?

- **Uniform.**
 - Everybody receives the same.
 - Disadvantage: diminished attractiveness and looping strategy.

- **Geometric.**
 - p: sharing ratio between consecutive users ($0 < p < 1$).
 - $p \approx 1$: degenerate to uniform.
 - $p \approx 0$: degenerate to single-level scheme; under-use user intelligence.

- **Social-aware.**
 - Insight: Reward level should be fixed and as few as full user-intelligence utilization allows.
 - Privacy mandates the level to be 2.
 - $i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l$ ($l \geq 2$).
 - $l \geq 4$: i_{l-1} gets $\frac{1}{1+\alpha} R_C$; i_{l-2} gets $\frac{\alpha}{1+\alpha} R_C$. $l = 3$: i_{l-1} gets $\frac{1}{1+\alpha} R_C$. $l = 2$: no rewards.
 - α: social weight.
How?

- **Uniform.**
 - Everybody receives the **same**.
 - Disadvantage: **diminished attractiveness** and looping strategy.
- **Geometric.**
 - \(p \): sharing ratio between consecutive users \((0 < p < 1)\).
 - \(p \approx 1 \): degenerate to **uniform**.
 - \(p \approx 0 \): degenerate to **single-level** scheme; under-use user intelligence.
- **Social-aware.**
 - Insight: Reward level should be **fixed** and as **few** as **full** user-intelligence utilization allows.
 - Privacy mandates the level to be **2**.
 - \(i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l \ (l \geq 2) \).
 - \(l \geq 4 \): \(i_{l-1} \) gets \(\frac{1}{1+\alpha} R_C \); \(i_{l-2} \) gets \(\frac{\alpha}{1+\alpha} R_C \). \(l = 3 \): \(i_{l-1} \) gets \(\frac{1}{1+\alpha} R_C \). \(l = 2 \): no rewards.
 - \(\alpha \): social weight.
How?

- **Uniform.**
 - Everybody receives the same.
 - Disadvantage: diminished attractiveness and looping strategy.

- **Geometric.**
 - \(p \): sharing ratio between consecutive users \((0 < p < 1)\).
 - \(p \approx 1 \): degenerate to uniform.
 - \(p \approx 0 \): degenerate to single-level scheme; under-use user intelligence.

- **Social-aware.**
 - Insight: Reward level should be fixed and as few as full user-intelligence utilization allows.
 - Privacy mandates the level to be 2.
 - \(i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l \) \((l \geq 2)\).
 - \(l \geq 4 \): \(i_{l-1} \) gets \(\frac{1}{1+\alpha} R_C \); \(i_{l-2} \) gets \(\frac{\alpha}{1+\alpha} R_C \). \(l = 3 \): \(i_{l-1} \) gets \(\frac{1}{1+\alpha} R_C \). \(l = 2 \): no rewards.
 - \(\alpha \): social weight.
How?

- **Uniform.**
 - Everybody receives the same.
 - Disadvantage: diminished attractiveness and looping strategy.

- **Geometric.**
 - p: sharing ratio between consecutive users ($0 < p < 1$).
 - $p \approx 1$: degenerate to uniform.
 - $p \approx 0$: degenerate to single-level scheme; under-use user intelligence.

- **Social-aware.**
 - Insight: Reward level should be fixed and as few as full user-intelligence utilization allows.
 - Privacy mandates the level to be 2.
 - $i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l$ ($l \geq 2$).
 - $l \geq 4$: i_{l-1} gets $\frac{1}{1+\alpha} R_C$; i_{l-2} gets $\frac{\alpha}{1+\alpha} R_C$. $l = 3$: i_{l-1} gets $\frac{1}{1+\alpha} R_C$. $l = 2$: no rewards.
 - α: social weight.
How?

- **Uniform.**
 - Everybody receives the **same**.
 - Disadvantage: *diminished attractiveness* and *looping strategy*.

- **Geometric.**
 - p : sharing ratio between consecutive users ($0 < p < 1$).
 - $p \approx 1$: degenerate to **uniform**.
 - $p \approx 0$: degenerate to **single-level** scheme; under-use user intelligence.

- **Social-aware.**
 - Insight: Reward level should be **fixed** and as **few** as **full** user-intelligence utilization allows.
 - Privacy mandates the level to be **2**.
 - $i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l$ ($l \geq 2$).
 - $l \geq 4$: i_{l-1} gets $\frac{1}{1+\alpha} R_C$; i_{l-2} gets $\frac{\alpha}{1+\alpha} R_C$. $l = 3$: i_{l-1} gets $\frac{1}{1+\alpha} R_C$. $l = 2$: no rewards.
How?

- **Uniform.**
 - Everybody receives the same.
 - Disadvantage: diminished attractiveness and looping strategy.

- **Geometric.**
 - p: sharing ratio between consecutive users $(0 < p < 1)$.
 - $p \approx 1$: degenerate to uniform.
 - $p \approx 0$: degenerate to single-level scheme; under-use user intelligence.

- **Social-aware.**
 - Insight: Reward level should be fixed and as few as full user-intelligence utilization allows.
 - Privacy mandates the level to be 2.
 - $i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l$ $(l \geq 2)$.
 - $l \geq 4$: i_{l-1} gets $\frac{1}{1+\alpha} R_C$; i_{l-2} gets $\frac{\alpha}{1+\alpha} R_C$. $l = 3$: i_{l-1} gets $\frac{1}{1+\alpha} R_C$. $l = 2$: no rewards.
 - α: social weight.
Adam Smith’s invisible hand metaphor.

If users and the shop share the same estimation about redemption probability distribution in the population, a social weight $\alpha = 1$ will lead to a desirable situation in which a user, acting on his own interest, serves the shop’s interest best.
Questions?
Thank you for your attention!