
A Greedy Approach for Carpool Scheduling Optimization in Smart

Cities

Yubin Duan, Jie Wu, and Huanyang Zheng

Center for Networked Computing, Temple University, USA

ARTICLE HISTORY

Compiled September 18, 2018

ABSTRACT

Nowadays, large cities, especially metropolitan areas, face numerous problems
caused by the rapidly increasing number of vehicles on the road. Several researchers
have shown that carpooling can be an efficient solution to the traffic pressure caused
by large numbers of cars. The objective of our carpool scheduling problem is to
minimize the number of carpools needed to transport all users. Previous research on
the similar topic introduces static capacity constraint to the problem, which limits
the carpool size to the vehicle’s capacity. However, it is not necessary since a seat
in the vehicle can be occupied by several passengers only if their routes are not
overlapped. In this paper, we remove the static capacity constraint, and doing so
allows a vehicle to carry more passengers than its capacity. We propose a greedy
approach based on iterative matching and merging. Specifically, starting from a set
of single-user carpools, the algorithm iteratively checks the merge-ability of each
pair of carpools, and then applies the maximum matching algorithm to maximize
the number of carpools to be merged.In addition, the merge-ability checking process
is carefully studied and two methods are proposed to reduce the algorithm’s time
complexity. Furthermore, we improve the time efficiency of our algorithms by taking
advantage of geometry properties. We apply our algorithms to both synthetic and
real-world datasets, and experiment results show that our algorithms have better
performances than existing approaches.

User Requests:
- include source and destination

Carpool Scheduling:
- determine size & route of a carpool
- minimize number of carpools

KEYWORDS
Carpool problem, greedy algorithm, cluster merging, maximum matching.

CONTACT Yubin Duan. Email: yubin.duan@temple.edu

1. Introduction

In recent years, the number of private vehicles on streets has skyrocketed, leading
to numerous problems in cities, and especially in metropolitan areas. According to a
study by Meyer et al. [1], the global car population is projected to reach 2.8 billion
by 2050. The rapid increase of vehicles has led to environmental, economic, and social
problems, including increased carbon emission, travel costs, and congestion [2]. To
relieve the pressure caused by increasing demands for cars for transportation, carpools
were proposed. The non-hoursehold carpool, which allows two or more commuters from
different residences to travel together in the same private vehicle, reduces the number
of single-occupied vehicles needed per journey [3]. According to research conducted by
Roxana J. Javid et al. [4], under a hypothetical scenario where high-occupancy vehicle
lanes (also known as carpool lanes) that encourage carpool are increased, the annual
reduction in the CO2e emissions of the 50 U.S states and the District of Columbia may
reach up to 1.83 million metric tons. Cathy Wu et al. [5] has studied carpool algorithms
for 3+ high-occupancy vehicle lanes. In addition to reducing environmental impact,
carpooling also reduces the economic burdens of users. Driven by the advantages of
carpooling, this paper proposes a carpool scheduling algorithm that could be used in
carpool assignment procedures.

Given the starting points, destinations, the vehicle capacity constraint, the detour
limitation, and other user requirements, our carpool scheduling problem is to select
a minimum number of drivers who can serve all the user requests (without breaking
anyone’s requirement) and to calculate the service order (i.e pick up and drop off
order) for each driver. Several researchers have addressed carpool problems or the
similar taxi-sharing problems [6]. The carpooling problem with additional constraints
has been classified as an NP-hard problem [7]. Additional constraint here means that
when a passenger is picked up by a driver, the capacity of the driver’s vehicle is filled
by the same people for the whole trip, i.e., even if the passenger has arrived at his
destination, the seat assigned to the passenger will not be released.

We use Fig. 1 to illustrate the process of carpool scheduling for a group of users:
{s1, d1}, {s2, d2}, {s3, d3}, and {s4, d4} represent the start and destination points of
users p1, p2, p3 and p4, respectively. The numbers on edges show the distance between
vertices. Assume that each user has a car with a seating capacity of 2, and all of them
are willing to share their cars if it does not involve a detour of more than 20% of the
shortest path from their starting points to corresponding destinations. To demonstrate
the additional constraint in the previous problem, suppose p4 is appointed as a driver
and p1 is in the same carpool with p4. p4 will start from s4 and pick up p1. After p4

drops off p1 at d1, there will be one seat available in p4’s car. In this situation, p4

actually could pick up more users only if the detour constraint is not violated.
However, with the additional constraint, the seat capability will still be filled even

after p1 is dropped off, and there will be no chance for p2 and p3 to join the carpool.
Therefore, under this constraint, users will be divided into disjoint carpools where the
size of each carpool is at most 2. As a consequence, the minimum number of carpools
needed is 3 in the example. A possible arrangement of carpools could be: let p4 be the
driver and deliver p1 from s1 to d1, and other users p2, p3 go with their own car. The
number of carpools cannot be further reduced, since there is no way to build a carpool
which contains any two users among p1, p2 and p3. Otherwise, the detour constraint
will be violated.

However, the additional constraint in the previous problem is unreasonable in reality
since it is possible that drivers could take extra passengers while satisfying the detour

2

Figure 1. An illustration of the carpool scheduling problem scenario.

constraint. Use the same example in Fig. 1, the driver p4 could transport both p1,
p2 and p3 to their destination under the 20% detour constraint. A possible path is
shown in the figure, i.e. s4(s1) → d1 → s2 → d2 → s3 → d4(d3). The detour of p4

is 6 − 5 = 1, which is exactly 20% of the length of the shortest path from s4 to d4.
We can find out that, without this constraint, the minimum number of drivers needed
in Fig. 1 is 1. Therefore, the static constraint limits further optimization of carpool
scheduling problems. Without this additional constraint the carpool problem becomes
even harder since the search space is enlarged. A more formal proof of the NP-hardness
of our problem will be introduced later.

Our main contributions are summarized as follows:

• The carpool problem without the previous additional constraint is addressed and
analyzed, and we prove that our proposed problem is NP-hard.
• We provide a partition merging based on greedy algorithms for the carpool

scheduling. It can reduce the number of carpools significantly.
• We further introduce two variations to improve time efficiency of the proposed

algorithm. The first kind of variation focuses on merge-ability checking process
and the other takes advantage of geometry properties.
• Experiments on both synthetic and real-world data are set up and validate the

superiority of our algorithm over existing carpool scheduling algorithms in terms
of total carpool numbers.

The remainder of the paper is organized as follows. Section 2 surveys related works.
Section 3 describes our model, formulates and analyzes the problem. Section 4 proposes
a greedy algorithm and its improvements. Section 5 includes the experiments. Finally,
Section 6 concludes the paper.

2. Related Work

Several researches have been done on the carpool scheduling and related problems,
including [8–17]. Significant results are reviewed in the rest of this section.

Based on different objectives, the carpool problem has several variations. Agatz et
al. [8] and Amey [9] focused on minimizing the miles of vehicles participated in the
carpool. Ghoseiri et al. [10] and Xing et al. [11] proposed to maximize the number of
participants of carpool. Baldacci et al. [13] jointly considered milage cost and number of
participants. They proposed to minimize the sum of the penalty for unserviced clients
and the overall path costs. Different from their objectives, we aim at minimizing the
number of carpools needed to carry all users, which also minimizes the number of
private cars used in the carpool system. Our perspective is more useful when trying
to release the traffic pressure caused by the huge amount of vehicles.

The carpool problems with the objective to minimize the number of cars used is
considered by Buchholz et al. [12]. Although they share the same objective with our

3

Table 1. Table of Notations.

Notations Description

P = {p1, . . . , pn} The user set

σi The detour limitation of pi
λi The capacity limitation of pi’s vehicle

si / di Source/Destination of user pi
C = {c1, . . . , cm} The carpool set

ri The path for ci
κr The occupation of the path r

approach, Buchholz et al. [12] introduced the additional constraint that the size of
carpool cannot exceed the capacity limitation. As a solution, they presented the Strict
Partitioning Algorithm (SPA) which divides users into sets of k-partitions. Based on
the additional constraint, the number of users in each partition is no more than k.
They prove that the NP-hardness of their problem for k ≥ 3. Besides, they propose
an O(n2) solution for the simpler case when k = 2. As we mention in section 1, the
additional constraint in their problem is not necessary. Also, the SPA only works for
the k = 2 case, which means their solution allows only one person to share the car with
the driver. In the paper, we remove the additional constraint and propose a heuristic
algorithm which can deal with the case with any arbitrary positive k.

Another related topic is the taxi sharing problem. Its main difference from our
carpool scheduling problem is that the requests of users are not static. It is to say,
the route schedules cannot be computed in advance. Santi et al. [14] and Zhang et
al. [15] addressed taxi-sharing problems. A method similar to [12] for taxi sharing is
used by Santi et al. in [14]. Specifically, a share-ability network between individual
passenger trips is built and they try to merge the trips based on the spatial and
temporal proximity between them. According to their algorithm, a taxi with a seat
capacity of 2 can combine at most k (k > 2) trips if there is no overlap between them.
Their algorithm effectively overcomes the limitations of SPA. However, they assumed
that a taxi is available anytime and anywhere. The model considers the start and
end time of each trip along with the coordinates and builds a hyper graph to express
the share-ability of different trips. The complexity of building such a share-ability
network is O(k!) because of checking all possible k-combinations of trips. Therefore,
the proposed model is not scalable beyond k = 3. In our model, we consider individual
trips as a primitive set of single clusters and merge them in different rounds. In each
round, we consider all pairs (not k-combination) of clusters and merge them, if possible.
Therefore, we do not need any hyper graphs and the complexity is significantly lower
than [14].

3. Problem Formulation and Analysis

In this section, we first propose the model and mathematical formulation of our carpool
scheduling problem, then we prove the np-hardness of the proposed problem.

3.1. Model and Problem Formulation

In our model, users are defined as a set of people P = {p1, p2, . . . , pn}, where each
person can be either a driver or a passenger. The driver in carpool should be willing to
share his vehicles, and the passengers should be glad to carpool with other users. Each

4

user is associated with a maximal acceptable detour distance σi, a seating capacity
for his vehicle λi, a starting point si and a destination di. The set of si and di is
denoted by S and D, respectively. A carpool c consists of a group of users who are

going to travel in the same vehicle. Formally, c ∈ P ∗, where P ∗ =
⋃|P |
i=0 P

i = P ∪
P 2 ∪ . . . ∪ P |P |. Let C = {ci} denote the set of all possible carpools. The starting
points of the users in carpool c form a sub-set Sc ⊆ S, and the destinations form a
sub-set Dc ⊆ D. Each carpool ci will be associated with a driver and a path r, since
our goal is not only minimizing the amount of carpools, but also providing a possible
path with an appointed driver to achieve this amount. The path ri is defined as an
ordered set of locations (including both starting points and destinations). Formally,
r = (l1, l2, . . . , lm), where ∀ li ∈ r : li ∈ Sc∪Dc. The order in r represents sequence of
visiting each location. Associated with two locations li and lj in the path, we use δi,j to
record the detour distance (extra distance compared with travel from li to lj directly)

between location li and lj in path, and δi,j =
∑j−1

k=i f(lk, lk+1)−f(li, lj). The function
f(li, lj) : r2 7→ R+ is used to calculate the mileages between two locations; this can
be calculated based on actual map information or simply set to Euclidean distance
using coordinates. Besides the length, we use κr to denote the current occupancy of
the path, which is defined as κr = |r ∩ Sc| − |r ∩Dc|.

Considering the constraints in the carpool scheduling problem, a path r is admissible
for a carpool c with user pγ as the driver if the following constraints are satisfied :

(1) Order constraint: the first element in r should be the starting point of pγ (sγ) and
the final element should be the destination of pγ (dγ). Any other user’s starting
point should appear before the corresponding destination in r. Formally, the
constraint can be expressed as l1 = sγ , lm = dγ , and ∀ pi ∈ c : k < k′, if lk =
si and lk′ = di.

(2) Detour constraint: the detour limitation of each user in carpool c should be
satisfied. Formally, ∀ pi ∈ c : δk,k′ ≤ σi, if lk = si and lk′ = di.

(3) Capacity constraint: at any instant the number of users in the car may not exceed
kd, i.e., ∀r′ ⊆ r : κr′ ≤ λγ .

(4) Inclusion constraint: all starting points and destinations in carpool c should be
included in path r to make sure that the transportation demands of users in c
are satisfied. Formally, |r| = 2|c|, since each user in c has one origin plus one
destination.

Two carpools ci and cj are mergeable if at least one admissible path can be found for
carpool ci ∪ cj .

Based on these definitions, we formulate our problem as:

minimize |C| (1)

subject to pj = pj′ if l1 = sj and l|ri| = dj′ (2)

k < k′ if lk = sj and lk′ = dj (3)

δk,k′ ≤ σj if lk = sj and lk′ = dj (4)

κr′ ≤ λγ for ∀r′ ⊆ ri (5)

|ri| = 2|ci| (6)

for ∀ci ∈ C, ∀pj , pj′ ∈ ci, ∀lk, lk′ ∈ ri

5

3.2. Problem Hardness

Under a special case, our Carpool Scheduling Problem (CSP) is equivalent to the well
known traveling salesman problem (TSP) [18]. The TSP is proven to be NP-hard, and
therefore, we can prove that our problem is also NP-hard.

Theorem 3.1. The Carpool Scheduling Problem is NP-hard.

Proof. The proof is done by revealing the equivalence of a special case of the CSP
and the TSP [12]. Given a set of cities and a home city, the TSP aims to select the
minimum distance path that starts and ends at home to cover all given cities. We
start by converting the input of the TSP to the input of the CSP. The salesman can
be considered the driver of a car with a seat capacity of 2, and each city can be
seen as a passenger with the same starting and ending point. Then we set detour of
passengers to 0. The minimum cost path (or the minimum detour path) that can cover
all passengers is the optimal solution of the TSP. Instead of finding an optimal path
by visiting each city, we now try to find any path that has its length bounded by a
given upper limit. This problem is equivalent to the CSP if the limit of the maximum
path length is set as the maximum allowable detour. This variation remains NP-hard.
Therefore, it is proven that the CSP is NP-hard.

4. Algorithmic Design

In this section, we first introduce our greedy approach for carpool scheduling problem.
Then algorithm variations are introduced based on different strategy used in merg-
ing process. Furthermore, proposed algorithms are improved by taking advantage of
geometry properties.

4.1. Partition Merging Algorithm

This subsection presents the Partition Merging Algorithm (PMA). Observe the
example shown in Fig. 2. Strict Partition Algorithm (SPA) applies matching algorithm
to construct carpools, but it only contains one round of matching. SPA can make sure
the number of users in each carpool won’t exceed the capacity limitation of drivers,
but it ignores the fact that seat occupation will be released when users are dropped-
off at their destinations. That is to say, once SPA calculates a possible arrangement
of carpools, it stops and ignores the merge-ability between these carpools. Simply
speaking, SPA only considers the merge-ability of users, which are one-user-carpools,
instead of the merge-ability of multi-users-carpools. Therefore, PMA, an algorithm
considering multi-round matching, is proposed.

Specifically, PMA is a greedy algorithm based on carpool graph G. After initializing
the graph G, PMA will try to merge as many vertices as possible in each round until
there are no edges in G, i.e., no more carpools can merge.

More specifically, as shown in Algorithm 1, PMA will first initialize the set of car-
pools C and then set each carpool in C to a carpool with only one user (line 1). Then,
this set of carpools will be treated as the set of vertices for graph G. That is to say,
|P | vertices in total will be set. Then, unweighted undirected edges eij will be built if
an admissible path can be found between carpools ci and cj . The existence of an edge
between vertices indicates both users in ci and cj can travel together within the same
carpool (line 2). When initialization is finished, PMA plans the merge so that maximal

6

Algorithm 1 Partition Merging Algorithm (PMA)

Input: A set of users P = {p1} associate with the starting points set {si}, the
destinations set {di}, the detour limitation set {σi} and the capacity limitation
set {λi}

Output: A set of carpools C.
1: Initialize C ←

{
{p1}, {p2}, . . . , {p|P |}

}
.

2: Initialize graph edge set E. Build edge (ci, cj) iff ci and cj are mergeable, for
∀ci, cj ∈ C. Set G← (G, E)

3: repeat
4: EM ← maximum matching of G.
5: Merge ci and cj if edge (ci, cj) ∈ EM , for ∀ci, cj . Update C. Reset E ← ∅
6: for ∀ci, cj ∈ C do
7: for ∀pk ∈ ci ∪ cj do
8: Initialize a partial order set S ← Sci ∪ Dci ∪ Scj ∪ Dcj . Initialize partial

order relationship based on order constraint.
9: R← all topological sort of S

10: if ∃r ∈ R satisfy capacity constraint and detour constraint then
11: build edge (ci, cj) in E
12: until E = ∅.
13: return C as the final carpool-set.

d2/s3 d3

d1

s2

s1

2

2

2

2

1 1 1

Figure 2. The example used to illustrate the Partition Merging Algorithm.

number of merges can be achieved by applying an efficient maximum matching algo-
rithm [19] (lines 4 and 5). It is true that other efficient maximum matching algorithms
like [20] can be used here. After matching and merging, graph G shrinks and contains
fewer vertices, i.e., C can be updated with fewer carpools. Once a new set of carpools
is found, the merge-ability of the carpools will change and must be recalculated (from
line 6 to line 11). Repeating the steps mentioned above, the number of vertices in G
decreases until no edge can be created; this means that the carpools cannot be merged
any further, and a local optimal is reached. Finally, PMA returns C as the final result
(line 13). Fig. 3 shows the merging situation in each round of PMA based on the
scenario shown in Fig. 2. At the beginning of PMA, there are 3 one-user-carpools and
{p1} and {p2} are mergeable. In the second round, even if carpool {p1, p2} already
contains 2 users (which is the capacity limitation of all users), it is still mergeable
with {p3}. They are mergeable because an admissible path can be found for carpool
{p1, p2} ∪ {p3} as shown in Fig. 4(b).

The merge-ability check process tries to find at least one admissible path to indicate
merge-ability. Roughly speaking, it is a search algorithm that checks each possible
path using the origins and destinations of users in carpool ci ∪ cj until an admissible
one is found. However, checking all possible sequences with n nodes will cost O(n!)
time, which is not acceptable. Therefore, we use the order constraint of the problem
to reduce the search space. Considering that the order constraint requires that the

7

Figure 3. An illustration of the Partition Merging Algorithm.

s2

s3

s1

d2

d3

d1

2

2

4

1 1

3
3

3 5
5

1

4 0

3 1

(a) Locations and distances graph

s2

s3

s1

d2

d3

d1

2

2

4

1 1

3
3

3 5
5

1

4 0

3 1

(b) An admissible path

Figure 4. Example of finding an admissible path.

origins of users appear before the corresponding destinations in an admissible path,
we apply the topological sorting algorithm to eliminate paths that violate the order
constraint. Considering that the driver’s starting point must be the first location in
the admissible path and his destination must be the last, we describe this constraint as
an order constraint. Any other locations in the admissible path must appear after the
driver’s starting point and before his destination. This constraint can also be satisfied
by applying the topological sorting algorithm. Line 7 in Algorithm 1 selects user pk as
a potential driver. After the driver is selected, a partial order set S is built in line 8.
The partial order set should contain both origins and destinations of users in ci ∪ cj
because of the inclusion constraint, and the partial order will be initialized based on
the order constraint. After passing the capacity and detour constraint checks in line
10, an edge (ci, cj) is added in E to show that ci, and cj are mergeable.

Theorem 4.1. The worst case complexity of PMA is O(n!).

Proof. The worst case occurs when PMA checks the merge-ability of two carpools in
a carpool whose size is n. In this case, the PMA needs to test all possible partial orders
of n nodes. The maximum possible number of these partial orders is O(n!). Therefore,
the worst case complexity is O(n!). The time consumption of a O(n!) algorithm may
increase faster than a exponential growth O(2n), which is not affordable in read word
applications.

4.2. Insertion Methods

PMA explores all possible insertions in the merge-ability checking process, which is
time consuming and is not applicable in real-world application. We propose two heuris-
tic methods: driver-alone insertion and general insertion. When merging two carpools,
both proposed insertion methods keep route schedule for one carpool and insert it

8

Algorithm 2 Partition Merging Algorithm with Driver-alone Insertion (PMADI)

Input: A set of users P = {p1} associate with the starting points set {si}, the
destinations set {di}, the detour limitation set {σi} and the capacity limitation
set {λi}

Output: A set of carpools C.
1: Same as Algorithm 1, except change line 8 and 9 into:
2: R ← insert ci into cj at points where there is only one person (the driver) in

carpool cj , and insert cj into ci at points where there is only one person in ci.

entirely to the route for the other carpool. Both insertion methods can reduce the
number of admissible paths checked.

Specifically, suppose we are merging two carpools ci and cj . Instead of applying the
topological sort algorithm to eliminate paths which violate the order constraint, we
first try to directly insert ci into cj without breaking ci and then try from the other side.
Driver-alone insertion only consider breaking the route when there is no passenger but
only the driver on the route. General insertion explores more combinations, while it still
keeps one route unaffected. PMA with Driver-along Insertion (PMADI) is shown in
Algorithm 2. It is basically the same as PMA except the search space of admissible path
is shrank. PMA with General Insertion (PMAGI) is similar as PMADI, except the path
of a carpool can be interrupted in any point to insert the path of the other carpool.
Insertion methods can greatly reduce the number of partial orders that should be
checked for capacity constraint. They also provide a trade-off between time complexity
and the algorithm performance.

We use Fig. 5 and Fig. 6 to illustrate these two insertion methods. In the example,
there are two carpools c1 = {s1 − s2 − d2 − d1} and c2 = {s3 − s4 − d4 − d3}. The
driver-alone insertion first attempts to insert c1 into c2. The breaking point in c2 can
be the point between s3 and s4, or it can be the point between d3 and d4. In both of
these points, there is only driver on the car and the insertion will increase the number
of passengers on the vehicle to be the number of people in c2 plus 1. The travel length
for each insertion is recorded for further comparisons. Then the driver-alone insertion
methods tries from the other side, which is to keep c2 unchanged and insert c2 into
c1. The possible breaking points on c1 are the point between s1 and s2 as well as
the point between d1 and d2. As for the general insertion, it also keeps one of c1 and
c2 unchanged and breaks the other one. The difference is that it treats all points in
the other route as potential breaking points. Fig. 6 illustrates the general insertion
method. Similar to the driver-alone insertion, general insertion also entirely inserts
ci or cj into the other part. The difference is that the general insertion explores all
possible points of insertion instead of only considering the driver-alone case.

The driver-alone insertion can speed up the merge-ability checking process not only
because it reduces the number of paths to be checked, it also saves time for capacity
constraint checking. For any two carpools ci and cj in which the maximum number of
users in the vehicle are κ′i and κ′j respectively, after inserting ci into cj with driver-

alone insertion method, the maximum number of users in the vehicle is max{κ′i+1, κ′j}.
With the help of this property, whether the capacity constraint is violated or not can
be checked by simply comparing the maximum number with the capacity limitation.
For instance, the maximum number of users in the car for carpool c2 in Fig. 5 is 2.
Inserting c2 into c1 after the point s3 generates the new carpool with path s3 → s1 →
s2 → d2 → d1 → s4 → d4 → d3. Following the path, the maximum number of people

9

s1 − s2 − d2 − d1

s3 − s4 − d4 − d3

s1 − s2 − d2 − d1

s3 − s4 − d4 − d3

seat +1
seat +1

s1 − s2 − d2 − d1

s3 − s4 − d4 − d3

seat +2

s1 − s2 − d2 − d1

s3 − s4 − d4 − d3

seat +2

(a) Inserting c1 to c2

s1 − s2 − d2 − d1

s3 − s4 − d4 − d3

s1 − s2 − d2 − d1

s3 − s4 − d4 − d3

seat +1
seat +1

s1 − s2 − d2 − d1

s3 − s4 − d4 − d3

seat +2

s1 − s2 − d2 − d1

s3 − s4 − d4 − d3

seat +2

(b) Inserting c2 to c1

Figure 5. Driver-alone insertion.

s1 − s2 − d2 − d1

s3 − s4 − d4 − d3

s1 − s2 − d2 − d1

s3 − s4 − d4 − d3

seat +1
seat +1

s1 − s2 − d2 − d1

s3 − s4 − d4 − d3

seat +2

s1 − s2 − d2 − d1

s3 − s4 − d4 − d3

seat +2

(a) Inserting c1 to c2

s1 − s2 − d2 − d1

s3 − s4 − d4 − d3

s1 − s2 − d2 − d1

s3 − s4 − d4 − d3

seat +1
seat +1

s1 − s2 − d2 − d1

s3 − s4 − d4 − d3

seat +2

s1 − s2 − d2 − d1

s3 − s4 − d4 − d3

seat +2

(b) Inserting c2 to c1

Figure 6. General insertion.

on the vehicle is 3.
The paths generated via both driver-alone and general insertion method are properly

nested. The properly nested means that if passenger u1 is picked up prior to u2, then u1

is dropped off before u2. The paths in Fig.4 and Fig.5 can both illustrate this property.
Specifically, u3 is picked up at s3 before u4 boards the car, and u3 is dropped off at
d3 which is prior to u4’s drop off location d4. A path which is not properly nested can
be generated when we use topological sort to generate all possible permutations. For
example, a path which satisfies order constraint but is not properly nested can be:
s1 → s2 → s3 → d2 → d3 → s4 → d4 → d1. The property of properly nested helps
us to track the number of users on the vehicle. It is not obvious to determine whether
the property of properly nested is useful or not. Therefore, in the experiment section,
we set up a series of experiments to evaluate the performance of PMADI, PMAGI and
IPMA. The IPMA represents the algorithm exploring all possible topological sort.

Theorem 4.2. The worst case complexity of PMAGI is O(n3.5).

Proof. The time complexity of PMA with General Insertion is O(n3.5). The PMAGI
iteratively merge carpools until there are no carpools to merge. We first focus on the
time complexity of each iteration. Each iteration can be divided into three phases,
including merge-ability checking phase, matching phase and merging phase. In the
merge-ability checking phase, each carpool tests the merge-ability with other carpools.
It is each carpool tries to insert into another carpool and checks the feasibility after
insertion. The number of total possible insertion point is O(n), and the total time
consuming of checking is also O(n). The reason is that n users can generate at most
O(n) intervals for insertion no matter how these n users are carpooled. In addition, the
number of carpools is at most O(n). Therefore, the time consumption of merge-ability
checking phase is at most O(n2). The exact time complexity of the matching phase is
hard to calculate since it is related to the number of edges generated. An (O(

√
V E))

algorithm for general matching algorithm is proposed in [21]. Therefore, the worst
time consumption of matching is O(n2.5). In the third phase, the merging phase,
matched carpools are merged, and the time consumption is at most O(n). Therefore,
in each iteration, the time consumption is at most O(n2) +O(n2.5) +O(n) = O(n2.5).
The PMAGI at most has n iterations before convergence, since at least two carpools
can be merged in each round before convergence. Therefore, the time complexity of
PMAGI is O(n3.5). The PMADI tries less insertions when checking the merge-ability,

10

Algorithm 3 Improved Partition Merging Algorithm (IPMA)

Input: A set of users P = {p1} associate with the starting points set {si}, the
destinations set {di}, the detour limitation set {σi} and the capacity limitation
set {λi}

Output: A set of carpools C.
1: Same as Algorithm 1, except add a line after line 7:
2: if ∃pk′ ∈ ci ∪ cj , f(sk, sk′) + f(sk′ , dk)− f(sk, dk) > σk or f(sk, dk′) + f(dk′ , dk)−
f(sk, dk) > σk then

3: Skip this round.

and therefore the time complexity is also O(n3.5).

Admittedly, directly inserting may eliminate potential optimal choice for merging.
It significantly reduces the time complexity of the algorithm and provides the system
operator a choice to balance the running time and the optimality of the algorithm
outcome. Besides, the partial orders generated by our insertion methods are properly
nested.

4.3. Improving the PMA with Geometry Properties

The time efficiency of PMA can be further improved by taking advantage of geome-
try properties. In PMA, the detour constraint is checked after paths are constructed by
topological sorting. However, if the origins and destinations of users are too far from
each other, we can conclude that these users cannot merge directly without construct-
ing any paths. That is to say, the detour constraint can be pre-checked by calculating
the total mileages starting from driver’s origin and then passing by passenger’s origin
or destination to driver’s destination. In this way, the time used to calculate the topo-
logical order of these nodes is reduced. More formally, when checking the merge-ability
of ci and cj for each user pk, if ∃pk′ such that f(sk, sk′) + f(sk′ , dk)− f(sk, dk) > σk or
f(sk, dk′)+f(dk′ , dk)−f(sk, dk) > σk, then pk cannot be the driver in the new carpool
ci ∪ cj .

The Improved Partition Merging Algorithm (IPMA) is shown in Algorithm 2. To
illustrate the improvement, an example is shown in Fig. 4(a), for user p2, the distance
between the origin of p2 and the destination of p3 already exceeds the detour tolerant
limitation of p2. Therefore, there is no way to set p2 as the driver. We do not have to
waste time to find the admissible path. More intuitively, after plotting out all locations
within the detour distance limitation of a user, we find that these locations form an
ellipse. Any user whose origin or destination is located outside of the ellipse cannot
travel with him or her. We can save running time in IPMA by skipping these users.

5. Experiment

In this section, simulated and real data-driven experiments are conducted to evalu-
ate the performances of the proposed algorithms. After presenting the datasets and
settings, the results are shown from different perspectives to provide insightful con-
clusions.

11

-74.02 -74 -73.98 -73.96 -73.94

40.72

40.74

40.76

40.78

40.8

40.82

40.84

40.86

40.88

(a) Start location distribution
-74.02 -74 -73.98 -73.96 -73.94

40.72

40.74

40.76

40.78

40.8

40.82

40.84

40.86

40.88

(b) Destination distribution

Figure 7. Location distribution of the NYC dataset.

5.1. Synthetic and NYC Taxi Datasets

This subsection introduces the datasets used in our experiment. Both a synthetic
dataset and a real-world dataset were used. For the synthetic dataset, we randomly
created a user’s request locations, including starting points and destinations. To fully
test the performance of our algorithm, two different kinds of distributions are used:
uniform distribution and normal distribution. In our uniform distribution dataset, the
horizontal and vertical coordinates of each location are individual and range from 0-30
miles. What’s more, the origin and destination of each user are also individual. In our
normal distribution dataset, the independence of horizontal and vertical coordinates
holds true, and so does the independence of origins and destinations. The mean of the
normal distribution is set to 15 and the standard deviation is set to 5 to make sure
that more than 99.73 % of coordinates are located in the same range of locations in the
uniform distribution dataset. Under these parameter settings, 10,000 request locations
are separately generated for the uniform distribution and normal distribution dataset.

The NYC dataset is extracted from yellow cab trace data in NYC. The yellow
cab trace data in NYC contains each taxi service’s start time, end time, the GPS
coordinates of pickup and drop-off locations, travel distances. We analyzed the trace
data of a day, and find that there are 743.9 requests per minute on average in the
NYC area. We extracted 500 items from trace data where start times differ by less
than 2 minutes to build our NYC dataset. The average user travel distance in our NYC
dataset is 3.155 miles. The distribution of pickup and drop-off locations are shown in
Fig. 7.

5.2. Experimental Settings

We conduct four sets of experiments to evaluate our proposed algorithms. We first
compare IPMA with the Strict Partitioning Algorithm (SPA) in the synthetic dataset.
In addition, we focus on the comparison between IPMA with its variation with driver-
alone and general insertion methods, which are denoted as PMADI and PMAGI respec-
tively. What’s more, the IPMA is tested with different detour configurations. Finally,
the IPMA is tested on the real-world dataset.

IPMA and SPA are evaluated in our first series of experiments. Considering the

12

Number of users
20 30 40 50 60 70 80 90 100

N
um

be
r

of
 c

ar
po

ol
s

10

20

30

40

50

60

70

80

90
SPA
IPMA-1000
IPMA-1

(a) Uniform distribution dataset

Number of users
20 30 40 50 60 70 80 90 100

N
um

be
r

of
 c

ar
po

ol
s

5

10

15

20

25

30

35

40

45

50

55
SPA
IPMA-1000
IPMA-1

(b) Normal distribution dataset

Figure 8. Comparison between IPMA and SPA under different distribution.

number of possible topological orders fluctuates in different partial order sets, the
time it takes to apply IPMA may vary intensely in different datasets. To control time
consumption, we use the variant IPMA in our experiment. Instead of using all the
topological orders in IPMA, we only use the top k topological orders. The modified
version is referred to as IPMA-k in the following experiment. What’s more, choosing
small k may lead to less optimal results, and therefore, we plot different outcomes
when k varies to visualize this effect. In the first series of experiments, both the uni-
form distribution dataset and the normal distribution dataset are used to compare
the performances of IPMA-1, IPMA-1000, and the previous SPA. To maximize the
difference between IPMA and SPA as much as possible, we set each user’s capacity
to 2. The detour distance of each user is set to relative distance, i.e., the percentage
of the distance that a user travels. We use 5%, 10%, and 15% to imply small, mid-
dle and large detour distance respectively. The results are averaged over 50 times for
smoothness.

We also test the performance of IPMA with different detour distances. In this sit-
uation, we apply IPMA-1000 to our simulated data set. The capacity of each user is
set to 4, since a capacity of 4 is more similar to a real-world scenario. The results are
averaged over 50 times per simulation.

We further test the performance of two different insertion methods: driver-lone
insertion and the general-insertion along with the IPMA-k. The experiment is used
to check if our proposed insertion method will ignore too many possible paths and
improve the performance slightly with large time consuming. As we mentioned earlier,
both PMADI and PMAGI generate properly nested pickup and drop-off schedule for
each carpool. Through this set of experiment, we try to understand if this property
improves the performance of IPMA.

The last experiment is conducted on the real-world dataset aims to test the effect
of k, i.e. the number of topological orders used in IPMA. We choose to test the effect
of k based on the NYC Taxi dataset since we are trying to reflect the effect of k in
the real-world situation. In all, there were 500 users’ request involved. The capacity of
each user is set to 5, and the middle detour distance is used, i.e., 10% detour distance.

5.3. Evaluation Results

Fig. 8 shows the performance comparison between IPMA and SPA in both uniform and
normal distribution datasets. Comparing results in Figs.8 (a) and (b), we can conclude
that both IPMA-1 and IPMA-1000 outperformances than SPA. In the normal distri-
bution dataset, the performance differences between IPMA and SPA are smaller than

13

20 30 40 50 60 70 80 90 100
Number of users

6

8

10

12

14

16

18

20

22

24

26

N
um

be
r

of
 c

ar
po

ol
s

Detour = 5%
Detour = 10%
Detour = 15%

(a) Uniform distribution dataset

20 30 40 50 60 70 80 90 100
Number of users

6

8

10

12

14

16

18

20

22

24

26

N
um

be
r

of
 c

ar
po

ol
s

Detour = 5%
Detour = 10%
Detour = 15%

(b) Normal distribution dataset

Figure 9. Comparison of IPMA-1000 under different detour.

20 30 40 50 60 70 80 90 100
Number of users

5

10

15

20

25

30

35

40

45

50

55

N
um

be
r

of
 c

ar
po

ol
s

IPMA-1
PMADI
PMAGI
IPMA-1000

(a) Carpooling with 5% detour

20 30 40 50 60 70 80 90 100
Number of users

5

10

15

20

25

30

35

40

45

50

55

N
um

be
r

of
 c

ar
po

ol
s

IPMA-1
PMADI
PMAGI
IPMA-1000

(b) Carpooling with 10% detour

20 30 40 50 60 70 80 90 100
Number of users

5

10

15

20

25

30

35

40

45

50

55

N
um

be
r

of
 c

ar
po

ol
s

IPMA-1
PMADI
PMAGI
IPMA-1000

(c) Carpooling with 15% detour

Figure 10. Comparison among IPMA-1, PMADI, PMAGI and IPMA-1000 using uniform distribution.

than in the uniform distribution dataset. This is not because of the under-performance
of IPMA, but rather due to the higher efficiency of SPA in the normal distribution
dataset. The number of carpools in SPA decreases around 35%, which indicates that
SPA has a better performance in centralized location distributions while IPMA has
relatively stable performance. To sum up, IPMA always boasts better outcomes than
SPA and IPMA’s performance is more stable.

Fig. 9 represents the performance of IPMA-1000 under different detour configu-
ration in both uniform and normal distribution datasets. Although the number of
carpools decreases with a larger detour, the variation is very slight. What’s more,
when the number of users increases, there is nearly no difference between the number
of carpools found by IPMA-1000 in either uniform or normal distribution dataset.
The reason behind this might be that larger carpools can hardly be merged unless the
detour limitation is greatly expanded. Specifically, larger carpools are more likely to
be generated when number of users increases. Merging two large carpools may bring a
huge increase on driver’s and/or users’ detours, and it is likely that no matter 5% or
15% detour capacity is not enough to support the merging. It may explain what we
found from the comparison result.

The evaluation results of the performances of IPMA-1, IPMA-1000, PMADI and
PMAGI on synthetic datasets are shown in Fig. 10 and Fig. 11. Fig. 10 corresponds
to the uniform distribution dataset and Fig. 11 corresponds to the normal distri-
bution dataset. From either Fig. 10 or Fig. 11, we can find out that both PMADI
and PMAGI outperform the IPMA-1. It is easy to understand since both PMADI
and PMAGI explore more than one permutation. Besides, we can also find out that
in both distributions and for all different detour distances considered in our experi-
ments, IPMA-1000 has better performances than other comparisons. It indicates that
although the PMAGI and PMADI improves the performance of PMA, exploring more

14

20 30 40 50 60 70 80 90 100
Number of users

5

10

15

20

25

30

35

40

45

50

55

N
um

be
r

of
 c

ar
po

ol
s

IPMA-1
PMADI
PMAGI
IPMA-1000

(a) Carpooling with 5% detour

20 30 40 50 60 70 80 90 100
Number of users

5

10

15

20

25

30

35

40

45

50

55

N
um

be
r

of
 c

ar
po

ol
s

IPMA-1
PMADI
PMAGI
IPMA-1000

(b) Carpooling with 10% detour

20 30 40 50 60 70 80 90 100
Number of users

5

10

15

20

25

30

35

40

45

50

55

N
um

be
r

of
 c

ar
po

ol
s

IPMA-1
PMADI
PMAGI
IPMA-1000

(c) Carpooling with 15% detour

Figure 11. Comparison among IPMA-1, PMADI, PMAGI and IPMA-1000 using normal distribution.

Table 2. IPMA-k outcomes with different k.

k 100 101 102 103 104

Number of carpools 249 162 126 125 125

possible permutations can further improve the algorithm performance. The differ-
ence between IPMA-1000 and other algorithms becomes larger as the detour distance
increases. Comparing the outcomes in Fig. 10 and Fig. 11, we conclude that the per-
formance differences between IPMA-1000 and PMAGI/PMAGI are smaller in the
uniform distribution dataset than in the normal distribution dataset.

Finally, we present the results on the NYC taxi dataset in Table I. We can see that
k greatly influences the performance of IPMA-k. This makes sense since with a smaller
k, fewer possible topological orders will be checked and the admissible path may be
missed. For instance, when k = 1, IPMA will only choose one possible topological
order to check its admissibility. If k → +∞, all possible topological orders are checked
and no possible path can be lost. Although the outcome of IPMA-k is closer to optimal
when k is larger, more running time is consumed. From the experiment result, we can
see that k = 100 is large enough to give good results because when k keeps increasing,
the number of carpools is nearly unchanged. Therefore, using hundreds of topological
orders in IPMA is likely to produce a relatively good result when applying IPMA to
a real world dataset.

6. Conclusion

This paper discusses the carpool problems in which a user shares his/her car with
others in order to reduce the number of cars on the road. We discuss existing methods
based on strict partitioning and provide evidence that strict partitioning cannot give
an optimal result for a large number of real-life scenarios. Then, we propose a greedy
algorithm, PMA, to calculate the local optimal result of out carpool problem. We
propose the multi-round matching and merging methods based on a greedy approach.
In addition, we study several checking methods for the merge-ability checking process
and we propose driver-alone and general insertion methods besides the naive approach.
Furthermore, the time efficiency of our algorithms is improved by taking advantage of
geometry properties. To evaluate the performance of our approaches, we execute our
algorithm on both synthetic and NTC Taxi datasets. The results from both datasets
show that our algorithm based on partition merging outperform the SPA in a number
of cases. The performances of PMAGI and PMADI are both greater than IPMA-1,

15

but they are not comparable with IPMA-k with larger k. Users’ maximum waiting
time is not considered in our paper, but it is also an important factor that should be
studied more closely in future works.

7. Acknowledgment

This research was supported in part by NSF grants CNS 1629746, CNS 1564128,
CNS 1449860, CNS 1461932, CNS 1460971, CNS 1439672, CNS 1301774, and ECCS
1231461. An earlier version of this paper was presented at the IEEE International
Conference on Communications 2018 [22].

References

[1] Meyer I, Kaniovski S, Scheffran J. Scenarios for regional passenger car fleets and their co
2 emissions. Energy Policy. 2012;41:66–74.

[2] Gärling T, Steg L. Threats from car traffic to the quality of urban life: problems, causes
and solutions. Emerald Group Publishing Limited; 2007.

[3] Neoh JG, Chipulu M, Marshall A. What encourages people to carpool? an evaluation of
factors with meta-analysis. Transportation. 2017;44(2):423–447.

[4] Javid RJ, Nejat A, Hayhoe K. Quantifying the environmental impacts of increasing high
occupancy vehicle lanes in the united states. Transp Res D. 2017;56:155–174.

[5] Wu C, Shankari K, Kamar E, et al. Optimizing the diamond lane: A more tractable
carpool problem and algorithms. In: Proceedings of the 19th IEEE ITSC; 2016. p. 1389–
1396.

[6] Silva E, Kokkinogenis Z, Câmara Á, et al. An exploratory study of taxi sharing schemas.
In: Proceedings of the 19th IEEE ITSC; 2016. p. 247–252.

[7] Hartman IBA, Keren D, Dbai AA, et al. Theory and practice in large carpooling problems.
Procedia Computer Science. 2014;32:339–347.

[8] Agatz N, Erera AL, Savelsbergh MW, et al. Dynamic ride-sharing: A simulation study in
metro atlanta. Procedia-Social and Behavioral Sciences. 2011;17:532–550.

[9] Amey A. A proposed methodology for estimating rideshare viability within an organi-
zation, applied to the mit community. In: TRB Annual Meeting Procediings; 2011. p.
1–16.

[10] Ghoseiri K, Haghani AE, Hamedi M, et al. Real-time rideshare matching problem. Mid-
Atlantic Universities Transportation Center Berkeley; 2011.

[11] Xing X, Warden T, Nicolai T, et al. Smize: a spontaneous ride-sharing system for individ-
ual urban transit. In: German Conference on Multiagent System Technologies; Springer;
2009. p. 165–176.

[12] Buchholz F. The carpool problem. Citeseer; 1997.
[13] Baldacci R, Maniezzo V, Mingozzi A. An exact method for the car pooling problem based

on lagrangean column generation. Oper Res. 2004;52(3):422–439.
[14] Santi P, Resta G, Szell M, et al. Quantifying the benefits of vehicle pooling with share-

ability networks. Proceedings of the National Academy of Sciences. 2014;111(37):13290–
13294.

[15] Zhang S, Ma Q, Zhang Y, et al. QA-share: Towards efficient qos-aware dispatching ap-
proach for urban taxi-sharing. In: Proceedings of the 12th IEEE SECON 2015; 2015. p.
533–541.

[16] Chang W, Zheng H, Wu J. On the RSU-based secure distinguishability among vehicular
flows. In: Proceedings of the IEEE/ACM IWQoS 2017; 2017. p. 1–6.

[17] Wang N, Wu J, Ostovari P. Coverage and workload cost balancing in spatial crowdsourc-
ing. In: Proceedings of the 14th IEEE UIC; 2017. p. 1–8.

16

[18] Lenstra JK, Kan A. Complexity of vehicle routing and scheduling problems. Networks.
1981;11(2):221–227.

[19] Galil Z. Efficient algorithms for finding maximum matching in graphs. ACM Computing
Surveys. 1986 Mar;18(1):23–38.

[20] Bernstein A, Stein C. Faster fully dynamic matchings with small approximation ratios.
In: Proceedings of the 27th ACM-SIAM SODA; 2016. p. 692–711.

[21] Micali S, Vazirani VV. An O(
√
V E) algoithm for finding maximum matching in general

graphs. In: 21st IEEE FOCS; 1980. p. 17–27.
[22] Duan Y, Mosharraf T, Wu J, et al. Optimizing carpool scheduling algorithm through

partition merging. In: IEEE ICC; May; 2018. p. 1–6.

17

