
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 1

Spatial-Temporal Inventory Rebalancing for Bike
Sharing Systems with Worker Recruitment

Yubin Duan, Student Member, IEEE, and Jie Wu, Fellow, IEEE

Abstract—Bike-sharing systems usually suffer from out-of-service events due to bike underflow or overflow. We propose to recruit
workers to rebalance station loads. We partition the complex rebalancing problem in temporal and spatial domains. The temporal
domain is divided into a sequence of slices with a fixed duration. In each slice, we allocate a pair of overflow/underflow stations to a
worker such that the cost is minimized, which is NP-hard. A 3-approximation algorithm is proposed. We further investigate the worker
shortage case and extend the matching algorithm to consider the number of unsatisfied users. Then, the configuration dynamic in the
sequence of slices is captured by determining the rebalancing target for each rebalancing operation. We investigate heuristic
approaches to minimize the total number of bike movements. Furthermore, we extend our scheme to dockless BSSs using clustering
techniques. We simulate our algorithms on both real-world and synthetic datasets. Experiment results show that our approaches can
reduce the average total detour per slice. In worker shortage, considering the number of unsatisfied users could improve the long-term
performance of rebalancing. Besides, we find that our scheme could maintain worker satisfaction over multiple time slices, which
indicates the sustainability of our rebalancing scheme.

Index Terms—Bike rebalancing scheme, minimum weighted matching, urban computing.

F

1 INTRODUCTION

W ITH the boom of the sharing economy, bike-sharing
systems (BSSs) have been widely deployed all

around the world. [2], [3], [4]. The deployment of BSSs
in cities brings benefits to both the environment and the
economy. Specifically, it provides easily accessible bikes to
the public with an affordable price, which greatly motivates
users to ditch their cars for bikes. In addition, benefits
brought by the development of BSSs also include financial
savings for individuals, reduced congestion and fuel con-
sumption, as well as transport flexibility. To fully extract
these attractive benefits brought by the BSSs, the BSS opera-
tors need to maintain the sustainability of the system, while
it is usually challenging.

The dynamics of user mobility often lead to an unbal-
anced bike distribution among stations. Fig. 1 illustrates the
unbalanced bike distribution. Specifically, overflow stations
are full of bikes and users cannot return bikes to these
stations. In contrast, underflow stations are lack of bikes
and no user could rent bikes. We refer both overflow and
underflow stations as Out-of-Service (OoS) stations. Potential
BSS users could be missed at these OoS stations. To maintain
good user experience, it is necessary for BSS operators
to rebalance the bike distribution by moving bikes from
overflow stations to underflow stations.

The user-based rebalancing scheme has been deployed
in some cities. For example, in the NYC Citibike system,
a project named Bike Angels1 has been launched. In this

Y. Duan and J. Wu are with the Department of Computer and Information
Sciences, Temple University, Philadelphia, PA, 19122.
E-mail: yubin.duan@temple.edu, jiewu@temple.edu
This research was supported in part by NSF grants CNS 1824440, CNS
1828363, CNS 1757533, CNS 1629746, CNS 1651947, and CNS 1564128.
This paper is an extended version of the conference paper [1] published in IEEE
ICDCS 2019.
Manuscript received September 17, 2019; revised February 14, 2020

1. https://www.citibikenyc.com/bikeangels/

overflow underflow

bike re-balancing

Fig. 1. A bike rebalancing scenario.

project, users would be rewarded points if they ride bikes
from overflow stations to underflow stations indicated by
the system operator. The points they gather could be re-
deemed as free rides or gift cards. An analysis on the Bike
Angels project [5] has shown that the user-based rebalancing
scheme is efficient and could be further optimized. In addi-
tion, compared with truck-based approaches, user-based ap-
proaches have several advantages. Truck-based rebalancing
could only be implemented a few times per day, while user-
based approaches are more flexible. Case studies on NYC
and SF in Section 9 show the user-based approaches are usu-
ally more cost-efficient. Besides, user-based approaches are
more environmental-friendly. However, existing researches
about the user-based rebalancing mainly focus on designing
incentive mechanism or pricing strategy. Little attention has
been made on the assignment problem arises in the user-
based rebalancing scheme.

In this paper, a rebalancing scheme that recruiting work-
ers to rebalance the BSS across spatial and temporal domains
is proposed. Our scheme would determine the rebalancing
target, which is the number of bikes to move in or out,
for each station and recruit workers to rent or return bikes

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 2

from overflow stations to underflow stations. Besides, we
propose to optimize worker assignments. We start from a
simplified case where the number of available workers is
sufficient to move all bikes indicated by rebalancing targets.
Our objective is to minimize their overall detour distance.
Then, we analyze the rebalancing problem with the worker
shortage and jointly consider the worker detour and the
number of unsatisfied users. Furthermore, we propose a
worker satisfaction model to evaluate the number of avail-
able workers. Both worker detours and weather conditions
are considered in the model.

Because of the complex user dynamics in spatial and
temporal domains, the rebalancing is decoupled into a
sequence of slices with a fixed duration in the temporal
domain. For each time slice, the BSS operator would set
rebalancing targets for overflow and underflow stations. In
the spatial domain, the rebalancing scheme recruits workers
and assigns a pair of overflow and underflow stations to
each worker.Formally, we formulate the Worker Assignment
Problem (WAP) for the spatial domain, and the Configuration
Design Problem (CDP) for the temporal domain. Given the
rebalancing targets for a fixed time slice and the sources
and destinations of workers, the WAP aims to assign a
pair of overflow and underflow stations to each worker to
minimize the detour cost of all workers when the number of
workers is sufficient. For the worker shortage case, the num-
ber of unsatisfied users is jointly considered with the detour
distance. Besides, the CDP is formulated to find rebalancing
targets for multiple slices to minimize the number of work-
ers needed for rebalancing. Our scheme only moves bikes
between stations without considering bike supplement or
retirement, i.e., the total number of bikes moved in and out
should be the same.

Decoupling the spatial and temporal domains in this
way not only helps us handle the complex user dynam-
ics, but also could maintain worker satisfaction. Specifi-
cally, minimizing the worker detour distance improves the
worker satisfaction, which could further help attract more
workers to participate in rebalancing. With more possible
workers, the minimum overall detour cost could be reduced
since the solution space is enlarged and there are more
potential combinations to investigate. A smaller detour cost
would further improve the worker satisfaction, and it forms
a positive feedback loop on the worker satisfaction.

Although the rebalancing is decoupled in spatial and
temporal domains, designing such a scheme is challenging.
Specifically, the WAP in the spatial domain could be reduced
from a 3D matching problem (i.e., matching among workers,
rent stations, and return stations) which is NP-hard. In the
temporal domain, it is hard to decide the number of time
slices that the system should look ahead, even if the future
user demands can be precisely predicted. It seems that
choosing more time slices to look ahead leads to a better
performance, while we find it is not true in some cases.

To solve the WAP, we propose a 3-approximation algo-
rithm for the case where the number of workers is suffi-
cient. Generally, our algorithm consists of two rounds of
matching. It first finds the optimal match between rent
and return stations, and then matches workers to paired
stations. For the worker shortage case, we propose a utility
function that jointly describes the worker detour distance

and the expected number of unsatisfied users. A matching
algorithm is proposed to iteratively improve the overall
utility function value until it converges to a local optimal.
As for the CDP, we investigate two heuristic approaches that
consider different rebalance frequency granularities. One
considers a fixed number of slices when deciding targets.
The other one is inspired by [3] which greedily chooses the
number of time slices to look ahead.

Our main contributions are summarized as follows:

• We propose a bike rebalancing scheme by recruiting
workers. The temporal-spatial rebalancing problem
is decoupled into WAP in the spatial domain and
CDP in the temporal domain.

• A 3-approximation algorithm is proposed to solve
the WAP, along with two heuristics for the CDP.

• We investigate the impact of worker shortages. It in-
troduces worker-station dependencies to the match-
ing. A two-sided-matching-based algorithm is pro-
posed to deal with the externality.

• We further investigate the evolution of worker sat-
isfaction during the rebalancing, and show that our
scheme could maintain the worker satisfaction.

• We also extend our scheme for dockless BSSs by
introducing virtual stations. The virtual stations are
generated by applying clustering techniques.

• We use both real-world and synthetic datasets to
simulate our scheme. Besides comparing the per-
formances of our algorithms with previous ap-
proaches, we perform the cost-efficiency analysis of
our scheme. Compared with truck-based rebalanc-
ing, recruiting workers is more cost-efficient.

2 RELATED WORK

Problems in bike sharing include user demand prediction
[4], [6], [7], [8], [9], [10] , rebalancing strategies [3], [11], [12],
[13], [14], station location optimization [15], [16], bike lane
planning [17], and suggestion for users’ journeys [18], [19].

2.1 Demand prediction

The success of our scheme strongly relies on the precise pre-
diction of user demands. Researches on demand prediction
can be categorized as station level prediction and cluster
level prediction. The earlier prediction approach focuses on
predicting the bike usage at each station, such as [6], [7].
However, it may not always generate an accurate prediction
[8]. Clustering similar stations is one way to address this
problem. For example, Li et al. [8] proposed a hierarchical
model that clusters stations based on location and transition
patterns first, and then predicts the demand of each cluster.
Chen et al. [9] further proposed to consider opportunistic
contextual factors such as social and traffic events. Du
et al. [10] used a density-peak based clustering algorithm
to discover virtual stations and adapted a convolutional
neural network to predict the demands. By utilizing de-
mand prediction, our approach aims to optimize the worker
assignment during rebalancing.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 3

· · ·
Time

minimize workers’
total detour distance

worker assignment
problem

BSS Operator

set rebalance targets
for each slice

overflow
station
underflow
station
worker’s
location
worker’s
destination

a single
slice

assign workers
to move bikes

Fig. 2. An overview of our bike rebalancing scheme.

2.2 Rebalancing strategy design

Two major approaches in the design of rebalancing strate-
gies for BSSs are truck-based approaches [3], [20], [21], [22],
[23] and user-based approaches [13], [24], [25], [26].

In the truck-based approach, a fleet of trucks is hired to
transport bikes between overflow and underflow stations.
In static models, the target inventory level for stations is
constant. Liu et al. [3] proposed a method that first clusters
stations according to station locations and status, and as-
signs a truck to each cluster. The truck routing is modeled
as an integer programming problem. For dynamic bike
reposition, Li et al. [20] proposed a reinforcement-learning
model to learn an inner-cluster reposition policy. Truck-
based rebalancing strategies cannot be directly applied to
our problem since each worker can only carry one bike
at a time while trucks can carry multiple bikes during
rebalancing and trucks need to route among all OoS stations.

The existing truck-based approaches have several short-
comings. Firstly, in a truck-based approach, the rebalancing
is usually implemented at certain times during the day, and
the bike inventory among stations cannot be adjusted in real
time. It costs a significantly long time (usually several hours)
for a truck to route among stations. In contrast, workers
could finish rebalancing within a short time, since they
move bikes simultaneously. Secondly, hiring a fleet of trucks
is associated with considerable costs and is environmentally
unfriendly. During rebalancing, trucks are routing among
overflow and underflow stations. Note that trucks have
a capacity limitation, which introduces additional detour
distances for truck routing. Optimizing the truck routing
problem with these delivery constraints is NP-hard [23]. Not
to mention, the cost of fuel, recruiting drivers, and main-
taining or renting trucks is also considerable. The worker-
based approach is more environmentally friendly and cost-
efficient. The cost-effectiveness is analyzed in Section 9.

In the user-based approach, the BSS operator offers users
monetary incentives and motivates them to rent/return
bikes at certain stations [13], [24]. It is expected to achieve
a self-balanced system to improve the overall service level
by controlling the user’s dynamics. Designing the pricing
mechanism is challenging since the user cost is unknown.
Waserhole [24] presented a dynamic pricing mechanism

TABLE 1
Table of Notations

Notations Description
W,S,D the set of workers, their sources, and destinations
w, sw, dw a worker and his/her source, and destination
B,N, P the set of bike stations, rent, and return stations
b, n, p a bike station, a rent station, and a return station
ηb the capacity of station b
ηB the capacity vector for all stations in B
T, t the set of time slices, and a time slice
φb(t), the state of station b at the beginning of slice t
τb(t),ρb(t) the demand and rebalancing target of b during t
τB(t),ρB(t) the demand and rebalancing target vector of B

that incentivizes users to redistribute bikes by providing
alternate rental prices. Singla et al. [13] proposed a crowd-
sourcing pricing mechanism to incentivize users based on
the multi-armed bandit model. However, these approaches
do not consider the spatial imbalance of BSS. Pan et al.
[25] studied the pricing strategy for dockless bike shar-
ing systems and proposed a deep reinforcement learning
algorithm for deciding the incentive price. Although [25]
divided the continuous map space into discrete regions,
they did not consider the capacity limitation of each region.
However, in a docked bike sharing system, each station has
such a limitation. Hence, we cannot directly apply their
rebalancing strategy to our problem. Besides, none of them
considers the worker satisfaction, while our scheme could
improve the worker satisfaction.

2.3 3D matching
A maximum 3D matching problem (unweighted) is a special
case of a 3-set packing problem [27]. In the k-set packing
problem, we are given a family of sets of size at most k, and
the goal is to find a maximum size subfamily of pairwise
disjoint sets. The best known polynomial time approxima-
tion ratio for k-Set Packing is (k + 1 + ε)/3 [27]. As for the
weighted version of k-set packing problem, Arkin et. al. [28]
introduced a (k − 1 + ε)-approximation algorithm based on
local search. Chandra et. al. improved it to (2k + 2 + ε)/3-
approximation in [29]. Then, Berman further improved it to
(k+1+ ε)/2-approximation in [30]. These algorithms are all
based on local search.

3 SYSTEM MODEL

In our work, we propose to rebalance the BSS by recruiting
workers. The overview of our rebalancing scheme is shown
in Fig. 2. Specifically, the BSS operator conducts several
rounds of rebalancing among bike stations at predefined
time intervals during the rebalancing period. In each round
of rebalancing, the operator recruits a set of workers. Each
worker can ride one bike from the overflow station to the
underflow station assigned by the system. For multiple
rounds of rebalancing, the operator needs to set rebalancing
targets, i.e. the number of bikes to move in or out at stations,
for each time slice. The rebalancing targets are decided
based on states and demands of stations in the BSS.

In each round of rebalancing, the BSS operator needs
to gather sources and destinations of workers, before it
can generate an assignment for each worker. The worker

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 4

n1

n2

n|N|

p1

p2

p|P|

worker’s
source

worker’s
destination

rent station

return station

s1

s2

s|W|

d1

d2

d|W|

… … …

Fig. 3. An illustration of the assignment graph.

assignment is studied over the spatial domain. A worker
is denoted by w, and the worker set is denoted by W .
Each worker has his/her source sw and destination dw. The
sets of sw and dw are denoted by S = {sw|w ∈ W} and
D = {dw|w ∈W}, respectively. A bike station is denoted by
b, and the set of bike stations is denoted by B. The number
of bike stations is |B|, where | · | represents the cardinality of
a set. Each station b has a capacity ηb and can store at most
ηb bikes. Capacities of different stations can be different.

For multiple rounds of rebalancing, the states and user
demand predictions for bike stations are necessary. The set
of time slices is denoted by T , and each time slice is t ∈ T .
The state of station b for slice t is defined as the number of
on-dock bikes at the beginning of each time slice t, and it is
a non-negative integer denoted by φb(t). The user demand
of station b during the time slice t is an integer denoted
by τb(t). It can be precisely predicted based on history
bike rental information. The demand prediction problem
has been well studied, such as the predictors proposed in
[3], [9]. Note that the demand τb(t) can be either positive
or negative. A positive demand means that more bikes are
returned to the station and the number of on-dock bikes
increases during time slice t. A negative demand has the
opposite meaning.

Based on the state and demand information, the operator
can determine a rebalancing target ρb(t) for each station b
during t. A positive ρb(t) means that the station b needs
ρb(t) bikes, and a negative ρb(t) means |ρb(t)| bikes shall be
removed from the station.

∑
b∈B ρb(t) should be 0 since the

rebalancing operation does not affect the number of bikes in
the system. In each time slice t, bike stations with negative
targets can form a rent station set N , and stations with
positive targets can form a return station set P . Formally,
N = {b ∈ B|ρb(t) < 0} and P = {b ∈ B|ρb(t) > 0}. Ele-
ments in sets N and P are denoted as n and p, respectively.

In the paper, we assume the number of workers who
can be recruited is large enough. If not, the BSS operator
could use trucks for rebalancing. Truck-based rebalancing
strategies are reviewed in section 2. After recruiting a suffi-
cient amount of workers, the operator needs to determine a
rebalancing assignment (w, n, p)∈W×N×P for each worker,
meaning that the worker w should rent a bike from station n
and return it to station p. The corresponding detour distance
of worker w is denoted by a real number δw. Formally,
δw = dis(sw, n) + dis(n, p) + dis(p, dw) − dis(sw, dw) ,
where dis(·, ·) is the distance function used to calculate the
geographical distance between two locations.

The assignment for workers is modeled by the assign-
ment graph G = (V,E) shown in Fig. 3. The vertex set
is constructed by workers’ sources, destinations, and bike

𝜙"(0) 𝜙"(1)
𝜏"(0)

𝜌"(0)

𝜙"(𝑡) 𝜙"(|𝑇|)
𝜏"(𝑡)

𝜌"(𝑡)

𝜏"(1)

𝜌"(1)
⋯ ⋯

𝜙"(0) 𝜙"(1)
𝜏"(0) 𝜙"(𝑡′)

𝜏"(1) 𝜙" 𝑡. > 𝜂" or
𝜙" 𝑡. < 0
without rebalancing⋯

Fig. 4. Station state evolution in discretized time.

stations, i.e. V = S ∪ N ∪ P ∪ D. The directed weighted
edges have three types, including edges from S to N ,
edges from N to P , and edges from P to N . Formally,
E = (S × N) ∪ (N × P) ∪ (P × D). We use the function
e : V 2 7→ R to denote the edge weights. The weight is
quantified by the geographical distance. For example, the
weight of an edge from sw to n is the the corresponding
distance, i.e., e(sw, n) = dis(sw, n). A flow from sw to dw is
equivalent to an assignment for w. The sum weight of edges
on the flow is w’s moving distance, and is used to quantify
w’s detour since the distance between sw and dw is constant.

The time evolution of the state of a station is modeled by
discretized time series. As shown in Fig. 4, the state φb(t+1)
is determined by the state φb(t), the demand τb(t), and the
rebalance operation ρb(t) during time slice t. Formally, φb(t+
1) =φb(t)+τb(t)+ρb(t). Without the rebalancing operation
ρb(t), an OoS event may occur- either an overflow event
with φb(t′)>ηb, or an underflow event with φb(t′) < 0.

4 PROBLEM FORMULATION AND ANALYSIS

4.1 Worker assignment problem
In a fixed time slice, we propose the Worker Assign-
ment Problem (WAP). Given rebalancing targets of stations,
sources and destinations of the workers, the WAP aims to
find out an optimal assignment for workers that minimizes
their overall detours when workers are moving bikes be-
tween stations. The WAP can be seen as finding a minimum
cost flow from S to D. Based on the assignment graph, an
assignment for worker w is equivalent to a flow from sw to
dw. As shown in Fig. 3, a flow from sw to dw passing through
a node n and a node p represents a worker w renting a bike
from n and returning to p. Our WAP problem is to minimize
the total cost of the k flows. We use f(·, ·) to denote the flow
rate, which is an integer, between two vertices.

This problem can be formulated by an Integer Program-
ming model, which can be described as:

min
∑

W,N,P

f(sw,n)e(sw,n)+f(n,p)e(n,p)+f(p,dw)e(p,dw)

s.t.
∑
N

f(sw,n)=1,
∑
P

f(p,dw)=1,∀w∈W (1)∑
W

f(sw,n)= |ρn|,
∑
W

f(p,dw)= |ρp|,∀n∈N, p∈P (2)

f(n,p)=
∑
W

(f(sw,n)·f(p,dw)),∀n∈N, p∈P (3)

f(sw,n),f(p,dw)∈{0,1}, f(n,p) ∈ N (4)

Our objective is to minimize the total weight of the flow.
For the WAP in a Euclidean plane, it is the overall detour

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 5

distances. In a more general version, which is denoted as the
general WAP, the edge weight could be any kind of detour
cost, such as traveling time. Eq. (1) is the assignment con-
straint, which means that each worker should be assigned
to a rent station in N and a return station in P . Eq. (2) is
the target constraint. It means that each station’s positive or
negative targets should be satisfied. Eq. (3) is the consistency
constraint. If there is a flow from sw to n and from p to dw
(i.e., the worker w rents a bike from n and returns to p),
there should be a flow from n to p. Eq. (4) is the flow-rate
constraint. The rates of flows from S to N and flows from
P to D can be either 0 or 1. The rates of flows from N to P
should be a non-negative integer.

4.2 Configuration design problem
In this subsection, we formulate the Configuration Design
Problem (CDP) for multiple time slices. Given the demand
prediction of each time slice, CDP aims to design a set
of rebalancing targets which can minimize the number of
bike movements over multiple time slices. We choose this
objective as an effort to minimize workers’ total detour over
multiple slices. Formally, given the initial state vector φB(0)
and the demand vectors τB(t) for all time slices t ∈ T ,
the objective is to find the rebalancing target vector ρB(t)
for each time slice t, and minimize the total amount of
moved bikes. Note that our rebalancing scheme could be im-
plemented as a complementary of truck-based rebalancing.
System operators can easily split the demand of each station
into two parts: one for truck-based rebalancing schemes
such as [23] and one for the worker-based approach.

min
∑
t∈T

∑
b∈B
|ρb(t)|

s.t. νb ≤ φb(t) ≤ ηb − νb, ∀ b∈B, ∀ t∈T (5)∑
b∈B

ρb(t) = 0, ∀ t∈T (6)

ρb(t) ∈ N, ∀ b∈B, ∀ t∈T (7)

Note that
∑
t∈T

∑
b∈B |ρb(t)| is actually twice the num-

ber of moved bikes, since moving a bike from a rent station
to a return station can simultaneously fulfill a positive target
and a negative target. Eq. (5) is the capacity constraint.
Considering the predicted demand of each station may
slightly differ from the actual demand, we set safety margins
νb < ηb/2 for stations b ∈ B. A station is treated as an
underflow (or overflow station) if the number of bikes at the
station is lower than νb (or higher than ηb−νb). Eq. (6) is the
matching constraint which requires the sum of rebalancing
targets among all stations at each time slice to be 0. This is
because the total number of bikes should remain unchanged
during rebalancing. Eq. (7) indicates that rebalancing targets
are non-negative integers.

4.3 Problem hardness
Theorem 1. The general WAP for a time slice is NP-hard.

Proof: The proof shows that our optimization problem can
be reduced from a weighted 3D matching problem. The
decision problem of 3D matching is known to be one of
Karp’s 21 NP-complete problems [31], and the weighted 3D
matching problem belongs to the NP-hard problem class.

n1

n2

n3

p1

p2

p3

(a) Matching be-
tween stations

d2

n1 p2

n2 p3

n3 p1

w1
s1 d1

w2
s2

d3
w3

s3

(b) Matching between workers
and station pairs

Fig. 5. Procedures of the Two-Round Matching algorithm.

The general WAP can be reduced from a maximum 3D
matching problem if we let tripartite sets denote the set
W , P , and N . A 3D matching M with |M | = |W | is
a legal assignment for bike rebalancing. That is, a triple
(w, n, p) in M represents that worker w should move a
bike from station n to station p. The weight of each triple
is equal to a large positive constant minus the cost of the
corresponding journey (i.e. the sum of the costs from sw
to n, then to p, and finally to dw). A maximum matching
maximizes the sum of negations of journey costs. Therefore,
it minimizes the sum of journey costs. The assignment is
optimal for workers because it minimizes workers’ total
detour costs. An instance of the maximum 3D matching is
thus corresponding to an instance of the general WAP. �

5 FIXED TIME SLICE OPTIMIZATION

5.1 Two-Round Matching algorithm

In this section, we introduce a 3-approximation algorithm
to solve the WAP in a Euclidean plane. Our algorithm
is based on two stages of matchings. In the Two-Round
Matching (TRM) algorithm, we first apply the weighted
bipartite matching algorithm on the bipartite graph con-
structed by N and P . The procedure of the first round
of matching is shown in Algorithm 1. Lines 1-4 in the
algorithm are to construct the bipartite matching graph.
In the weighted matching algorithm, a vertex can only be
matched once. Therefore, we duplicate the stations based
on their rebalancing targets to guarantee that the target of
each vertex in set N (or P) is −1 (or 1). The vertex set is
initialized in line 5 and the edge set is initialized in lines
6-7. We apply weighted matching on the bipartite graph in
line 8. Notice that the weighted matching algorithms are
designed for maximization. To find the non-zero minimum
perfect matching, we modify the edge weight when using
the maximum weighted matching algorithm. The modified
weight is calculated by subtracting the original weight from
a large number. It is e′ = LC − e, where LC is a large
constant number and e′ is the modified edge weight.

The second round of matching generates the assign-
ments for workers, which is also a bipartite matching prob-
lem. We construct another bipartite graph where one part of
the graph represents workers W and the other part repre-
sents rent/return station pairs N × P . The weighted edge
between a worker w and a combination (n, p) equals the
total moving distance of w if he/she rents a bike at station
n and returns it at p. Notice that we use the workers’ total
moving distance instead of their overall detour as the edge

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 6

Algorithm 1 Two-Round Matching Algorithm - Stage 1
Input: positive station set P as well as the corresponding

demand set {ρP }, and negative station set N as well as
the corresponding demands {ρN}

Output: rent/return station pairs which are used for
worker allocation in the next stage

1: for each n ∈ N and ρn < −1 do
2: Copy station n (|ρn| − 1) times in N .
3: for each p ∈ P and ρp > 1 do
4: Copy station p (ρp − 1) times in P .
5: V ← N ∪ p, E ← ∅
6: for n ∈ N , p ∈ P do
7: E ← E ∪ (n, p), e(n, p)← dis(n, p)
8: X ← min-cost perfect matching of G(V, E).
9: return X as the rent/return station pair

weight. Actually, the detour reaches the minimum when the
total moving distance is minimized, because the total length
of workers’ original journeys is constant. The procedure of
the second round of matching is shown in Algorithm 2. Line
1 initializes the vertex set V ′ = W ∪X and edge set E′ = ∅.
The weight edges are added to E in lines 2-3. Similarly, as
in Algorithm 1, we modify the edge weights and apply the
maximum weighted matching algorithm in line 5. Finally, an
edge set M is calculated, and it constitutes the assignments
for workers. The workers’ overall moving distance is the
sum weight of edges in M , and is denoted by ‖M‖.
Theorem 2. The TRM is a 3-approximation algorithm for the

WAP in the Euclidean space.

Proof: The calculation of the 3-approximation ratio is based
on the triangle inequality and the optimality of each match-
ing stage of TRM. For each negative station n∈N , there is
a corresponding positive station p∈P which is assigned in
the first round of TRM. In addition, the station pair (n, p)
is matched to a worker w with source sw and destination
dw in the second round of TRM. We assume that in the
optimal solution, the station n should be paired with station
p∗, and the station pair (n, p∗) should be balanced by the
worker w∗ whose source and destination are s∗w and d∗w
respectively. The relation among these nodes is shown in
Fig. 6, which is a geometric graph in the Euclidean space.
The total moving distance of workers generated by our
algorithm is

∑
n∈N (dis(sw,n)+dis(n,p)+dis(p,dw)), and the

optimal value is
∑
n∈N (dis(s∗w,n)+dis(n,p∗)+dis(p∗,d∗w)).

Based on the triangle inequality, we can conclude
that dis(p,p∗) ≤ dis(n,p) + dis(n,p∗) and dis(p,d∗w) ≤
dis(p,p∗) + dis(p∗,d∗w) for each n ∈ N . According to the
optimality of the first round of matching, we can con-
clude that

∑
n∈N dis(n,p) ≤

∑
n∈N dis(n,p

∗). Besides, the
optimality of the second round of matching guarantees
that

∑
n∈N (dis(sw,n) + dis(p,dw)) ≤ ∑

n∈N (dis(s∗w,n) +
dis(p,d∗w)). Combining these inequity relationships:∑
n∈N

(dis(sw,n) + dis(p,dw))≤
∑
n∈N

(dis(s∗w,n) + dis(p,d∗w))

≤
∑
n∈N

(dis(s∗w,n) + dis(p,p∗) + dis(p∗,d∗w))

≤
∑
n∈N

(dis(s∗w,n) + dis(n,p) + dis(n,p∗) + dis(p∗,d∗w))

Algorithm 2 Two Round Matching Algorithm - Stage 2
Input: worker set W , rent/return station pair set X
Output: rent and return allocation for each user, and work-

ers’ total travel distance C
1: V ′ ←W ∪X, E′ ← ∅
2: for w ∈W, (n, p) ∈ X do
3: E′ = E′ ∪ (w, (n, p)),

e(w, (n, p))← dis(sw, n) + dis(n, p) + dis(p, dw)
4: M ← min-cost perfect matching of G′(V ′, E′).
5: return M as the rent and return allocation for workers,

and ||M || as workers’ total travel distance.

d∗w

sw

s∗w

dw

n

p∗

p

Fig. 6. The relation between the TRM assignment and the OPT.

≤
∑
n∈N

((dis(s∗w,n) + 2dis(n,p∗) + dis(p∗,d∗w)).

Therefore,

∑
n∈N

(dis(sw,n)+dis(n,p)+dis(p,dw))

=
∑
n∈N

(dis(sw,n) + dis(p,dw))+
∑
n∈N

dis(n,p)

≤
∑
n∈N

((dis(s∗w,n)+2dis(n,p∗) + dis(p∗,d∗w))+
∑
n∈N

dis(n,p∗)

≤3
∑
n∈N

(dis(s∗w,n)+dis(n,p∗)+dis(p∗,d∗w)) = 3OPT.

The 3-approximation holds. �

6 MULTIPLE-SLICE OPTIMIZATION

6.1 k-slice greedy algorithm
For CDP, we focus on the multiple-time-slice optimization.
Firstly, we introduce a heuristic greedy algorithm: k-slice
Greedy Algorithm (kGA). The idea is to look ahead k time
slices, and find a proper rebalancing target for the following
k time slices, where k is constant and is set by the BSS
operator. The operator conducts a round of rebalancing
for every k time slices. Recall that a proper target should
minimize the number of bikes needed to move, and the sum
of targets for all stations should be 0. In kGA, we firstly
choose the target for each station greedily, and then check
the sum of the chosen targets over all stations.

The procedures of kGA are illustrated in Algorithm 3.
We first calculate the range of the feasible rebalancing target
for each station. The largest value in the range for station
b is denoted by αb. A positive αb means that at most, αb
bikes can be moved into b within the following k time slices.
The smallest value in the range is denoted by βb, and a
negative βb means at most |βb| bikes can be removed from
b. If αb < 0, the station b will face overflow events in the
following k slices and have to remove bikes beforehand. In
contrast, βb > 0 has the opposite meaning.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 7

Algorithm 3 k-slice Greedy Algorithm.
Input: station capacity vector ηB , current station state

vector φB(t0), the demand prediction {τB(t)}(t0 ≤ t ≤
t0 + k) of following time slices

Output: rebalancing target vector ρB(t0)

1: αb←ηb−(φb(t0)+max[
∑t0
l=t0

τb(l), · · ·,
∑t0+k
l=t0

τb(l)]), βb←
0− (φb(t0)+min[

∑t0
l=t0

τb(l), · · ·,
∑t0+k
l=t0

τb(l)]), ∀b∈B
2: positive target vector ρ+ ← find(βB > 0), negative

target vector ρ− ← find(αB < 0), ρ← ρ− + ρ+

3: if sum(ρ+,ρ−) > 0 then
4: Iteratively decrease ρb, arg minb(βB) (use final state

to break tie) by 1, until sum(ρ+,ρ−) = 0
5: else if sum(ρ+,ρ−) < 0 then
6: Iteratively increase ρb, arg maxb(αB) by 1, until

sum(ρ+,ρ−) = 0
7: return ρB(t0) as the rebalance target vector

6.2 Greedily look-ahead algorithm

Besides manually defining k for kGA, we can also design
a greedy algorithm to automatically select the largest k.
Following this approach, we propose another target setting
algorithm: Greedily Look-ahead Algorithm (GLA).

The procedures of the GLA are illustrated in Algorithm
4. The survival time (i.e., the time duration before OoS
events occur) of a station is related to the rebalancing target.
In line 1, GLA tests the survival time of each station b under
all possible rebalancing targets, and stores the longest one,
which is denoted by Tb. In line 2, the GLA sets k as the
minimum Tb,∀b ∈ B. Unfeasible situations may occur if k
is large. To deal with this case, the GLA repeatedly decreases
k by 1 and then calls kGA until a feasible target is found.

It seems looking up more time slices (i.e. larger k) can
generate better results in terms of the total moved bikes in a
day. However, this is not the case, since the greedy algorithm
cannot generate an optimal substructure in our problem.

It is more clear to demonstrate the difference between
GLA and kGA by using a time-space view from the classic
distributed system [32]. Fig. 7(a) shows an example that
choosing a larger k in kGA could achieve a better perfor-
mance in the temporal domain optimization. In the figure,
the slanted arrow line corresponds to a bike re-balancing
event between stations. Each slice corresponds to a time
period and two slices are separated by a vertical dotted line.
Rent (return) event at a station is represented by a short
outward (inward) vertical arrow. For simplicity, all bike
movements are completed in a time slice. The initial state of
three stations is (1, 2, 3). The user demand at t is (−2, 0, 0).
To avoid OoS stations, either s2 or s3 should move one bike
to s1. In this setting, looking ahead two slices is better than
just looking ahead one. For k = 1, i.e., choosing one slice to
look ahead, the scheme would find no difference between
removing one bike from s3 or s2. If s3 is selected to remove
one of its three bikes and the user demand at t+ 1 turns out
to be (0, 1, −3), then s2 has to move one of its bikes to s3

at t + 1. On the other hand, when k = 2, the rebalancing
scheme could notice that it is better to move one bike from
s2 to s1, and it saves one bike movement.

From the time-space view, it is more clear to find that
look ahead may not always generate a better result. Fig. 7(b)

Algorithm 4 Greedily Look-ahead Algorithm
Input: station capacity vector ηB , current station state

vector φB(t0), the demand prediction {τB(t)}(t0 ≤ t ≤
|T |) of following time slices

Output: rebalancing target vector ρB(t0)

1: Calculate longest survival time Tb under different tar-
gets ρb(t0) for each station b, i.e., arg maxρb(t0)(Tb|0 ≤∑t0+Tb

t=t0
τb(t) + φb(t0) + ρb(t0) ≤ ηb), ∀b ∈ B

2: k ← min(Tb,∀b)
3: Apply kGA to calculate ρB(t0). Repeatedly decrease k

if kGA cannot find a feasible set of targets.
4: return ρB(t0) as the rebalance target

t t + 1

s1

s2

s3

1

2

3

+1

−3

−2

1

1

1

(a) An example of 2GA out-
performing 1GA

t t + 1 t + 2

s1

s2

s3

1

0

1

−1

1

1

+2

−1

−1

−1

1

(b) An example of 1GA outperforming
GLA

Fig. 7. Illustrations of various look ahead schemes.

shows the example in which using the GLA approach would
lead to a worse performance compared with 1GA in terms
of the number of bike movement. In Fig. 7(b), the station
state is initially set as (1, 0, 1). The user demands vectors
are set as (−1, 2, 0), (−1, 0, 0), and (0,−1,−1) for slices t,
t+ 1, and t+ 2, respectively. If we use the GLA approach at
the first time slice, the rebalancing targets would be moving
one bike from s3 to s1 so that the resulting state (2, 0, 0)
could survive two slices, i.e. there is no OoS stations in the
following two slices. However, at slice t+ 2 with state (0, 2,
0), s2 has to move at least one bike to s3 to meet the user
demand. In total, there are two bike movements. In contrast,
if we look at only one time slice, i.e., k = 1, no action is
needed at slice t, one bike would be moved from s2 to s1 at
slice t + 1, and no action is needed at slice t + 2. There is
only one bike movement, which is better than using GLA.

7 BSS BALANCING IN WORKER SHORTAGE

When the number of workers is sufficient, the rebalancing
targets set by configuration design problem (CDP) could be
entirely satisfied. However, in practice, it is hard to recruit
so many workers for each time slot. Therefore, we also
investigate the worker assignment problem (WAP) when the
system is short of workers.

The shortage of rebalancing workers would increase the
number of unsatisfied users. The worker shortage refers
to the case in which the number of workers recruited at
each time slot is less than the number of bike movements
required by the rebalancing targets. An unsatisfied user is
a user who is going to rent/return a bike but cannot find
an available bike/dock at its source/destination station.
If users cannot find available bikes, they would leave the
system. If they cannot find available bikes at stations near
their destinations, they have to take a detour and may

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 8

Algorithm 5 Worker-Station Matching with Externality
(WSME)
Input: worker set W , rent/return station pair set X

generated by Algorithm 1
Output: assignments for all available workers A

1: A ← randomly match (w, (n, p)),∀w ∈W, ∀(n, p) ∈ X .
2: converge← False
3: while not converge do
4: Sort workers in W based on their contribution to the

utility function in descending order. The contribution
of (w, (n, p)) can be calculated as u(t, (w, (n, p))) =

f(sw,n)dis(sw,n)+f(n,p)dis(n,p)+f(p,dw)e(p,dw)
maxW,N dis(sw,n)+maxN,P dis(n,p)+maxP,W dis(p,dw) +Cu ·
υn(φn(t))+υp(φp(t))

maxb∈B υb(φb(t))
5: for w ∈W do
6: if ∃(n′, p′) ∈ X such that u(t,A′) < u(t,A), where

A′=A\(w, (n, p))∪(w, (n′, p′)) then
7: Update A ← A′
8: else
9: converge← True

10: return A as the worker assignment.

lose interest in using the system again. Both events affect
the potential profit of the system operator. Therefore, the
number of unsatisfied users should be considered in the
objective of our WAP when there is a worker shortage.

We use a Markov Chain to model the number of un-
satisfied users. Specifically, we have introduced the time
series model to describe the fluctuation of the number of
bikes at each station. In the Markov Chain model, we use
υb(φb(t)) to denote the expected number of unsatisfied users
in station b ∈ B during the remaining rebalancing cycle
after t, where φb(t) describes the number of bikes in station
b at time t. When the further user demands are known, the
value of υb(φb(t)) can be calculated by running a simulator.
When considering a more practical case where the future
demands are estimated, the expected value of υb(φb(t)) can
be numerically calculated by the model in [37].

Briefly, the state of the station is modeled by a bounded
birth and death process with birth rate µt and death rate λt.
Let π(i, j, t) denote the probability of the station having j
bikes at time t provided that it has i bikes at time 0. Then,
the value of υb(φb(t)) can be expressed as follows:

υb(φb(t)) =

∫ T

t
(π(φb(t), 0, t) + π(φb(t), ηb, t))dt.

The first term represents the accumulated number of
underflow events and the second term shows the accumu-
lated number of overflow events. T represents the end of a
rebalancing cycle, e.g., a day. The summation of two terms
is the accumulated number of unsatisfied users.

In our discretized time domain, the value of υb(φb(t))
can be numerically calculated [33]. Let δ denote the length
of each time slot. According to [33], the number of ex-
pected dissatisfaction value can be estimated as υb(φb(t)) ≈
δ
∑T/δ−1
k=0 (π(φb(t), 0, t+0.5δ)µkδ+π(φb(t), ηb, t+0.5δ)λkδ).
We define a utility function to jointly describe the

worker detour distances and the expected number of un-
satisfied users. Let u(t,A) denote the utility function at
time t with the worker assignment A. The worker assign-

ment A consists of the flows from worker sources S to
their destinations D, passing through overflow stations N .
The flow functions f(·, ·) describe the number of bikes
moved between two parties, and it is introduced in subsec-
tion 3.1.Then, the utility function is defined as u(t,A) =∑

W,N,P f(sw,n)dis(sw,n)+f(n,p)dis(n,p)+f(p,dw)e(p,dw)

maxW,N dis(sw,n)+maxN,P dis(n,p)+maxP,W dis(p,dw) + Cu ·∑
b∈B υb(φb(t)+f(n,b)−f(b,p))

maxb∈B υb(φb(t)) . The first term of the utility func-
tion describes the overall worker detours. It is scaled by
the upper bound of a worker’s total moving distance. The
second term represents the expected number of unsatisfied
users. It is scaled by the upper bound of the dissatisfaction
at a bike station. The hyper-parameter Cu is used to adjust
the importance between two terms. With the utility function,
the objective of our WAP becomes minA u(t,A) instead of
just minimizing the overall worker detour distance. Besides
updating the objective function, the constraint shown in Eq.
(2) is removed since the number of workers is not large
enough to satisfy all rebalancing targets. Other constraints
remain the same.

Our Two Round Matching (TRM) algorithm is no longer
suitable for the extended problem. The main reason is that
the expected number of unsatisfied users of a station is cor-
related with the number of workers assigned to the station.
This dependency relation in the matching is usually referred
to as externality [34]. The second round of the minimum
cost bipartite matching in the TRM can no longer be used
because of the dynamic preferences between workers and
station pairs.

Inspired by the idea of two-sided exchange-stable match-
ings [35], we propose to iteratively improve our worker
assignments rather than directly match workers and sta-
tion pairs in the single round. In two-sided exchange-
stable matchings, if one side cannot remain unmatched,
allowing swapping their assignments to the other side can
lead to the exchange stability. In our problem, no worker
can remain unmatched. Instead of swapping assignments
between workers, we propose to iteratively improve each
worker’s assignment until the utility function converges.
Specifically, the first round of the bipartite matching in the
TRM is kept since there is no externality when matching
overflow and underflow stations to minimize the overall
detour distance. The second stage then starts to match work-
ers with overflow-underflow station pairs. It starts from
a random assignment between workers and station pairs.
In each following iteration, a worker is chosen if updating
its assignment could reduce the utility function value. The
algorithm stops when such a worker does not exist. The
detailed procedures of the second phase are shown in Algo-
rithm 5. Lines 1 and 2 initialize the assignment. Lines 3-12
iteratively improve the assignment. In line 4, the workers are
sorted based on their contribution to the utility function. The
contribution of a worker w is quantified by the utility value
of u(t, (w, (n, p))) where (n, p) is the station pair assigned
to the worker w. For each worker, if assigning it to another
station pair could reduce the utility value, we update the
assignment. Otherwise, the algorithm converges to a local
minimum.

Our proposed algorithm converges in a finite number
of iterations. It is because our utility function is finite. The
utility function is limited since both the worker detour

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 9

worker
pool

minimize workers’ total moving distance

workers hired

BSS operator

minimize # of workers

potential
workers

rebalance
BSS

enlarge

Fig. 8. The positive feedback loop on the worker satisfaction.

distance and the expected number of unsatisfied users are
limited. Besides, in each iteration, the number of workers
and the number of station pairs are finite as well. Our
algorithm would reduce the utility function value after each
iteration. Therefore, our algorithm will converge in a finite
number of iterations.

8 WORKER SATISFACTION ANALYSIS

8.1 Reinforcement on the Worker Satisfaction
There exists a possible reinforcement on worker satisfaction
within multiple time slices. The reinforcement of worker
satisfaction makes it easier to hire enough workers to partic-
ipate in the rebalancing. Generally, the TRM algorithm aims
to minimize the total detour cost of workers in each time
slice. It has the potential to improve the worker satisfaction
and attract more workers to join. With more penitential
workers that could be chosen in the spatial domain assign-
ment, the performance of TRM can also be improved, which
further improve the worker satisfaction.

The reinforcement on the worker satisfactions is shown
in Fig. 8. If the system can reduce the workers’ detour as
much as possible, then their cost is reduced and they could
earn more via the rebalancing operation. We assume more
workers are willing to join the system (enlarge the worker
pool) if their satisfaction is improved. If more workers are
willing to get involved in the system, the performance of
matching could be further improved, which again improves
the worker satisfaction. Specifically, the performance of the
second stage (as shown in Algorithm 2) of the TRM would
increase if the worker pool is enlarged. It is because a larger
worker setW provides more choices for the min-cost perfect
matching that is used in the second stage. Assume that the
worker set W is enlarged to W ∪ ∆W , where |∆W | > 0.
The assignment found based on the enlarged worker set
W ∪ ∆W is at least as good as the assignment found
based on W . This positive feedback loop helps improve
the robustness of the rebalancing system and support our
assumption that the operator could find sufficient work-
ers to conduct rebalancing. Therefore, minimizing workers’
detour not only improves the profits of workers but also
improves the stability of the rebalancing system.

8.2 Quantification of the Worker Satisfaction
We then quantify the worker satisfaction and its positive
feedback property. The satisfaction could be related to both

incentive price and detour distance. The design of the in-
centive price has been invested by [36]. We follow the OPT-
FIX mechanism proposed in [36], where the incentive price
is constant. Since we consider that the incentive for work-
ers is constant, the worker satisfaction can be determined
by the overall worker detour in a time slice. Specifically,
we assume the satisfaction is determined by the relative
detour distance, which is defined as the ratio between the
detour distance (or extra distance) and the original distance.
Recall that the detour distance of worker w is defined as
δw = dis(sw, n) + dis(n, p) + dis(p, dw) − dis(sw, dw). Let
∆l =

∑
w δw denote the overall worker detour distance.

Considering that the overall detour distance is limited in
real-world applications, we define lc = C to denote the
threshold. The threshold C represents the maximum detour
that can be accepted by workers. Above all, the worker
satisfaction z can be defined by the following equations:

z =

{
1− ∆l

lc
= 1− l′−l

C , if l′ − l < lc

0, Otherwise

Specifically, the worker satisfaction is negatively cor-
related with the detour distance. For calculation’s conve-
nience, we normalize the detour distance ∆l based on the
threshold lc. Then the worker satisfaction is kept between 0
and 1 by setting z = 1−∆l/lc, i.e, a zero detour is mapped to
z = 1 and the worker satisfaction is 0 if the overall detour
equals or exceeds lc. This definition directly calculates the
worker satisfaction based on the total detour of all workers.

Then we quantify the worker density and the worker
satisfaction. Intuitively, the worker density is positively cor-
related with the worker satisfaction. In addition, the worker
density should have both upper and lower limits which are
denoted as L and U respectively. The density of workers is
varied between [L,U]. We set L as the maximum number of
total rebalance demands and U = kL. The meaning is that
we assume the system can at least find Lworkers to perform
rebalancing. If there are not sufficient workers, the system
can increase the incentive strength. The upper bound U is
set as kL. It means even if the worker satisfaction is 1, there
are at most kLworkers who are willing to help. When the
worker satisfaction lies within [0, 1], the worker density is
modeled by the following equation:

(L+ U)− (
L

U
)z · U

The equation is illustrated in Fig. 9.
Based on these steps of quantification, we evaluate the

variation of worker satisfaction and the results are shown in
the experiment. Even starting with a relatively low worker
satisfaction, the existence of the possible feedback loop
could improve the worker satisfaction and maintain the
worker satisfaction to a high level. It shows that our scheme
is stable when multiple time slices are taken into account.

8.3 Worker Densities and Weather Conditions

The worker density also correlated with weather conditions.
In extreme weather conditions, the worker density would be
significantly lower than that in normal weather conditions.
Few prior works have been done on evaluating the impact

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 10

0 0.2 0.4 0.6 0.8 1
Worker satisfaction

2
4
6
8

10

W
or

ke
r

de
ns

ity

(a) The worker density verses
satisfaction

0 100 200 300 400 500
Detour distance

0

5

10

W
or

ke
r

de
ns

ity

(b) The worker density verses
distance

Fig. 9. An illustration of the satisfaction and density function

of weather conditions on the worker density since the lack
of data. In this paper, we assume the number of available
workers is proportional to the number of users to the sys-
tem. Weather conditions would impact the number of users
to the system. It affects the number of available workers
to the same degree. We introduce a factor Cw to describe
the effect. Formally, |W | = Cw|W |ave, where |W |ave is the
average number of available workers of a day. We use the
regression model to estimate the value of Cw based on
the weather impact on the number of system users. In the
regression model, we use xi to denote the weather condition
vector of the day i. It includes temperature, heating/cooling
degree days, precipitation, and snow depth. Let yi denote
the ratio between the number of users of the day i and the
average number of users of a day in history. Running the
regression model on the dataset consists of (xi, yi) quanti-
fies the weather impact on the number of workers. When
calculating the size of the worker pool, the Cw is calculated
based on the regression model and is multiplied to the
worker density (L + U) − (LU)z · U . The fluctuation of the
worker pool size further impacts worker satisfaction in the
following time slots. In this way, we introduce the weather
impact into the feedback loop on worker satisfaction.

9 REBALANCING FOR DOCKLESS BSSS

Our rebalancing scheme is designed for docked BSSs, and
it could be extended to dockless BSSs. Dong et. al. [37]
have built the bridge between docked and dockless BSSs by
using clustering techniques. Specifically, aggregation areas
of dockless bikes are detected and a flow model is proposed
to describe the bike mobility. In this section, we investigate
the problem of rebalancing dockless BSSs by converting it
to docked BSS scenario.

Inspired by their cluster approach, we define virtual
stations in the dockless BSS. A virtual station represents
an aggregation area of bikes. As illustrated in Fig. 10, a
virtual station consists of a cluster centroid location and a
cluster radius. Formally, let V denote the set of centroid
locations of virtual stations, vp ∈ V denote the location of an
overflow virtual station, and vn ∈ V denote the location of
an underflow virtual station. The radius of a virtual station
v is denoted as rv . For example, the radius of an overflow
station vp is rp. In addition, each virtual station has its state
φv(t) and demand τv(t). The state φv(t) represents the stock
level of the virtual station v at the beginning of time slice t.
The stock level is the number of bikes whose distance to the
cluster centroid is less than the cluster radius. The demand
τv(t) is the number of bikes rented or returned at the range
of the virtual station v during time slice t. The bike demand

vp
<latexit sha1_base64="XWN9vqv5qQGX5HD3XImt18sI7l8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jntJr1R2K+4cZJV4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4LXZTjQllIzrAjqWSRqj9bH7qlJxbpU/CWNmShszV3xMZjbSeRIHtjKgZ6mVvJv7ndVIT3vgZl0lqULLFojAVxMRk9jfpc4XMiIkllClubyVsSBVlxqZTtCF4yy+vkma14l1Wqg9X5dptHkcBTuEMLsCDa6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gBpbo3h</latexit>

vn
<latexit sha1_base64="h66uUPgpvNAxxx7Szqqf11j/A7Y=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnuyVyq7FXcOskq8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFrupxoSyER1gx1JJI9R+Nj91Ss6t0idhrGxJQ+bq74mMRlpPosB2RtQM9bI3E//zOqkJb/yMyyQ1KNliUZgKYmIy+5v0uUJmxMQSyhS3txI2pIoyY9Mp2hC85ZdXSbNa8S4r1Yercu02j6MAp3AGF+DBNdTgHurQAAYDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwBmZo3f</latexit>

rn
<latexit sha1_base64="QprLVeBydU4FwFVxiVV412njUyY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPqyX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSatW9S6qtfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP2BOjds=</latexit>

rp
<latexit sha1_base64="V34+NL+EyqtZsXeAfRkqNyxZDZU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPpJv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vklat6l1Ua/eXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwBjVo3d</latexit>

Fig. 10. An illustration of virtual bike stations.

of each virtual station could be predicted by the flow model
proposed in [37]. Although there is no actual bike dock in a
virtual station, each virtual station v has a capacity ηv . In our
scheme, we assume the capacity is proportional to the size
of the virtual station. Formally, we assume that ηv = γ · r2

v ,
where γ is a constant parameter. Through virtual stations,
the problem of rebalancing dockless BSSs is converted to
rebalancing docked BSSs.

Our dockless rebalancing scheme is built upon the vir-
tual stations. Based on the state, demand, and capacity of
each virtual station, our kGA and GLA could be applied
to generate the rebalancing configuration ρV (t) for virtual
stations in each time slice t, i.e. the number of bikes that
should be moved to/from the station. Then, the system
operator could recruit workers at the beginning of each
time slice. The assignment of workers could be generated
by TRM. When applying TRM, we use the cluster centroids
as the virtual stations’ locations in matching. Note that when
workers perform rebalancing, they do not need to pick up or
drop off bikes at the cluster centroid. In contrast, a worker
could rent the nearest bike that is located in the range of
the virtual station assigned to him/her. Similarly, a worker
could return the bike to the location that is nearest to his/her
destination in the range of the assigned return station. The
nearest return location could be found by projecting the
worker’s destination to the boundary of the virtual under-
flow station. Fig. 10 illustrates the actual pick up and drop
off locations. The difference between the pick-up (drop-off)
distance used in matching and the actual pick-up (drop-off)
distance is bounded by the radius of the virtual overflow
(underflow) station.

10 EXPERIMENT

10.1 Real-world dataset

We use the public data of NYC Citi Bike2 to construct our the
NYC dataset. We use a set of history trip data from 8/1/2017
to 9/30/2017. The data contains the records of each trip
including trip duration (in seconds), trip start/stop time,
start/end station ID, and latitude/longitude, etc. Our NYC
dataset contains more than 1.5 million trip records and 328
bike stations.

Besides the NYC Citibike dataset, we also use the SF Bay
Area dataset3, or the simply SF dataset, to test our proposed
algorithm, and use the Mobike Shanghai dataset to test our
extended scheme for dockless BSSs. The SF dataset contains
the bike trip information and station status information of
a BSS in the San Francisco Bay Area. It contains 83 bike
stations and more than 800 bikes in the system. The Mobike

2. https://www.citibikenyc.com/system-data
3. https://www.kaggle.com/benhamner/sf-bay-area-bike-share

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 11

Shanghai dataset contains 102,362 bike trace records in
Shanghai. Fig. 11 illustrates some bike locations and virtual
stations. The trace data includes the user start/end time and
location, which is sufficient for our experiment.

The state information of bike stations in the NYC and
SF datasets could be calculated based on the trace data. The
trace history records the IDs, locations, and the start and
end times. The number of bikes rented/returned at a station
b during a given time duration [t1, t2) could be calculated by
counting the number of data entries whose start/end station
ID is b and the start/end time is within range [t1, t2). We
only need to note that the count of return events is positive
and the count of rent events should become negative.

In the NYC and SF datasets, the bike demands of stations
during any time slice could be generated by using the
prediction algorithm [3]. The demands of virtual stations
in the Mobike Shanghai dataset could be determined by
counting the average number of rent/return events in the
corresponding cluster during a time slice. With rebalancing
demands in each time slice, the rebalancing targets could be
determined by kGA or GLA.

We use the weather data of NYC4 to evaluate the weather
impact on the number of available workers. The attributes
of the NYC weather dataset includes temperature, heat-
ing/cooling degree days, precipitation, and snow depth.
Some extreme weather conditions, e.g., the temperature is
too high, would reduce the number of available workers.
The shortage of available workers further brings a negative
impact on performances of rebalancing algorithms, which
is evaluated in Subsection 10.5 along with our extended
algorithms. We find that the temperature significantly af-
fects the number of trips. The effect of snow is not statisti-
cally significant for the number of trips. There is the most
number of trips when the temperatures are in the range
of 21.5◦C − 31.5◦C. The number of trips decreases when
temperatures decrease lower than 21.5◦C. It also decreases
when temperatures increase higher than 31.5◦C.

10.2 Synthetic Dataset

The synthetic dataset is used as a supplement for the real-
world dataset. The location of each bike station in the NYC
dataset is static, and so is the density of bike stations.
We want to test how the density of stations affects the
performance of TRM, since the station density of BSSs in
different cities may vary significantly. Therefore, we build
a synthetic dataset which contains several station sets with
different densities.

In our synthetic dataset, we randomly generate the loca-
tions of bike stations following a uniform distribution. The
source and destination location distributions of workers are
also uniform. The density of stations is measured by the
expected number of stations in a 5 × 5 km2 square. The
capacity of each station is set as 20 and the initial inventory
of each station is set as 3/4 of the capacity, which is 15. The
number of rent and return events of stations in each time
slice is generated by the Poisson process with parameter
λ = 7 which is the average number of daily rent events in
the NYC dataset.

4. https://w2.weather.gov/climate/xmacis.php?wfo=okx

121.48 121.5 121.52 121.54 121.56
Long.

31.14

31.15

31.16

31.17

31.18

31.19

31.2

La
t.

Fig. 11. Virtual stations in the Mobike dataset.

10.3 Comparison algorithms

The Branch-and-Bound (BB) algorithm is a global optimiza-
tion method which is used to find the optimal solution to
the WAP problem. Although it cannot be used in realistic
scenarios, it can provide an optimal result when the input
size is small. The optimal result can be used to evaluate
the performance of our two-round matching algorithm.
The complexity of calculating this lower-bound heuristic
is factorial. Therefore, the comparison is conducted with a
small input size.

The Local Search (LS) algorithm is a local optimization
approach. Finding the weighted 3D matching can be seen
as finding the minimum weighted subfamily of pairwise
disjoint sets and the size of each set is equal to 3. To the best
of our knowledge, the approximation algorithm with the
tightest bound for the problem is proposed by Berman in
[30]. The approximation ratio of the local search algorithm
is (k+1+ε)/2 and the time complexity is mO(k), where m is
the number of nodes in the intersection graph. In our prob-
lem k = 3, and m = |W |3. Therefore, the approximation
ratio of the LS is 2 + ε with time complexity O(|W |9).

In addition, a Greedy algorithm is used as a baseline
approach. In the greedy algorithm, each worker chooses the
nearest station in N to rent a bike, and returns it to the
station in P that is nearest to his/her destination. Workers
sequentially make their decisions in an arbitrary order, i.e.
the order is randomly shuffled. After a worker made his/her
decision, the worker and the chosen stations are deleted.

10.4 Experiment Settings

10.4.1 Performance Comparison
The code used in our experiment is available online5. In the
synthetic dataset, we separately examine the performance
of our algorithms for spatial and temporal optimization in
the synthetic dataset. In spatial domain, we compare TRM
with BB, LS and Greedy in terms of overall worker moving
distance in a time slice. In temporal domain, we compare
kGA with GLA in terms of number of workers needed.
Besides, we test the performance of TRM on different station
densities. Totally, we choose three densities, 10, 20 and 40,
to represent sparsely, regularly, and densely distributed sta-
tions, respectively. Notice that the BB algorithm is extremely
time-consuming. Therefore, when comparing with BB, we
extract a subset of stations and choose a short slice length

5. https://github.com/YubinDuan/BikeRebalancing.git

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 12

(20 min) to decrease the number of bikes that need to be
moved. The stations are randomly extracted from the NYC
dataset in a 2×2 km2 area. For generalization, we repeat the
experiment 100 times and record the average results. These
results are shown in Fig. 12 and Fig. 13.

In the real-world dataset, we combine optimization al-
gorithms in spatial and temporal domains and show the
overall performance of our scheme. The overall performance
is measured by the overall moving distance of workers
recruited in one day (24 hours). In the experiment, we
vary the number of stations and the stations are randomly
extracted from the real-world dataset. Fig. 14 shows the
corresponding results.

Our extension for dockless BSSs is tested over the Mo-
bike Shanghai dataset. The k-means algorithm is used to
generate virtual locations. We test our scheme with different
numbers of clusters in terms of overall moving distance.
Besides, we test the impact of the capacities of virtual
stations by using different γ. Fig. 15 illustrates the results.

10.4.2 Worker Shortage and Cost-Efficiency
We also evaluate our extended algorithm for the case where
the number of workers is not sufficient on the NYC dataset.
The performance is measured by the overall utility function
value. We evaluate both short-term and long-term perfor-
mances of our extended algorithm (WSME as shown in
Algorithm 5) with Cu = 1. In the short-term experiment, we
consider the bike rebalancing of one day. The rebalancing
target is generated by 1GA. For each time slot, the number
of available workers is ζ% of the number of bikes to be
moved. The extended algorithm is compared with TRM and
greedy algorithms. In comparison, we vary the value of ζ .
In the long-term experiment, we consider the rebalancing of
multiple days. The number of workers in each time slot is
generated by our worker satisfaction model, and the impact
of weather conditions are considered. We use weather data
from 8/7/17-8/11/17. The initial number of workers is set
to 30% of the number of required workers. We compare
the performance of our extended algorithm with TRM. The
experiment results are shown in Fig. 16.

In addition, we examine the cost-efficiency of our scheme
over both NYC and SF datasets. The incentive price is set
based on the ‘bike angel’ project, a real-world user-based
rebalancing project launched in the NYC Citi bike system.
The project rewards users with points if they rent bikes
from or return them to specific stations. The points could
be redeemed for free trips or gift cards. According to their
reward policy6, each trip could earn at most 3 points. Each
point is approximately worth $0.1. The cost of a truck-
based rebalancing scheme including driver’s payment and
the fuel cost. In the state-of-the-art truck-based rebalancing
scheme which aims to minimize detour distances [3], a city
is divided into multiple clusters and each cluster has a
truck. For fare comparison, we also cluster the stations and
perform the comparison in a cluster with 48 stations. We use
the same setting in the SF dataset. The only difference is that
the cluster size is 35 stations. We show the results on Fig. 17.

We conduct a Monte Carlo simulation to examine our
assumption on worker satisfaction in the synthetic dataset.

6. https://www.citibikenyc.com/bikeangels/rewards

40 50 60 70 80 90 100
Number of workers

400

600

800

T
o
ta

l d
is

ta
n
ce

10 stations
20 stations
40 stations

(a) Different station densities

20 25 30 35 40 45 50
Number of stations

300

400

500

600

700

800

T
o
ta

l m
o
ve

m
e
n
t 1-GA

2-GA
GLA

(b) Comparing GLA with kGA

Fig. 12. Performance comparison in the synthetic dataset.

2 3 4
Number of workers

5 6

Co
st

3500

4000

4500

5000

5500

6000

6500

7000

7500
BB
LS
TRM
Greedy

(a) Comparison on distance

2 3 4
 Number of workers

5 6

Ru
nn

in
g

Ti
m

e

10-2

10-1

100

101

102

103
BB
LS
Greedy
TRM

(b) Comparison on running time

Fig. 13. Comparison between TRM and existing algorithms.

The worker sources and destinations are uniformly dis-
tributed. We further generate rebalancing demands for 15
time slots. The number of workers in each time-slot is
calculated based on the worker satisfaction of the previous
time-slot. The initial worker satisfaction is set to 0. The
initial number of workers is set as the rebalancing demands
of the first time-slot, which is L = 50 in the experiment.
The number of workers of the following time slices are
calculated based on the predefined equations. When worker
satisfaction is high, there will be more workers who are
willing to join in the rebalancing. The increase rate of the
number of new workers with the satisfaction is determined
by the maximum number of workers U , which represents
the upper bound of worker amounts in the map. We test the
performance with different value of U . The evolution of the
worker satisfaction is shown in Fig. 18.

We have argued that our scheme could have better
performance if there are more available workers. We test our
argument over both NYC and SF datasets. We also test the
greedy algorithm and investigate whether more available
workers could improve its performance. We vary the ratio
between number of available workers and the number of
bikes to be moved in each time slice, and record the overall
worker moving distances. The results are shown in Fig. 19.

10.5 Evaluation Results and Analyses
10.5.1 Performance Analyses
Firstly, we present the evaluation results of TRM with dif-
ferent densities in Fig.12(a). Each line represents a unique
station density. From the simulation result, and we can
find that if the number of workers is fixed, a larger sta-
tion density costs a smaller total move distance. This is
easy to explain because higher station density may lead to
smaller spatial intervals between stations, and thus leads to
a smaller total moving distance.

Fig. 12(b) illustrates the comparison between GLA and
kGA algorithms in the synthetic dataset, we can find out
that the GLA outperforms 1GA and 2GA. Although we find

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 13

5 10 15 20 25 30 35
Number of stations

0

100

200

300

O
ve

ra
ll

m
ov

in
g

di
st

an
ce

 (k
m

)
TRM & GLA
TRM & 1GA
TRM & 2GA

(a) Overall moving distance

5 10 15 20 25 30 35
Number of stations

0

20

40

60

80

100

O
ve

ra
ll

of

 b
ik

es
 to

 m
ov

e

GLA
1GA
2GA

(b) Comparing GLA with kGA

Fig. 14. Performance comparison on the SF dataset.

30 35 40 45 50

Number of clusters/virtual stations

0

100

200

300

400

O
ve

ra
ll

m
ov

in
g

di
st

an
ce

 (
km

)

Greedy & GLA
Greedy & 1GA
TRM & GLA
TRM & 1GA

(a) γ=0.02

30 35 40 45 50

Number of clusters/virtual stations

50

100

150

200

250

300

350

O
ve

ra
ll

m
ov

in
g

di
st

an
ce

 (
km

)

Greedy & GLA
Greedy & 1GA
TRM & GLA
TRM & 1GA

(b) γ=0.04

Fig. 15. Performance comparison on the Mobike dataset.

an example where 1GA outperforms GLA, GLA has better
performance in general cases. It is not surprising since the
GLA can adjust the time slice to look ahead automatically
and it is more flexible than kGA. In the experiment, we also
track the k chosen by GLA in each iteration and find that the
k value barely exceeds 4, which gives a clue for deciding the
rebalancing frequency.

The comparison between TRM and other algorithms in
the synthetic dataset is shown in Fig. 13. We can conclude
that the performances of TRM and LS are similar. They both
outperform the greedy algorithm and are not far from the
optimal solution. However, considering the running time
in Fig. 13(b), we can conclude that the running time of LS
is larger than that of TRM. If the problem size is larger,
applying the LS to solve the WAP is no longer appropriate
since it costs more than one day to provide the solution.
Although TRM slightly underperforms compared to LS,
TRM is more efficient in terms of its running time.

The result of the experiment on our scheme over the SF
dataset is shown in Fig. 14. Fig. 14(a) illustrates the overall
moving distances of workers in a day. The rebalancing target
is set by either GLA or kGA. The rebalancing assignment is
determined by our TRM algorithm. From the result we can
find that using TRM with GLA always outperforms other
algorithms. It could be explained by the result shown by
Fig. 14(b). The number of bikes moved by GLA is less than
that generated by 1GA and 2GA. The comparison on the SF
dataset illustrates the efficiency of our rebalancing scheme.

Fig. 15 shows the experiment results of our extended
scheme on the dockless BSS. From Fig. 15(a), we find that
the overall moving distance becomes larger if we set more
virtual stations, since the chance for self-balancing decreases
when the number of clusters becomes larger and the size
of each cluster becomes smaller. Comparing Fig. 15(a) with
Fig.15(b) we find that a larger virtual station capacity leads
to smaller overall worker movement. The reason is that
stations are not likely to overflow if the capacity is larger
and the number of bikes to be moved is smaller.

10 20 30 40 50
4

6

8

10

12

14

U
til

ity
 fu

nc
tio

n
va

lu
e Greedy

TRM
WSME

(a) Short-term evaluation

1 2 3 4 5
Number of days

0

5

10

15

20

U
til

ity
 fu

nc
tio

n
va

lu
e TRM

WSME

(b) Long-term evaluation

Fig. 16. Evaluation on the NYC dataset with worker shortage.

10.5.2 Impact of Worker Shortage and Cost-Efficiency

The evaluation results of the worker shortage case are
shown in Fig. 16. Fig. 16(a) shows the results of the short-
term evaluation, i.e., counting the utility function value for
a one-day rebalancing circle. The results show that WSME
outperforms both TRM and Greedy. The main reason is that
TRM and Greedy only consider the worker detour distance
but ignore the expected number of unsatisfied users gener-
ated by improper rebalancing operation. The performance
gap between WSME and TRM reduces when the percentage
of available workers increases. It is because the number
of unsatisfied users decreases. When the available workers
are sufficient, the utility function value mainly depends on
the detour distance. Fig. 16(b) shows the evaluation result
of 5 continuous days. The utility function value increases
every day since the system is not balanced at the end of the
previous day. We can find the utility of TRM increases faster
than that of WSME. It shows the long-term effect of the
worker shortage. The negative effect of unbalanced stations
accumulates with time. During rebalancing, it is necessary
to choose stations that could reduce the expected number of
unsatisfied users.

We illustrate the case study result of cost efficiency in
Fig. 17. The figure shows the cost of rebalancing in each
time slot during a day. In the NYC dataset, there is no need
to balance before 6 AM. The overall incentive cost is at most
$113.1 when 1GA is used. If the BSS operator chooses to hire
trucks to rebalance the system, the cost would be higher.
Even only one truck is used, the operator needs to hire at
least one driver. The minimum wage in NYC is $15 per
hour. Hiring a full-time driver would cost $120, assuming
the driver works 8 hours per day. This already exceeds the
incentive cost, not to mention there are other fees such as
fuel, maintaining trucks, etc. In the SF dataset where the
demand of each station is low, using our scheme is much
more cost-efficient. We find that the overall incentive cost is
under $20 no matter which target configuration algorithm
is used. Our case study in NYC and SF shows that our
incentive-based scheme is more cost efficient compared with
the truck-based rebalancing approaches.

Fig. 18 shows the simulation result on worker satisfac-
tion over the synthetic dataset. From Fig. 18(a), we can
find out that the satisfaction increases from 0.12 to around
0.5, and stays at the high level, when U is set as 15L. It
means the maximum number of available workers is 15L,
where L is the rebalancing demand of the first time slot. It
shows the effect of the positive feedback loop, which can
increase and maintain the worker satisfaction to a higher
level. The effect of worker density also can be revealed by

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 14

6 8 10 12 14 16 18 20 22 24
Time slice in a day (hr)

0

6

12

18

24

In
ce

nt
iv

e
co

st
 (

$) 1GA (overall cost = $113.1)
GLA (overall cost = $112.2)

(a) In NYC dataset

10 12 14 16 18 20 22 24
Time slice in a day (hr)

0

5

10

In
ce

nt
iv

e
co

st
 (

$) 1GA (overall cost = $17.1)
2GA (overall cost = $16.8)
GLA (overall cost = $16.2)

(b) In SF dataset

Fig. 17. The incentive cost of rebalancing.

2 4 6 8 10 12 14
Timeslot

0

0.1

0.2

0.3

0.4

0.5

U
se

r
S

at
is

fa
ct

io
n

I = 15
I = 10

(a) Worker satisfaction

1 2 3 4 5 6 7 8 9 101112131415
400

500

600

700

800

Av
er

ag
e

m
ov

e
di

st
an

ce

w/o considering the feedback loop
with considering the feedback loop

Timeslot

(b) Average move distance

Fig. 18. The evolution of the worker satisfaction and move distance.

comparing the black line with the red line in Fig. 18(a). The
worker satisfaction is higher if the worker density is larger.
Fig. 18(b) shows the average move distance of a worker in
each time-slot. The red bars show that the average move
distance decreases and is kept in a relatively low value even
the total demands of all time-slots are the same. It is more
clear with comparing with the black bars which show the
average move distance without considering the feedback on
worker density, i.e. we set a fixed worker density for each
time slot. This result directly shows that our scheme could
efficiently reduce the move distance of workers and it is not
only because of the optimization by the TRM in the spatial
domain but also due to the existence of the feedback loop
on worker satisfaction over multiple time slices.

From the experiment results, we find out that worker
satisfaction increases if the feedback effect is considered.
Specifically, without considering the feedback, the worker
satisfaction would remain at the initial level, i.e. the satis-
faction will be kept at 0.12 for k = 15. In addition, we can
find out that the satisfaction of workers would be stable
eventually. It is reasonable since the number of available
workers is limited. No matter how high the incentive price
is, there are no more available workers to participate in
the rebalancing. As a result, the performance of matching
could no longer be improved. Therefore, the satisfaction of
workers is kept at a certain value eventually.

Our scheme could achieve better performance with more
available workers, it can be examined in real-world datasets
as shown in Fig. 19. From results on both datasets, we
find that our TRM could achieve better performance if the
number of available workers increases. In contrast, the per-

1 1.2 1.4 1.6 1.8 2
Ratio between # of workers and bikes to move

1100

1200

1300

1400

1500

1600

O
ve

ra
ll

m
ov

in
g

di
st

an
ce

 (
km

)

Greedy & GLA

Greedy & 1GA

TRM & GLA

TRM & 1GA

(a) In NYC dataset

1 1.2 1.4 1.6 1.8 2
Ratio between # of workers and bikes to move

200

220

240

260

280

300

320

O
ve

ra
ll

m
ov

in
g

di
st

an
ce

 (
km

)

Greedy & GLA
Greedy & 1GA
TRM & GLA
TRM & 1GA

(b) In SF dataset

Fig. 19. Performance evaluation with different numbers of workers.

formance of the greedy algorithm does not have an obvious
improvement with more workers. The reason might be that
the greedy workers have no cooperation at all, and it brings
no global profit that more workers are competing with each
other. Our scheme is based on global matching and could
achieve better coordination among workers.

As a brief summary, the experiment results shows that
our scheme is scalable, have great cost efficiency, and could
form positive feedback loop worker satisfaction. Although
LS slightly outperforms TRM, TRM is much faster than LS
and can be applied to real-world BSSs. Compare with truck-
based approach, our scheme has lower monetary cost and
more flexible. It adaptively reduces cost when the bike usage
demand is low. Furthermore, reducing moving distance for
workers could improve worker satisfaction, which could
further help to reduce the overall moving distance. The
existence of the positive feedback loop would attract more
workers to participate in the BSS rebalancing.

11 CONCLUSION

Toward the imbalance bike distribution in BSSs, we propose
a rebalancing scheme by recruiting workers. We decouple
the problem by slicing the rebalancing in the temporal
domain and generate a sequence of slices with a fixed time
duration. In each time slice, we formulate the WAP which
is NP-hard. When the number of workers is sufficient, a
3-approximation algorithm is proposed to solve WAP in
the Euclidean plane. We further extend it to deal with the
externality in matching for the worker shortage case. Over
multiple time slices, we formulate the CDP and investigate
two greedy approaches, namely kGA and GLA. Further-
more, we extend our scheme to dockless BSSs by clustering.
We evaluate our rebalancing scheme on both real-world and
synthetic datasets. Experiment results show the scalability
and reliability of our rebalancing scheme. Although TRM
slightly underperforms a local-search approach algorithm in
the spatial domain, it runs much faster and can be applied
to large-scale real-world BSSs. In the temporal domain, GLA
could efficiently reduce the number of workers recruited
during rebalancing in the real-world dataset, although we
show it may generate unnecessary bike movements in some
special cases. Besides, our case studies on NYC and SF show
the cost efficiency of our scheme. Furthermore, investigation
on the worker satisfaction indicates that our scheme could
maintain the satisfaction to a reasonable level which helps
to further reduce the overall worker detours.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 15

REFERENCES

[1] Y. Duan and J. Wu, “Optimizing the crowdsourcing-based bike
station rebalancing scheme,” in Proc. of the 39th IEEE International
Conference on Distributed Computing Systems (ICDCS 2019), 2019.

[2] E. Fishman, “Bikeshare: A review of recent literature,” Transport
Reviews, vol. 36, no. 1, pp. 92–113, 2016.

[3] J. Liu, L. Sun, W. Chen, and H. Xiong, “Rebalancing bike sharing
systems: A multi-source data smart optimization,” in Proc. of ACM
KDD, 2016, pp. 1005–1014.

[4] J. Liu, L. Sun, Q. Li, J. Ming, Y. Liu, and H. Xiong, “Functional zone
based hierarchical demand prediction for bike system expansion,”
in Proc. of ACM KDD, 2017, pp. 957–966.

[5] H. Chung, D. Freund, and D. B. Shmoys, “Bike angels: An analysis
of citi bike’s incentive program,” in Proc. of the 1st ACM SIGCAS
Conference on Computing and Sustainable Societies, 2018, pp. 1–9.

[6] J. Froehlich, J. Neumann, N. Oliver et al., “Sensing and predicting
the pulse of the city through shared bicycling.” in Proc. of IJCAI,
vol. 9, 2009, pp. 1420–1426.

[7] A. Kaltenbrunner, R. Meza, J. Grivolla, J. Codina, and R. Banchs,
“Urban cycles and mobility patterns: Exploring and predicting
trends in a bicycle-based public transport system,” Pervasive and
Mobile Computing, vol. 6, no. 4, 2010.

[8] Y. Li, Y. Zheng, H. Zhang, and L. Chen, “Traffic prediction in a
bike-sharing system,” in Proc. of ACM SIGSPATIAL, 2015.

[9] L. Chen, D. Zhang, L. Wang, D. Yang, X. Ma, S. Li, Z. Wu, G. Pan,
T.-M.-T. Nguyen, and J. Jakubowicz, “Dynamic cluster-based over-
demand prediction in bike sharing systems,” in Proc. of ACM
UbiComp, 2016, pp. 841–852.

[10] B. Du, X. Hu, L. Sun, J. Liu, Y. Qiao, and W. Lv, “Traffic demand
prediction based on dynamic transition convolutional neural net-
work,” IEEE Transactions on Intelligent Transportation Systems, 2020.

[11] C. Fricker and N. Gast, “Incentives and redistribution in homoge-
neous bike-sharing systems with stations of finite capacity,” Euro
journal on transportation and logistics, vol. 5, no. 3, pp. 261–291, 2016.

[12] E. O’Mahony and D. B. Shmoys, “Data analysis and optimization
for (citi) bike sharing.” in Proc. of AAAI, 2015, pp. 687–694.

[13] A. Singla, M. Santoni, G. Bartók, P. Mukerji, M. Meenen, and
A. Krause, “Incentivizing users for balancing bike sharing sys-
tems.” in Proc. of AAAI, 2015, pp. 723–729.

[14] M. Charikar, S. Khuller, and B. Raghavachari, “Algorithms for
capacitated vehicle routing,” SIAM Journal on Computing, vol. 31,
no. 3, pp. 665–682, 2001.

[15] J. Liu, Q. Li, M. Qu, W. Chen, J. Yang, H. Xiong, H. Zhong, and
Y. Fu, “Station site optimization in bike sharing systems,” in Proc.
of IEEE ICDM, 2015, pp. 883–888.

[16] L. Chen, D. Zhang, G. Pan, X. Ma, D. Yang, K. Kushlev, W. Zhang,
and S. Li, “Bike sharing station placement leveraging heteroge-
neous urban open data,” in ACM UbiComp, 2015.

[17] J. Bao, T. He, S. Ruan, Y. Li, and Y. Zheng, “Planning bike lanes
based on sharing-bikes’ trajectories,” in Proc. of ACM KDD, 2017,
pp. 1377–1386.

[18] J. W. Yoon, F. Pinelli, and F. Calabrese, “Cityride: a predictive bike
sharing journey advisor,” in Proc. of IEEE MDM, 2012.

[19] J. Zhang, P. Lu, Z. Li, and J. Gan, “Distributed trip selection
game for public bike system with crowdsourcing,” in Proc. of IEEE
INFOCOM, 2018.

[20] Y. Li, Y. Zheng, and Q. Yang, “Dynamic bike reposition: A spatio-
temporal reinforcement learning approach,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 2018, pp. 1724–1733.

[21] D. Chemla, F. Meunier, and R. W. Calvo, “Bike sharing systems:
Solving the static rebalancing problem,” Discrete Optimization,
vol. 10, no. 2, pp. 120–146, 2013.

[22] S. Ghosh, M. Trick, and P. Varakantham, “Robust repositioning to
counter unpredictable demand in bike sharing systems,” in Proc.
of IJCAI, 2016, pp. 3096–3102.

[23] Y. Duan, J. Wu, and H. Zheng, “A greedy approach for vehicle
routing when rebalancing bike sharing systems,” in Proc. of IEEE
GLOBECOM, 2018.

[24] A. Waserhole and V. Jost, “Pricing in vehicle sharing systems:
Optimization in queuing networks with product forms,” EURO
Journal on Transportation and Logistics, vol. 5, no. 3, pp. 293–320,
2016.

[25] L. Pan, Q. Cai, Z. Fang, P. Tang, and L. Huang, “A deep re-
inforcement learning framework for rebalancing dockless bike
sharing systems,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 33, 2019, pp. 1393–1400.

[26] Y. Duan and J. Wu, “Optimizing rebalance scheme for dock-less
bike sharing systems with adaptive user incentive,” in Proc. of
IEEE MDM, 2019.

[27] M. Cygan, “Improved approximation for 3-dimensional matching
via bounded pathwidth local search,” in Proc. of IEEE FOCS. IEEE,
2013, pp. 509–518.

[28] E. M. Arkin and R. Hassin, “On local search for weighted k-set
packing,” Mathematics of Operations Research, vol. 23, no. 3, pp.
640–648, 1998. [Online]. Available: http://www.jstor.org/stable/
3690563

[29] B. Chandra and M. M. Halldórsson, “Greedy local improvement
and weighted set packing approximation,” Journal of Algorithms,
vol. 39, no. 2, pp. 223–240, 2001.

[30] P. Berman, “A d/2 approximation for maximum weight inde-
pendent set in d-claw free graphs,” in Scandinavian Workshop on
Algorithm Theory. Springer, 2000, pp. 214–219.

[31] R. M. Karp, “Reducibility among combinatorial problems,” in
Complexity of computer computations. Springer, 1972, p. 85.

[32] J. Wu, Distributed system design. CRC press, 1998.
[33] T. Raviv, M. Tzur, and I. A. Forma, “Static repositioning in a bike-

sharing system: models and solution approaches,” EURO Journal
on Transportation and Logistics, vol. 2, no. 3, pp. 187–229, 2013.

[34] M. Pycia and M. B. Yenmez, “Matching with externalities,” 2019.
[35] E. Bodine-Baron, C. Lee, A. Chong, B. Hassibi, and A. Wierman,

“Peer effects and stability in matching markets,” in International
Symposium on Algorithmic Game Theory. Springer, 2011, pp. 117–
129.

[36] Y. Singer, “Budget feasible mechanisms,” in 2010 IEEE 51st Annual
Symposium on Foundations of Computer Science. IEEE, 2010, pp.
765–774.

[37] J. Dong, B. Chen, C. Ai, and F. Zhang, “A spatio-temporal flow
model of dockless shared bikes,” in 2019 IEEE DSC, 2019, pp. 312–
317.

Yubin Duan received his B.S. degree in Mathe-
matics and Physics from University of Electronic
Science and Technology of China, Chengdu,
China, in 2017. He is currently a Ph.D. stu-
dent in the Department of Computer and In-
formation Sciences, Temple University, Philadel-
phia, Pennsylvania, USA. His current research
focuses on urban computing.

Powered by TCPDF (www.tcpdf.org)

Jie Wu is the Director of the Center for Net-
worked Computing and Laura H. Carnell pro-
fessor at Temple University. He also serves as
the Director of International Affairs at College of
Science and Technology. He served as Chair of
Department of Computer and Information Sci-
ences from the summer of 2009 to the summer
of 2016 and Associate Vice Provost for Interna-
tional Affairs from the fall of 2015 to the summer
of 2017. Prior to joining Temple University, he
was a program director at the National Science

Foundation and was a distinguished professor at Florida Atlantic Univer-
sity. His current research interests include mobile computing and wire-
less networks, routing protocols, cloud and green computing, network
trust and security, and social network applications. Dr. Wu regularly
publishes in scholarly journals, conference proceedings, and books.
He serves on several editorial boards, including IEEE Transactions on
Mobile Computing, IEEE Transactions on Service Computing, Journal of
Parallel and Distributed Computing, and Journal of Computer Science
and Technology. Dr. Wu was general co-chair for IEEE MASS 2006,
IEEE IPDPS 2008, IEEE ICDCS 2013, ACM MobiHoc 2014, ICPP 2016,
and IEEE CNS 2016, as well as program co-chair for IEEE INFOCOM
2011 and CCF CNCC 2013. He was an IEEE Computer Society Dis-
tinguished Visitor, ACM Distinguished Speaker, and chair for the IEEE
Technical Committee on Distributed Processing (TCDP). Dr. Wu is a
CCF Distinguished Speaker and a Fellow of the IEEE. He is the recipient
of the 2011 China Computer Federation (CCF) Overseas Outstanding
Achievement Award.

