
Data Collection and Event Detection in the Deep
Sea with Delay Minimization

Huanyang Zheng and Jie Wu
Department of Computer and Information Sciences, Temple University, USA

Email: {huanyang.zheng, jiewu}@temple.edu

Abstract—As special applications of delay tolerant networks
(DTNs), efficient data collection and event detection in the deep
sea pose some unique challenges, due to the need of timely data
reporting and the delay of acoustic transmission in the ocean.
Since underwater communications suffer from a significant signal
attenuation, autonomous underwater vehicles (AUVs) deployed in
the deep sea are used to surface frequently to transmit collected
data and events to the surface stations. However, extra delay is
introduced at each resurfacing, since AUVs are usually operated
in the deep sea. In this paper, we want to minimize the average
data and event reporting delay, through optimizing the number
and locations of AUV resurfacing events. We also study the AUV
trajectory planning using an extended Euler circuit, where the
search space is a set of segments (e.g., oil pipes) in the deep sea.
Finally, experiments in both the synthetic and real traces validate
the efficiency and effectiveness of the proposed algorithms.

Keywords—Deep sea searching, delay tolerant networks, au-
tonomous underwater vehicles, Euler circuit, scheduling.

I. INTRODUCTION

The deep sea is the largest habitat on earth and is largely
unexplored. As shown in the recent search-and-rescue effort of
Malaysia flight MH370 in the Pacific Ocean, it is extremely
difficult to conduct an efficient search process in the deep sea
for data collection and event detection. In addition to the huge
area of the search space, the data (or events) reporting in the
deep sea also pose a unique challenge, compared to those in
regular land communications. Although several different types
of media can be used under the sea, the acoustic transmission
[1, 2] is most commonly used for underwater communications.
However, it is well known that the acoustic transmission suffers
from a very significant signal attenuation (and thus a low data
rate). Therefore, to report data in a search-and-rescue effort,
autonomous underwater vehicles (AUVs) deployed in the deep
sea are used to surface frequently and transmit collected data
(or events) to the surface station. A motivational example for
the AUVs could be the detection of oil pipe leaks through
robotic submarines in the Gulf of Mexico [3].

In this paper, we consider a special scheduling problem
aiming to minimize the average data reporting delay. AUVs
are used to search and collect data in a given 2-dimensional
(2-D) search space, which is parallel to the water surface
with a given depth. The data (or events) reporting should be
done in a timely manner, however, extra delay is introduced at
each AUV resurfacing. Fig. 1 shows such a scenario of data
reporting from the deep sea. We consider the search space to
be a set of segments (e.g., oil pipes), which is represented
as a set of weighted edges in a graph. We propose an AUV
trajectory planning using an extended Euler circuit, and then,

Fig. 1. Data reporting and event detection in the deep sea.

we determine the number and locations of resurfacing events
on the circuit (or simply cycle). Specifically, we study the
following problems in sequence. (1) Given the circumference
of a cycle of a search space at a given depth, we determine the
number and locations of AUV resurfacing events that minimize
the average data reporting delay. (2) We study a more general
case where the search space is a collection of edges, called
sensing edges. AUVs can collect the data from the sensing
edges. We then determine cycles that cover all sensing edges,
where some edges may appear more than once. (3) Using the
geometric property, we replace some multiple-visited sensing
edges with geometrically-shortest-distance links that are not
sensing edges in the graph (called non-sensing edges), as to
shorten the cycle circumference. Note that no data is collected
from the non-sensing edges. We also adjust the number and
locations of AUV resurfacing events for cycles with non-
sensing edges. (4) Given a search space that includes multiple
cycles, we study a cooperative AUV trajectory planning, where
the cycles are merged to further reduce the average data delay.

The key difference between our approach and the classic
ferry approaches [4, 5] lies in the AUV resurfacing events that
bring an extra delay. If the AUVs resurface frequently, then the
uncollected data needs to wait a longer time to be reported,
which leads to an increased average data reporting delay. On
the other hand, if the AUVs resurface infrequently, then the
collected data within the AUV needs to wait a longer time
to be reported, which also leads to an increased average data
reporting delay. This tradeoff poses some unique challenges on
combining the design of AUV resurfacing events and trajectory
planning in the deep sea, which have not been explored in
existing works on underwater sensor networks [6–9] and corre-
sponding protocols [10–15]. Although a preliminary work was
proposed in [16], we conduct further extensions by considering
AUV surfacing events in cycles with non-sensing edges, as
well as the cooperative AUV trajectory planning.

E

B

C

G H

D

F

A

(a) Search space layout.

E

B

C

G H

D

F

A

(b) The given graph.

AUV

Surfacing

Water Surface

Surface

Station

(c) AUV resurfacing.

E

B

C

G H

D

F

A

(d) Cycle construction.

E

B

C

G H

D

F

A

(e) Cycle enhancement.

E

B

C

G H

D

F

A

(f) Cycle merge.

Fig. 2. An illustration for the background and problem formulation.

The reminder of the paper is organized as follows. Section
II surveys the related work. Section III states the background
and the problem formulation. Section IV studies the number
and locations of AUV resurfacing events, given a search space
of a cycle with a depth under the water surface level. Section V
focuses on finding a small cycle that includes all sensing edges
in a given graph. Section VI discusses an extension of using
geometrically-shortest-distance links to shorten the cycle. We
also provide a refinement to the number and locations of AUV
resurfacing events, given a cycle that includes both sensing
and non-sensing edges. Section VII studies the cooperative
AUV resurfacing, where we merge the cycles for the trajectory
planning. Section VIII includes the experiments. The paper
concludes in Section IX with a discussion of the future work.

II. RELATED WORK

Recently, underwater sensor networks [6, 9] are becoming
a hot topic, since our ocean remains largely under-explored. It
is notoriously difficult to conduct an efficient search process
in the deep sea for data collection and event detection, as
shown in the recent search-and-rescue effort of Malaysia flight
MH370 in the Pacific Ocean [17]. A significant amount of
work has been reported on underwater sensor networks. For
example, Chandrasekhar et al. [7] surveyed the localization
problem in underwater networks. Pompili et al. [8] studied the
routing algorithms for delay-insensitive and delay-sensitive ap-
plications, while more detailed surveys are reported in [10, 11].
The monitoring problem has also been studied. Eichhorn et al.
[15] designed a modular AUV system for the sea water quality
monitoring. Jawhar et al. [14] proposed an efficient framework
in AUV-extended sensor networks for pipeline monitoring. We
also consider the detection of oil pipe leaks through AUVs.
However, we mainly focus on the AUV resurfacing decisions
and the AUV trajectory planning (rather than a framework).

In traditional sensor networks, ferries are used to collect
the data from different sensors [4, 18, 19]. In [4], a set of
special mobile nodes called ‘message ferries’ are responsible
for carrying data for nodes in the network. The design of
ferry routes (i.e., trajectory planning) was focused. The key
difference between our approach and the traditional ferry
approach lies in the AUV resurfacing process that brings an
extra delay. Traditional ferry approaches [20–24] are based on
sensors distributed in a 2-dimensional space, where ferries are
used to move among different sensors for data collection. They
are usually formulated as traveling salesman problems (TSPs)
or the extensions of TSPs. By comparison, this paper considers

the AUV resurfacing as the third dimension for the AUV
movement. We consider AUVs to go along pipes (i.e., edge
traversal), which is formulated as Eulerian cycle problems.

III. BACKGROUND AND PROBLEM FORMULATION

This paper studies the data collection and event detection
in the deep sea with delay minimization. We are motivated by
the detection of oil pipe leaks through robotic submarines in
the Gulf of Mexico [3]. As shown in Fig. 2(a), we study a
search space that is a set of oil pipes deployed in the seabed.
Nodes are sources or destinations of oil pipes, which are not
necessarily linear. Sensors are densely and uniformly deployed
along pipes to detect the leakages. Another application scenari-
o of our work could be the seabed settlement monitoring [25],
where the sensors are deployed to monitor the seabed.

Since underwater communications suffer from a significant
signal attenuation (and thus a low data rate), AUVs are used
to go along the pipes to collect the data from the sensors, and
then surface to report the data. The above data collection and
AUV resurfacing are periodic. Our objective is to collect and
report the data with minimized average delay. If the AUVs
resurface frequently, then the uncollected data needs to wait a
longer time to be reported, which leads to an increased average
data reporting delay. On the other hand, if the AUVs resurface
infrequently, then the collected data within the AUV needs
to wait a longer time to be reported, which also leads to an
increased average data reporting delay. For further processing,
the search space is converted to a given graph with a certain
depth in the sea, as shown in Fig. 2(b). The lengths of the
pipes are the edge weights in the given graph. The edges in
the given graph are also called sensing edges.

In Section IV, we will start with an ideal case, where the
given graph is composed of only one cycle. As shown in Fig.
2(c), we would like to determine the number and locations
of resurfacing events that minimize the average data delay.
However, the assumption that the given graph is cyclic may
not be very practical. Therefore, in Section V, we discuss how
to construct cycles from the given graph, based on the extended
Eulerian cycles. As shown in Fig. 2(d), each connected compo-
nent in the given graph of Fig. 2(b) is converted to a cycle (i.e.,
cycles ABDBACA and EGHFHGE). The constructed cycles
are only composed of sensing edges, where some edges may
appear more than once, as the given graph is not necessarily
Eulerian. Then, we could use the results in Section IV to
schedule the AUVs for each constructed cycle.

In Section VI, we would improve the cycle construction,
through replacing some multiple-visited sensing edges with
geometrically-shortest-distance links that are not sensing edges
in the graph, as to shorten the circumference of the resultant
cycle. These geometrically-shortest-distance links are called
non-sensing edges, since no data is collected from them. An
example is shown in Fig. 2(e), where we use the non-sensing
edges of DC and EF to shorten the circumferences of the
cycles in Fig. 2(d). Smaller circumferences of the constructed
cycles can result in smaller average data reporting delays.
Furthermore, in Section VII, we observe that cycles can be
merged with a cooperative AUV scheduling. As shown in Fig.
2(f), the two smaller cycles in Fig. 2(e) are merged, leading
to a bigger cycle of ABDFHGECA. The cycle merge can also
reduce the average data reporting delay [16].

IV. RESURFACING FREQUENCY

We start with a cycle of search space in a given depth with
several AUVs, as shown in Fig. 2(c). We determine the AUV
resurfacing frequency, as to minimize the average data delay.
In the search space, sensors or events are uniformly distributed
along the cycle, while data or events have a constant generation
rate. In subsequent discussions, we use data to represent both
data in data collection and events in event detection.

Let us consider the case of only one AUV, which has a
unit speed. Let C denote the circumference of the cycle. For
simplicity, we consider that the depth from the search space
to the water surface is fixed (denoted by L). Note that the
cruising speed and the diving/surfacing speed of the AUV may
not be the same. However, they can still be converted to the
unit speed through distance scaling. An example is shown as
follows. Suppose the cruising speed and the diving/surfacing
speed of the AUV are 10m/s and 5m/s, respectively. When
C = 5, 000m and L = 1, 000m, this case is equivalent to the
scenario where the AUV has the unit speed with C = 500m
and L = 200m (the average data reporting delay remains the
same). For presentation simplicity, AUVs are assumed to have
unit speeds in the following paper.

Let k denote the surfacing frequency per circulation of the
cycle. The locations for surfacing are uniformly distributed
along the cycle. We consider the data generation rate of the
sensor to be larger than 1

C , which implies that an AUV can
always collect new data when it re-circulates the cycle. The
objective is to minimize the average data reporting delay, from
the time that the data is generated to the time that the data
arrives at the water surface. It is assumed that the data can
then be quickly transmitted in the air to a base station (and
this part of delay is neglected). Therefore, the overall data
reporting delay includes three parts as follows:

• For the AUV, its actual travel length is C + 2kL per
circulation of the cycle. Here, 2kL includes k times
of surfacing of depth L, counting both AUV coming
up and going down. On average, each data item needs
to wait for a time of C+2kL

2 before being transmitted
from the sensor to the AUV.

• The cycle is partitioned into k intervals by the surface
points. The average delay, from the time that the data
is received by the AUV to the time that the AUV
arrives the surface point, is C

2k .

• Finally, the surfacing process takes a time of L.

In total, the average data reporting delay for one AUV (denoted
by D1) can be calculated as follows:

D1 =
C + 2kL

2
+

C

2k
+ L (1)

Eq. 1 is minimized to C
2
+
√
2LC+L, when k=

√
C
2L (the sur-

facing frequency). This analysis gives the following theorem.

Theorem 1: Optimally, the AUV resurfaces after traveling
a distance of C

k =
√
2LC on the original cycle.

Here, we define the length of
√
2LC as an optimal interval.

When L = 2C, the traveling distance before resurfacing is
2C, i.e., once every two circulations of the cycle. The insight
behind optimal resurfacing is a trade-off: As k increases,
waiting time for the AUV increases, but time spent on AUV
before resurfacing also reduces. k=

√
C
2L is the optimal value

that balances the above tradeoff.

Now, suppose we have n AUVs for one cycle. Using
a calculation that is analogous to Eq. 1, the average data
reporting delay for n AUVs (denoted by Dn) is

Dn =
C + 2kL

2n
+

C

2k
+ L (2)

Eq. 2 is minimized to C
2n +

√
2LC
n + L, when k =

√
nC
2L .

As a corollary of Theorem 1, the optimal scheduling is that n
AUVs start as being uniformly distributed on the cycle, and
each AUV resurfaces after traveling a distance of C

k =
√

2LC
n .

V. CYCLE CONSTRUCTION

In the previous section, it is assumed that the traveling cy-
cle for AUVs is given. In this section, we focus on constructing
such a cycle in a given search space, aiming to minimize the
circumfluence of the cycle. We assume that the search space is
a set of segments (oil pipes), represented by a weighted given
graph G. The cost associated with each edge in G is the length
of the corresponding segment (the length of the oil pipe). An
example of the search space is shown in Fig. 2(a), while the
corresponding given graph is shown in Fig. 2(b).

In graph theory, an Eulerian trail in a graph is a trail which
visits every edge exactly once. Similarly, an Eulerian circuit
or Eulerian cycle is an Eulerian trail which starts and ends
on the same vertex. Eulerian cycle exists, if and only if each
vertex in the given graph has an even degree. Given an Eulerian
graph, we can construct such a cycle in a linear time proposed
by Hierholzer [26]: Choose any starting vertex v in G, and
follow a trail of edges from that vertex until it returns to v.
It is not possible to get stuck at any vertex other than v. This
is because the even degrees of all vertices ensure that, when
the trail enters another vertex u, there must be an unvisited
edge leaving u. The trial formed in this way may not visit all
the edges of the given graph. As long as there exists a vertex
v that belongs to the current trail and v has adjacent edges
that are unvisited, we can start another trail from v, following
unvisited edges until they return to v. This new tour starting
at v can join the previous tour. If we repeat the above process,
then all edges can be eventually visited by the tour.

F

C

E

A B

D

G H

(a) Given graph.

E

D

G H

(b) Odd-degree vertex
matching.

F

C

E

A B

D

G H

(c) Eulerian cycle.

Fig. 3. An example for Algorithm 1, where the extended Eulerian cycle is
ABDCEFHFEGECDA.

Algorithm 1 Extended Eulerian cycle
In: A given graph G;
Out: An extended Eulerian cycle;

1: Consider subset V
′

of all odd vertices in G;
2: Set the cost between pairs of vertices in V

′
as their shortest

path distances in G;
3: Find a minimum weight perfect matching in V

′
;

4: Construct a new weighted graph G
′

with vertex set V
′

and edge set of matching pairs;
5: Combine G

′
and G to obtain a new weighted graph G

′′
;

6: Return an Eulerian cycle in G
′′

by applying Hierholzer’s
algorithm.

Let us consider a general graph G with odd-degree vertices
(or simply odd vertices). Since the total degree of all vertices
must be even (each edge is counted twice), there must exist an
even number of odd vertices in G. We then pair odd vertices
using minimum weight perfect matching [27] aiming to reduce
added costs to paired odd vertices, where the cost of a pair
(u, v) is the shortest path cost of u and v in G. Finally, we
add a virtual edge between each matching pair to make all
odd vertices even-degree vertices (or simply even vertices),
leading to a new generated graph G

′′
. The linear Hierholzer’s

algorithm is then applied to derive the Eulerian cycle.

Note that the Eulerian cycle in G
′′

is no longer an Eulerian
cycle in G, as each virtual edge G

′
is mapped to a set of edges

in G. Therefore, several edges will be visited more than once
(i.e., it is no longer a tour, but a closed walk). Therefore, we
call it an ‘extended Eulerian cycle’ for convenience. Then,
the whole algorithm is described in Algorithm 1. An example
is shown in Fig. 3. The given graph is shown in Fig. 3(a),
while the corresponding odd-degree vertex matching is shown
in Fig. 3(b). G

′′
can be obtained through combining Figs. 3(a)

and 3(b). The resultant Eulerian cycle is shown in Fig. 3(c).

To illustrate the reason for using only one large cycle
instead of multiple small cycles to cover the search space, a
motivational example is provided. Let us consider the schedul-
ing of two AUVs for the search space of two neighboring
cycles connected by one vertex, as shown in Fig. 4(a). Then,
we have two scheduling policies as follows. Scheduling 1
assigns one AUV for each of the two neighboring cycles.
The two AUVs operate independently, as shown in Fig. 4(b).
Scheduling 2 considers the two neighboring cycles as one large
cycle. The two AUVs operate cooperatively in the combined
cycle, as shown in Fig. 4(c). Then, we have:

(a) Search space.

AUV1

AUV2

(b) Scheduling 1.

AUV1
AUV2

(c) Scheduling 2.

Fig. 4. Two scheduling policies for two neighboring cycles.

Theorem 2: Scheduling 2 is no worse than Scheduling 1,
in terms of the average data reporting delay.

Proof: Suppose the circumferences of the two neighboring
cycles are C1 and C2, respectively. Then, their delays are C1

2 +√
2LC1+L and C2

2 +
√
2LC2+L, respectively. Their weighted

average delay for Scheduling 1 is

C1 × (C1

2 +
√
2LC1 + L) + C2 × (C2

2 +
√
2LC2 + L)

C1 + C2
(3)

For Scheduling 2, the circumference of the combined cycle is
C1 + C2. As shown in Eq. 2, its delay is

C1 + C2

4
+

√
L(C1 + C2) + L (4)

Note that we have (C1+C2)
2

4 ≤ C2
1+C2

2

2 . It can also be proved
that C1

√
2LC1 + C2

√
2LC2 ≥ (C1 + C2)

√
L(C1 + C2), or√

2C1.5
1 +

√
2C1.5

2 ≥ (C1+C2)
1.5. This is because derivations

show that the function
√
2+
√
2(C2

C1
)1.5− (1+ C2

C1
)1.5 is non-

negative with respect to positive C2

C1
. Therefore, the average

data reporting delay in Eq. 3 is always no less than that in Eq.
4, meaning that Scheduling 2 is no worse than Scheduling 1.
The key insight behind this theorem is that these two AUVs
have balanced traversals in Scheduling 2, instead of unbalanced
traversals in Scheduling 1. �

Assuming that the given graph is connected, then Theorem
2 shows that independent schedules for several cycles with
small circumferences are not better than a joint schedule
that combines those small cycles to a larger one. Therefore,
we favor the scheduling policy that constructs one extended
Eulerian cycle for AUVs to traverse all the sensing edges,
rather than scheduling policies that assign the AUVs to traverse
small cycles independently. If the given graph is not connected,
then Algorithm 1 would obtain multiple cycles, as shown in
Fig. 2(d). This case will be further discussed in Section VII.
In the next section, we will introduce non-sensing edges to
further shorten the cycle circumference.

VI. CYCLE ENHANCEMENT

A. Extended Cycles

In the previous section, we derive a small extended Eulerian
cycle aiming at minimizing the circumference of the cycle.
Such a cycle is a closed walk, in which each edge is visited at
least once in the given graph. In this section, we will further
shorten the cycle by visiting shorter non-sensing edges (edges
not in G), instead of visiting redundant sensing edges (sensing
edges that appear more than once in the cycle). As we recall

F

C

E

A B

D

G H

(a) Given graph.

E

D

G H

(b) Odd-degree vertex
geometric matching.

F

C

E

G H

A B

D

(c) Eulerian cycle.

Fig. 5. An example for Algorithm 2 with a cycle of ABDCEGEFHFDA.

Algorithm 2 Extended cycle with non-sensing edges
In: A given graph G;
Out: A cycle with all edges in G plus some links not in G;

Same as Algorithm 1, except the change of step 2: Set the
cost between each pair of vertices in V

′
as their geometric

distance.

that, a virtual edge is added between every two matching odd
vertices. The cost of the virtual edge is the shortest path cost of
these two vertices. Generally speaking, multiple appearances of
an edge do not contribute to the reduction of the data reporting
delay, since data is generated at a given rate. On the other hand,
odd vertices can be connected via non-sensing edges with costs
measured as geographic distances in straight lines.

Algorithm 2 describes such an extension of Algorithm 1,
through replacing some multiple-visited sensing edges with
geometrically-shortest-distance links that are not sensing edges
in the graph. An example of Algorithm 2 is shown in Fig. 5. It
further reduces the circumference of the cycle by using non-
sensing edges. Moreover, we have the following theorem:

Theorem 3: In the resultant cycle contructed by Algorithm
2, the total length of non-sensing edges is no larger than the
total length of sensing edges.

Proof: We first show that no single edge (w,w′) will appear
in the shortest paths of two matching pairs {v, v′} and {u, u′}.
We prove this fact by contradiction. Suppose the shortest path
from v to v′ is (v, ..., w, w′, ..., v′). Similarly, the shortest path
from u to u′ is (u, ..., w, w′, ..., v′). Then, we will have two
better matching pairs {v, u} with paths (v, ..., w, ..., u), and
{v′, u′} with paths (v′, ..., w′, ..., u′). That is, edge (w,w′) can
be removed in the new pairings. This contradicts the goal of
minimum cost perfect matching. Therefore, the total length
of virtual edges generated from Algorithm 1 for G′ is no
larger than the total length of edges in G (i.e., the total length
of sensing edges). Since Algorithm 2 is an enhancement of
Algorithm 1 for matching in G′, and not all virtual edges are
non-sensing edges, Theorem 3 clearly holds. �

In general, only a subset of virtual edges in Algorithm 1 are
replaced by non-sensing edges in Algorithm 2. That is, some
sensing edges still may appear twice in the resultant cycle as
shown in Fig. 5 (e.g., sensing edges of GE and HF).

B. Shifting the Surface Point

In Section V, we have discussed the surfacing frequency
for a cycle of sensing edges with a given number of AUVs.

AUV

Surfacing

Sensing edge Non-sensing edge Sensing edge

Next AUV

Surfacing

Shifted AUV

Surfacing

Sensing edge Non-sensing edge Sensing edge

Next AUV

Surfacing

Fig. 6. An illustration of the shifting.

The cycles are constructed based on an extended Eulerian
cycle through multiple visits of some sensing edges. Then,
the methodology in Section IV can be used to determine the
number and locations of resurfacing events in such cycles.
However, in this section, we construct cycles with both sensing
and non-sensing edges. It is meaningless for AUVs to resurface
in the middle of non-sensing edges, since the data is only
collected from sensing edges. If a schedule assigns an AUV
to resurface at a non-sensing edge, then a better schedule can
always be obtained through shifting that resurface time to an
earlier time just when the AUV enters that non-sensing edge.

To better illustrate the idea of shifting, an example is shown
in Fig. 6. If an AUV plans to resurface at a non-sensing
edge, then this surface point is shifted to the end of the last
sensing edge it traverses. Note that the current shifting will
not result in a change of the next surface point. In Fig. 6,
the first portion of the interval between AUV surfacing and
next AUV surfacing belongs to a non-sensing edge, on which
the AUV surfacing is shifted. This shifting scheme can always
get a smaller delay, since it removes the unnecessary delay at
a non-sensing edge, during which no data is collected. The
shifting scheme can be viewed as a small adjustment to the
surfacing location. However, can we totally remove the effect
of non-sensing edges by adjusting both surfacing frequency
and location? The next subsection gives a definite answer, but
with a stringent constraint.

C. Exploring the Optimal Scheduling

In Section IV, we have explored the optimal AUV surfacing
frequency for the search space of a cycle, which is composed of
only sensing edges. Since Algorithm 2 constructs cycles with
non-sensing edges, in this subsection, we re-explore the AUV
surfacing frequency for such kinds of cycles. For simplicity, we
only consider the scheduling with one AUV. Suppose the cycle
is composed of 2m alternating sensing edges (denoted by Si,
with its length as Ci) and non-sensing edges (denoted by S′i,
with its length as C ′i). In other words, the cycle is C: S1, S′1,
S2, S′2, ..., Sm, S′m. Its circumference is C=

∑m
i=1(Ci+C

′
i).

Here, we give out a new solution to determine the number
and locations of resurfacing events for cycles with non-sensing
edges. Let us remove all non-sensing edges from C to form
a new cycle C∗: S1, S2, ..., Sm. Based on Theorem 1, we
can calculate the optimal frequency and corresponding surface
points within C∗, which can then be mapped back to the

Surface

Point 1

Surface

Point 3

Surface

Point 2

Surface

Point 4

Surface

Point 1

Surface

Point 2

Surface

Point 3

Surface

Point 4

Fig. 7. An illustration for the algorithm optimality. The sensing edges are
in the solid line, while the non-sensing edges are in the dotted line.

original cycle C as a solution. An example is shown in Fig. 7,
where the original cycle C is in the left part and the new cycle
C∗ is in the right part. In C∗, we use the methodology stated in
Section IV to calculate the surface points (the AUV resurfaces
after traveling a distance of

√
2LC∗, based on Theorem 1).

Four surface points are determined and then mapped back to
the original cycle C as the final solution. In C∗, if the interval
between adjacent surfacing points (with interval length of√
2LC∗) never goes across two sensing edges in C∗, then this

solution is optimal. In other words, the optimality prerequisite
is that the length of each sensing edge should be an integer
multiple of optimal interval length (i.e.,

√
2LC∗). If an interval

goes across two sensing edges in C∗, it will intersect a non-
sensing edge in C, leading to a non-optimal result. This is
because AUVs should not surface at a non-sensing edge (no
data can be collected from the non-sensing edges).

Note that the optimality prerequisite for the above solution
is very stringent and is not likely to be satisfied in real traces. If
the length of Si is not an integer multiple of optimal interval
length, then the amount of resurfacing on Si (calculated by
Ci/
√
2LC∗) should be rounded off to the closest integer

(except when it is less than one, then one should be used). For
each sensing edge Si, the surface points are equally distributed,
so that all intervals within the sensing edge Si have the same
length and no interval goes across to a non-sensing edge. This
scheme should work well, particularly when the length of each
sensing edge is close to an integer multiple of

√
2LC∗ (near

the optimality prerequisite).

VII. CYCLE MERGE

In Sections V and VI, we have discussed how to construct
the cycles from the given graph of the search space. However,
the given graph is not necessarily connected. Therefore, multi-
ple cycles may be obtained, as shown in Figs. 2(d) and 2(e). In
this section, we observe that cycles can be further merged with
a cooperative AUV scheduling. As previously shown in Fig.
2(f), the two smaller cycles of ABDCA and EFHGE in Fig.
2(e) are merged, leading to a bigger cycle of ABDFHGECA.
This kind of cycle merge can reduce the average data reporting
delay [16], by balancing the AUV traversals in different cycles.

As shown in Fig. 8, suppose we have two cycles, C1

and C2. The distance between C1 and C2 is defined as the
smallest distance between two points that are located in C1 and
C2, respectively. Let d(C1, C2) denote this distance. Suppose
there are n1 AUVs assigned to the cycle C1, while there are

C1

C2

(a) Two cycles.

C1

C2

(b) Merge result.

Fig. 8. An illustration for the cycle merge.

Algorithm 3 Cycle merge
In: The resulting cycles by Algorithm 2;
Out: The cycle merge result;

1: while there exists more than one cycles do
2: for each pair of cycles do
3: Calculate the merge benefit as the resulting value

difference between Eqs. 5 and 6;
4: if the largest merge benefit is positive then
5: Merge that pair of cycles as a bigger cycle;
6: else
7: Break the while loop;
8: return The cycle merge result;

n2 AUVs assigned to the cycle C2. According to Eq. 2, the
average data reporting delay for these two cycles is

C1 × (C1

2n1
+

√
2LC1

n1
+L) + C2 × (C2

2n2
+

√
2LC2

n2
+L)

C1 + C2
(5)

If C1 and C2 are merged, then we can obtain a bigger cycle
with a circumference of C1 + C2 + 2d(C1, C2). Meanwhile,
n1 + n2 AUVs can be assigned to this merged cycle. The
merged cycles include both sensing edges and non-sensing
edges. If we use the shifting strategy in Section VI.B to
schedule these AUVs, then the average data reporting delay
for the merged cycle should be no larger than

C1+C2+2d(C1, C2)

2(n1 + n2)
+

√
2L[C1+C2+2d(C1, C2)]

(n1 + n2)
+ L (6)

If we compare the resulting values in Eqs. 5 and 6, then we
can determine whether C1 and C2 should be merged or not.
A more important insight behind the cycle merge is similar to
that in Theorem 2. If the traversals of AUVs in C1 and C2 are
more unbalanced, then we are more likely to merge C1 and
C2, as to have more balanced AUV traversals. For example, if
C1 is large, C2 is small, n1 is small, and n2 is large, then we
should merge C1 and C2, if d(C1, C2) is not too large. This
is because C2 has overmuch AUVs that can be re-balanced to
collect the data from C1, in which the AUVs are not sufficient.
Following the above intuition, a greedy cycle merge method
is proposed to further reduce the average data reporting delay,
as shown in Algorithm 3. At each step, it greedily merges the
pair of cycles that yields the largest merge benefit (the value
difference between Eqs. 5 and 6). Note that the cycle merge
only happens when the given graph is not connected.

Fig. 9. A snapshot of the real trace (the oil pipe layout near Florida).

VIII. EXPERIMENTS

In this section, experiments are conducted to evaluate the
performances of the proposed algorithms. After presenting the
datasets (two kinds of synthetic traces and one real trace) and
basic settings, the evaluation results are shown from different
perspectives to provide insightful conclusions.

A. Datasets and Basic Settings

In our experiments, several synthetic traces and one real
trace are used to validate the efficiency and effectiveness of
the proposed algorithms. The first type of synthetic trace is
used to test the performance gap between Algorithms 1 and 2
(construct the cycle through shortest paths and that through
geometrically-shortest-distance links). More specifically, we
would like to verify the impact of the graph density, in terms
of the average data reporting delay. Since we have adjusted
the number and locations of surfacing events in Section VI for
cycles with non-sensing edges, the second type of synthetic
trace is introduced, as to validate the improvements of those
adjustments. Finally, all the proposed algorithms are tested in
a real trace (the oil pipe layout near Florida), as to verify their
applicability in the real world.

The first type of synthetic trace is generated through a
uniformly-random placement of 100 nodes on a 100×100
square unit. To guarantee the graph connectivity, a minimum
spanning tree is constructed. Then, additional edges, with given
total numbers of 20, 100, and 500, are introduced to uniform-
randomly connect these nodes. Note that the given number
of additional edges represents the graph density. Since this
trace is randomly generated, experiments on this type of trace
are repeated to determine the average, until the confidence
interval of the average result is sufficiently small (1 percent
for 90% probability). Then, the second type of synthetic trace
includes 100 nodes and has a shape of V, which corresponds
to the layout of the oil pipes in the search space. Each side of
the V-trace has a length of 100 with 50 uniformly-distributed
nodes. The intersection angle between the two sides of the V-
trace is given as 10◦, 30◦, and 50◦, respectively. Note that a
smaller intersection angle brings a shorter geometrical distance
between the two ends of the V-trace. For the synthetic traces,
the speed of the AUV is one unit. The data generation speed
is also set to be one unit, which is faster than the cycling time
of the AUV. The given depth of the search space is set as 10,
100, and 1,000, respectively. The above parameter settings are

TABLE I. AVERAGE DATA REPORTING DELAY FOR THE SECOND KIND
OF SYNTHETIC TRACE WITH ONE AUV.

The setting of The The given depth
the trace Algorithms L=101 L=102 L=103

The trace with Algorithm 2 184 420 2304
an intersection Algorithm 2s 178 403 2303
angle of 10◦ Algorithm 2r 181 413 2311

The trace with Algorithm 2 200 457 2369
an intersection Algorithm 2s 188 406 2319
angle of 30◦ Algorithm 2r 195 437 2371

The trace with Algorithm 2 219 503 2357
an intersection Algorithm 2s 204 420 2340
angle of 50◦ Algorithm 2r 216 467 2434

used, since they can capture the properties (e.g., sensitivity to
the graph density) of the proposed algorithms.

As for the real trace, we use the data published in [28].
In this real trace, we mainly focus on the oil pipe layout near
Florida, including SAm-1, COLUMBUS I to III, Mid-Atlantic
Crossing (MAC), BAHAMAS-1, BAHAMAS-2, GlobeNet,
BDNSi, and so on. The total length of the oil pipes is 603km.
A snapshot of this real trace is shown in Fig. 9. This area is
selected for our experiments, since the corresponding oil pipe
layout is very complex and representative. The sea depth is set
to be 3,790 meters, which is the average sea depth in the real
world [29]. Meanwhile, according to [30], the cruising speed
of AUVs are set to be 37km/h, and the diving/surfacing speed
of AUVs are set to be 26km/h. We assume that sensors are
uniformly placed along each pipe, while the distance between
two adjacent sensors on a pipe is 1km. Sensors are deployed
to detect oil pipe leaks [14].

B. Comparison Algorithms and Metrics

In our experiments, we denote the shifting algorithm in
Section VI.B as Algorithm 2s, and the approximated optimal
algorithm with round-off in Section VI.C as Algorithm 2r. For
Algorithms 1, 2, 2s, and 2r, if the given graph is not connected,
then they would obtain multiple cycles. For this case, the
number of AUVs distributed to each cycle is proportional to
the cycle length. Algorithm 3 is also denoted as Cycle Merge.
Finally, two additional baselines are used for comparison.

• Baseline 1 distributes AUVs evenly to the oil pipes.
For each oil pipe, the corresponding AUVs uniformly
go back and forth along that oil pipe. Baseline 1 can be
regarded as an independent AUV scheduling method,
where AUVs on different oil pipes do not cooperate
with each other for the data collection.

• Baseline 2 distributes AUVs according to the lengths
of the oil pipes. The number of AUVs assigned to a oil
pipe is proportional to the length of that oil pipe. For
each oil pipe, the corresponding AUVs also uniformly
go back and forth along that pipe. Baseline 2 is an
improvement of Baseline 1, since we should assign
more AUVs to a longer oil pipe than a shorter one.

The data reporting delay serves as the performance metric
in our experiments. We are interested in how the data reporting
delay is impacted by the settings (e.g., the sea depth, the graph
density, the percentage of non-sensing edges in the cycle, the
number of AUVs, and so on).

1 2 3 4 5 6 7 8
0

2000

4000

6000

8000

10000

The number of AUVs

D
el

ay

Algorithm 1 with depth 100
Algorithm 2 with depth 100
Algorithm 1 with depth 1000
Algorithm 2 with depth 1000

(a) Given 20 additional edges.

1 2 3 4 5 6 7 8
0

2000

4000

6000

8000

10000

12000

The number of AUVs

D
el

ay

Algorithm 1 with depth 100
Algorithm 2 with depth 100
Algorithm 1 with depth 1000
Algorithm 2 with depth 1000

(b) Given 100 additional edges.

1 2 3 4 5 6 7 8

5000

10000

15000

20000

25000

The number of AUVs

D
el

ay

Algorithm 1 with depth 100
Algorithm 2 with depth 100
Algorithm 1 with depth 1000
Algorithm 2 with depth 1000

(c) Given 500 additional edges.

Fig. 10. Average data reporting delay for the first kind of synthetic trace with multiple AUVs.

C. Experimental Results for the Synthetic Traces

The experimental results for the first kind of synthetic
traces are shown in Fig. 10, where we study the relationship
between the average data reporting delay and the number of
AUVs. Different subfigures in Fig. 10 have different graph
densities. The oil pipes in Fig. 10(a) are relatively sparse, while
the oil pipes in Fig. 10(c) are relatively dense. The performance
gap between Algorithm 1 and Algorithm 2 is significant in
Fig. 10(a) that represents the results for the most sparse trace.
However, the performance gap between these two algorithms
decreases when the trace becomes denser, as shown in Figs.
10(b) and 10(c). The reason is because the gap of pairwising
odd vertices through the shortest path and that through the
geometrically-shortest-distance links becomes smaller as the
trace gets denser. If the trace is sparse, pairwising odd vertices
through the shortest path could be very costly, since the
geometrical distances among these vertices could be much
smaller. However, the real-world oil pipe layout is very sparse,
as previously shown in Fig. 9. The experiments for the real
trace (shown in the next subsection) demonstrate this point.
Another observation is that a larger sea depth brings a larger
delay. This is very intuitive, since AUVs need more time
to resurface. Finally, the last observation is that the delay
reduction brought by one more AUV decreases, with respect to
the current number of AUVs (the effect of diminishing return).
In Fig. 10(a), if the sea depth is 1, 000, the delay brought by
Algorithm 1 with one AUV is about 8, 000. Meanwhile, if 8
AUVs are used, then the delay reduces to about 4, 000 (about
50% reduction). Generally speaking, a denser and larger trace
needs more AUVs for a small average data reporting delay.

The experimental results for the second type of synthetic
trace are shown in Table I, in terms of the average data report-
ing delay. Since we have adjusted the number and locations
of surfacing events in Section VI for cycles with non-sensing
edges, these traces are used to validate the improvements of
those adjustments. As previously mentioned, the second type
of synthetic trace has a shape of V. The intersection angles
between the two sides of the V-trace are given as 10◦, 30◦,
and 50◦, respectively. A smaller intersection angle means that
the corresponding non-sensing edges are shorter (and thus the
adjustment strategy should be less efficient). It can be seen
that the shifting scheme is very effective, especially when the
trace has a cycle of long non-sensing edges (i.e., the trace
with an intersection angle of 50◦). On the other hand, if
the total length of non-sensing edges is very small, then the
performance improvement brought by the shifting scheme is

limited. The delay reduction brought by the shifting scheme
ranges from about 5% to 20%, compared to Algorithm 2. This
is because a longer non-sensing edge means that AUVs are
more likely to surface on that non-sensing edge, which should
be adjusted by the shifting scheme. Meanwhile, Algorithm 2r
has a limited delay reduction. Although Algorithm 2r could
be optimal under a stringent constraint, that constraint is
uncommon. Therefore, the shifting scheme is recommended
for its simplicity and effectiveness.

D. Experimental Results for the Real Trace

The experimental results for the real trace are shown in
Fig. 11. In this real trace, we use ten and twenty AUVs
to collect the data, respectively. Baselines 1 and 2 have the
worst performances. This is because they are independent AUV
scheduling methods, where AUVs on different oil pipes do not
cooperate with each other for the data collection. There is also
a significant performance gap between Algorithms 1 and 2. As
previously analyzed in the synthetic traces, this is because the
real trace is sparse, leading to a large gap between pairwising
odd vertices through the shortest path and that through the
geometrically-shortest-distance links. Then, Algorithm 2s can
further reduce the average data reporting delay of Algorithm 2
by about 5%. This is because AUVs should not resurface in the
middle of non-sensing edges, since the data is only collected
from sensing edges. Meanwhile, Algorithm 2r does not have
a good performance. The optimality prerequisite of Algorithm
2r is very stringent and is not likely to be satisfied in real
applications, leading to performance degradations. As for the
Algorithm 3 (Cycle Merge), it brings a further reduction on
the average data reporting delay. When we have 10 AUVs,
Algorithm 3 has 5% less delay than Algorithm 2s. When we
have 20 AUVs, Algorithm 3 has 10% less delay than Algorithm
2s. This is because more AUVs bring a better schedulability
for the Cycle Merge. In summary, the proposed algorithms can
obtain an acceptable data reporting delay in the real trace (the
average data reporting delay is less than one hour).

IX. CONCLUSIONS

In this paper, we consider a data collection and event
detection problem in the deep sea. The scenario is based
on a search space that is a set of oil pipes deployed in the
seabed. Sensors are deployed along the oil pipes for leak
detection, while AUVs are used to collect the data from the
sensors and then resurface to report the data. We focus on
the scheduling of the AUV trajectory planning, as well as the

Ten AUVs Twenty AUVs
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
D

el
ay

 (
ho

ur
)

Baseline 1
Baseline 2

Algorithm 1
Algorithm 2
Algorithm 2s
Algorithm 2r
Cycle Merge

Fig. 11. The experimental results for the real trace.

AUV resurfacing frequencies and their locations. If the AUVs
resurface frequently, then the uncollected data needs to wait a
longer time to be reported, which leads to an increased average
data reporting delay. On the other hand, if the AUVs resurface
infrequently, then the collected data within the AUV needs
to wait a longer time to be reported, which also leads to an
increased average data reporting delay. According to the above
tradeoff, an optimization problem is formulated by minimizing
the average data reporting delay. Then, the AUV trajectory
planning is simplified to an extended Euler cycle problem,
where we construct cycles through both sensing edges and
non-sensing edges. We have also discussed the cycle merge,
where AUVs in different cycles can operate cooperatively. The
cost-effectiveness of the proposed approach is validated in
terms of both theoretical analysis and extensive experiments.
As a part of future work, we will consider more general cycle
merge algorithms instead of the simple greedy algorithm. The
challenge lies in the decision of merging (or not merging)
different cycles in the search space. The circumferences and
locations of the cycles could be considered as their priorities
for the cycle merge. We will also explore a better scheduling
to determine the AUV resurfacing frequencies and locations,
in cycles with both sensing and non-sensing edges.

REFERENCES

[1] J. Heidemann, M. Stojanovic, and M. Zorzi, “Underwater sensor
networks: applications, advances and challenges,” Philosophical
Transactions of the Royal Society A: Mathematical, Physical &
Engineering Sciences, vol. 370, no. 1958, pp. 158–175, 2012.

[2] N. Baccour, A. Koubâa, L. Mottola, M. A. Zúñiga, H. Youssef,
C. A. Boano, and M. Alves, “Radio link quality estimation
in wireless sensor networks: A survey,” ACM Transactions on
Sensor Networks, vol. 8, no. 4, pp. 34:1–34:33, 2012.

[3] http://www.washingtonpost.com/wp-
dyn/content/article/2010/05/05/AR2010050505369.html.

[4] W. Zhao, M. Ammar, and E. Zegura, “A message ferrying
approach for data delivery in sparse mobile ad hoc networks,”
in Proceedings of ACM MobiHoc 2004, pp. 187–198.

[5] ——, “Controlling the mobility of multiple data transport ferries
in a delay-tolerant network,” in Proceedings of IEEE INFOCOM
2005, pp. 1407–1418.

[6] I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic
sensor networks: research challenges,” Ad hoc networks, vol. 3,
no. 3, pp. 257–279, 2005.

[7] V. Chandrasekhar, W. K. Seah, Y. S. Choo, and H. V. Ee, “Local-
ization in underwater sensor networks: survey and challenges,”
in Proceedings of ACM WUWNet 2006, pp. 33–40.

[8] D. Pompili, T. Melodia, and I. F. Akyildiz, “Routing algorithms

for delay-insensitive and delay-sensitive applications in under-
water sensor networks,” in Proceedings of ACM MobiCom 2006,
pp. 298–309.

[9] J. Partan, J. Kurose, and B. N. Levine, “A survey of practical
issues in underwater networks,” ACM SIGMOBILE Mobile
Computing and Communications Review, vol. 11, no. 4, pp. 23–
33, 2007.

[10] M. Ayaz, I. Baig, A. Abdullah, and I. Faye, “A survey on routing
techniques in underwater wireless sensor networks,” Journal of
Network and Computer Applications, vol. 34, no. 6, pp. 1908–
1927, 2011.

[11] H.-H. Cho, C.-Y. Chen, T. K. Shih, and H.-C. Chao, “Survey
on underwater delay/disruption tolerant wireless sensor network
routing,” IET Wireless Sensor Systems, pp. 1–10, 2014.

[12] J.-H. Cui, J. Kong, M. Gerla, and S. Zhou, “The challenges
of building mobile underwater wireless networks for aquatic
applications,” IEEE Network, vol. 20, no. 3, pp. 12–18, 2006.

[13] P. Xie, J.-H. Cui, and L. Lao, “VBF: Vector-based forwarding
protocol for underwater sensor networks,” in Proceedings of
IEEE NETWORKING 2006, pp. 1216–1221.

[14] I. Jawhar, N. Mohamed, J. Al-Jaroodi, and S. Zhang, “An effi-
cient framework for autonomous underwater vehicle extended
sensor networks for pipeline monitoring,” in Proceedings of
IEEE ROSE 2013, pp. 124–129.

[15] M. Eichhorn, R. Taubert, C. Ament, M. Jacobi, and T. Pfuetzen-
reuter, “Modular auv system for sea water quality monitoring
and management,” in Proceedings of MTS/IEEE OCEANS-
Bergen 2013, pp. 1–7.

[16] J. Wu and H. Zheng, “On efficient data collection and event
detection with delay minimization in deep sea,” in Proceedings
of ACM CHANTS 2014, pp. 77–80.

[17] S. A. Kaiser, “Legal considerations about the missing malaysia
airlines flight MH 370,” Air and Space Law, vol. 39, no. 4, pp.
235–244, 2014.

[18] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant
network,” in Proceedings of ACM SIGCOMM 2004, pp. 145–
158.

[19] L. Tong, Q. Zhao, and S. Adireddy, “Sensor networks with
mobile agents,” in Proceedings of IEEE MILCOM 2003, pp.
688–693.

[20] M. M. Bin Tariq, M. Ammar, and E. Zegura, “Message ferry
route design for sparse ad hoc networks with mobile nodes,” in
Proceedings of ACM MobiHoc 2006, pp. 37–48.

[21] R. Moazzez-Estanjini, J. Wang, and I. C. Paschalidis, “Schedul-
ing mobile nodes for cooperative data transport in sensor net-
works,” IEEE/ACM Transactions on Networking, vol. 21, no. 3,
pp. 974–989, 2013.

[22] I. Jawhar, M. Ammar, S. Zhang, J. Wu, and N. Mohamed,
“Ferry-based linear wireless sensor networks,” in Proceedings
of IEEE GLOBECOM 2013, pp. 304–309.

[23] M. Ma, Y. Yang, and M. Zhao, “Tour planning for mobile
data-gathering mechanisms in wireless sensor networks,” IEEE
Transactions on Vehicular Technology, vol. 62, no. 4, pp. 1472–
1483, 2013.

[24] X. Xue, X. Hou, B. Tang, and R. Bagai, “Data preservation in
intermittently connected sensor networks with data priority,” in
Proceedings of IEEE SECON 2013, pp. 122–130.

[25] http://www.sonardyne.com/products/monitoring-a-
control/autonomous-monitoring-system.html.

[26] H. Fleischner, “X.1 Algorithms for Eulerian Trails,” Eulerian
Graphs and Related Topics: Part 1 (Annals of Discrete Mathe-
matics), vol. 2, no. 50, pp. 1–13, 1991.

[27] V. Kolmogorov, “Blossom V: a new implementation of a mini-
mum cost perfect matching algorithm,” Mathematical Program-
ming Computation, vol. 1, no. 1, pp. 43–67, 2009.

[28] http://www.cablemap.info/.
[29] http://en.wikipedia.org/wiki/Ocean.
[30] http://en.wikipedia.org/wiki/Ohio-class%5Fsubmarine.

