
On Efficient Data Collection and Event Detection with
Delay Minimization in Deep Sea

Jie Wu and Huanyang Zheng
Department of Computer and Information Sciences

Temple University, USA
{jiewu, huanyang.zheng}@temple.edu

ABSTRACT
Efficient data collection and event detection in the deep sea,
as special applications of delay tolerant networks, pose some
unique challenges due to the need for timeliness of data and
event reporting of coverage areas and the delay of acoustic
transmission in the ocean. Usually, autonomous underwa-
ter vehicles (AUVs) deployed in searching need to surface
frequently to transmit collected data and events, as commu-
nications in the air can be done more quickly than communi-
cations under the water. However, extra delay is introduced
at each resurfacing as AUVs are usually operated in the deep
sea. In this paper, we attempt to optimize the frequency of
surfacing with the objective of minimizing the average data
and event reporting delay. We also study trajectory plan-
ning using an extended Euler circuit, where the search space
is a set of connected line segments in the deep sea.

Categories and Subject Descriptors
G.1.6 [Approximation]: Constrained optimization;
G.2.2 [Graph algorithms]: Network problems.

Keywords
Deep sea searching, delay tolerant networks, autonomous
underwater vehicles, Euler circuit, scheduling.

1. INTRODUCTION
Our Earth is mostly covered by ocean, which is large-

ly underexplored. It is notoriously difficult to conduct an
efficient search process in deep sea for data collection and
event detection, as shown in the recent search-and-rescue ef-
fort of Malaysia flight MH370 in the Pacific ocean. Another
motivational example can be the detection of oil pipe leak
through robotic submarines in Gulf of Mexico [1].
In addition to the coverage of a vast area of the search

space, communications and reporting of collected data (or
events) in deep sea also pose a unique challenge, compared
to those in regular land communications. Although several

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHANTS’14, September 7, 2014, Maui, Hawaii, USA.
Copyright 2014 ACM 978-1-4503-3071-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2645672.2645686.

AUV

Surfacing

Water Surface Surface

Station

Figure 1: AUV resurfacing in deep sea.

different types of media can be used under the sea, acoustic
transmission [11, 4] is most commonly used for underwater
communication. However, it is well known that underwater
acoustic communication speed is much slower than that in
the air. Therefore, to report data in a search-and-rescue
effort, autonomous underwater vehicles (AUVs) are used to
surface frequently to transmit collected data (or events), as
communication in the air can be done more quickly than
communication under the water.

In this paper, we consider a special scheduling problem
aiming to minimize the average data delay. We assume that
several AUVs are used to search and collect data in a giv-
en 2-dimensional (2-D) search space which is parallel to the
water surface with a given depth. AUVs need to resurface to
report collected data (or events) in a timely manner. Fig. 1
shows such a scenario. However, extra delay is introduced
at each resurfacing. Given a search space that is a set of
connected line segments (e.g., oil pipes), it is represented as
a set of weighted edges in a graph. We propose a trajectory
planning using an extended Euler circuit, and then, we de-
termine the number and location of resurfacing on the circuit
(or simply cycle). Specifically, we will consider the following
problems in sequence: (1) Given the circumference of a cycle
of search space at a given depth and the number of AUVs, we
determine the number and locations of resurfacing that min-
imize the average data (or event detection) delay, assuming
data (or events) are uniformly distributed. (2) We consider
a more general case represented by a graph, where search
space is the collection of all edges, called sensing edges. We
then determine a cycle that covers all sensing edges, where
some edges may appear more than once, as the given graph
is not necessarily Eulerian. (3) Using the geometric proper-
ty of 2-D space, we replace some multiple-visited edges with
geometrically-shortest-distance links that are not edges in
the graph, called non-sensing edges, to shorten the circum-

ference of the resultant cycle. (4) We conduct various sim-
ulations to critically compare the performances of various
schemes using different traces.
The key difference between our approach and the tradi-

tional ferry approach [12, 8] is the AUV resurfacing process
that brings an extra delay. Although a significant amount
of work has been reported on underwater sensor networks
[2] and their corresponding protocols [3, 5, 7, 10], to our
best knowledge, this work is the first that combines the de-
sign of AUV resurfacing and AUV data collection (or event
detection) in deep sea.
The reminder of the paper is organized as follows. Section

2 presents surfacing frequencies for AUVs. Section 3 focuses
on finding a small cycle that covers the given search space.
Section 4 discusses an extension of using non-sensing edges
to shorten the cycle. Section 5 is the simulations. The paper
concludes in Section 6 with our future work.

2. RESURFACING FREQUENCY
We start with a cycle of search space in a given depth

with one AUV. We determine AUV resurfacing frequency
that minimizes the average data delay. In the search space,
sensors or events are uniformly distributed along the cycle,
while data or events have a constant generation rate. In
subsequent discussions, we use data to represent both data
in data collection and events in event detection.
Let us consider the case of only one AUV, which has a

unit speed. Let C denote the circumference of the cycle. L
denotes the depth from the search space to the water sur-
face. Let k denote the surfacing frequency per circulation
of the cycle. The locations for surfacing are uniformly dis-
tributed along the cycle. We only consider a data generation
rate that is larger than 1

C
, which implies that an AUV can

always collect new data when it re-circulates the cycle. The
objective is to minimize the average data delay, from the
time that data is generated to the time that data arrives at
the water surface. It is assumed that the data can then be
quickly transmitted in the air to a base station (and this
part of delay is neglected). Therefore, the overall data delay
includes three parts as follows: (1) For the AUV, its actual
travel length is C + 2kL per circulation of the cycle. Here,
2kL includes k times of surfacing of depth L, counting both
AUV coming up and going down. Each data item needs to
wait for a time of C+2kL

2
on average, before being transmit-

ted to the AUV. (2) The cycle is partitioned into k intervals
by the surface points. The average delay, from the time that
the data is received by the AUV to the time that the AUV
arrives the surface point, is C

2k
. (3) Finally, the surfacing

process takes a time of L. In total, the average data delay
for one AUV, denoted by D1, is

D1 =
C + 2kL

2
+

C

2k
+ L (1)

Eq. 1 is minimized to C
2
+
√
2LC +L, when k =

√
C
2L

. The

above analysis gives the following theorem.

Theorem 1. Optimally, the AUV resurfaces after trav-
eling a distance of C

k
=

√
2LC on the original cycle.

Here, we define the length of
√
2LC as an optimal interval.

When L = 2C, the traveling distance before resurfacing is
2C, i.e., once every two circulations of the cycle. The insight
behind optimal resurfacing is a trade-off: As k increases,

E

B

D

G H

C

F

A

(a) Given graph.

E

C

F

A

B

D

(b) Odd-degree
vertex matching.

E

B

D

G H

C

F

A

(c) Eulerian cycle.

Figure 2: An example of Algrotithm 1 with an ex-
tended Eulerian cycle of ABCBDEHGEDFDBA.

Algorithm 1 Extended Eulerian cycle

In: A given graph G;
Out: An extended Eulerian cycle;

1: Consider subset V
′
of all odd vertices in G;

2: Set the cost between pairs of vertices in V
′
as their short-

est path distances in G;

3: Find a minimum weight perfect matching in V
′
;

4: Construct a new weighted graph G
′
with vertex set V

′

and edge set of matching pairs;

5: Combine G
′
and G to obtain a new weighted graph G

′′
;

6: Return an Eulerian cycle in G
′′
by applying Hierholzer’s

algorithm [6].

waiting time for the AUV increases, but time spent on AUV
before resurfacing also reduces.

Now, suppose we have n AUVs for one cycle. Using a
calculation that is analogous to Eq. 1, we have the average
data delay for n AUVs, denoted by Dn as

Dn =
C + 2kL

2n
+

C

2k
+ L (2)

Eq. 2 is minimized to C
2n

+
√

2LC
n

+L, when k =
√

nC
2L

. As

a corollary of Theorem 1, the optimal scheduling is that n
AUVs start as being uniformly distributed on the cycle, and

each AUV resurfaces after an interval of C
k
=

√
2LC
n

.

3. CONSTRUCTION OF A CYCLE
In the previous section, it is assumed that the traveling

cycle for AUVs is given. In this section, we focus on con-
structing such a cycle in a given search space, aiming to
minimize the circumfluence of the cycle. We assume that
the search space is a set of connected line segments, repre-
sented by a weighted graph G, where each edge corresponds
to a sensing edge. The cost associated with each edge is the
length of the corresponding line segment.

In graph theory, an Eulerian trail is a trail in a graph
which visits every edge exactly once. Similarly, an Eulerian
circuit or Eulerian cycle is an Eulerian trail which starts
and ends on the same vertex. It is well known that Eulerian
cycle exists if and only if the given graph has an even degree
for every vertex. Given an Eulerian graph, we can construct
such a cycle in a linear time proposed by Hierholzer [6]:
Choose any starting vertex v in G, and follow a trail of edges
from that vertex until it returns to v. It is not possible to get
stuck at any vertex other than v, because the even degree of
all vertices ensures that, when the trail enters another vertex

(a) Search space.

AUV1

AUV2

(b) Scheduling 1.

AUV1

AUV2

(c) Scheduling 2.

Figure 3: Two scheduling policies for two neighbor-
ing cycles with one common vertex.

u there must be an unused edge leaving u. The tour (i.e., a
closed trial) formed in this way is a closed tour, but may not
cover all the vertices and edges of the initial graph. As long
as there exists a vertex v that belongs to the current tour but
that has adjacent edges not part of the tour, starting another
trail from v, following unused edges until they return to v,
and join the tour formed in this way to the previous tour.
Now, we consider a general graph G with odd-degree ver-

tices (or simply odd vertices). It can be easily shown that
there exists an even number of odd vertices in G. We then
pair odd vertices using minimum weight perfect matching [9]
aiming to reduce added costs to paired odd vertices, where
the cost of a pair (u, v) is the shortest path cost of u and
v in G. Finally, we add a virtual edge between each match-
ing pair to make all odd vertices to even-degree vertices (or

simply even vertices) to generate a new graph G
′′
. The lin-

ear Hierholzer’s algorithm is then used to get the Eulerian

cycle. Note that the Eulerian cycle in G
′′

is no longer an

Eulerian cycle in G, as each virtual edge G
′
is mapped to

a set of edges in G. Therefore, several edges will be visited
more than once (i.e., it is a closed walk rather than a tour).
Therefore, we call it an extended Eulerian cycle.
The above algorithm is described in Algorithm 1. An

example is shown in Fig. 2. In this example, there is only
two even vertices G and H, which can be replaced by any
subgraph consisting of even vertices only. To illustrate the
reason of using only one large cycle instead of multiple small
cycles to cover the search space, a motivational example is
provided. Let us consider the scheduling of two AUVs for
the search space of two neighboring cycles connected by one
vertex, as shown in Fig. 3(a). Then, we have two scheduling
policies as follows: (1) Scheduling 1 assigns one AUV for
each of the two neighboring cycles. The two AUVs operate
independently, as shown in Fig. 3(b). (2) Scheduling 2
regards the two neighboring cycles as one large cycle. The
two AUVs operate cooperatively in the combined cycle, as
shown in Fig. 3(c). Then, we have the following theorem:

Theorem 2. Scheduling 2 is no worse than Scheduling
1, in terms of the average data delay.

Assuming that the given graph is a connected graph, The-
orem 2 shows that independent schedules for several cycles
with small circumference are not better than a joint sched-
ule that combines these small cycles to a larger one. This
is because two AUVs should have balanced cycling tasks,
instead of unbalanced cycling tasks. Therefore, we favor the
scheduling policy that constructs one extended Eulerian cy-
cle for AUVs to traverse all the sensing edges, rather than
scheduling policies that assign the AUVs to traverse small
cycles independently.

E

C

F

A

B

D

(a) Odd-degree vertex
geometric matching.

E

B

D

G H

C

F

A

(b) Eulerian cycle.

Figure 4: The Fig 2 example of Algorithm 2 with a
cycle of ABCEHGEDFDBA.

Algorithm 2 Extended cycle with non-sensing edges

In: A given graph G;
Out: A cycle with all edges in G plus some links not in G;

Same as Algorithm 1, except the change of step 2: Set

the cost between each pair of vertices in V
′
as their

geometric distance.

4. CYCLE ENHANCEMENT
In the previous section, we derive a small extended Eu-

lerian cycle aiming to minimizing the circumference of the
cycle. Basically, such a cycle is a closed walk in which each
edge is visited at least once on any given weighted graph,
In this section, we will further shorten the cycle by visit-
ing shorter non-sensing edges, instead of visiting redundant
edges. Redundant edges in a cycle are the ones that appear
more than once. As we recall that, a virtual edge is added
among every two matching odd vertices. The cost of the
virtual edge is the shortest path cost of these two vertices.
Usually, multiple appearances of an edge (path) does not
contribute data collection delay reduction as data is gener-
ated at a given rate. On the other hand, odd vertices can be
connected via non-sensing edges (i.e., edges not in G) with
costs measured as geographic distance in straight lines.

Algorithm 2 describes such an extension of Algorithm 1,
by replacing the virtual edge (i.e., the shortest path) of two
vertices with geometric distance between them. An example
of Algorithm 2 is shown in Fig. 4. Algorithm 2 further
reduces the circumference of the cycle by using non-sensing
edges. Moreover, we have the following theorem:

Theorem 3. In the final cycle given by Algorithm 2, the
total length of non-sensing edges is no larger than the total
length of sensing edges.

We first show that no single edge (w,w′) will appear in
the shortest paths of two matching pairs {v, v′} and {u, u′}.
We prove this fact by contradiction. Suppose the short-
est path from v to v′ is (v, ..., w, w′, ..., v′). Similarly, the
shortest path from u to u′ is (u, ..., w, w′, ..., v′). Then,
we will have two better matching pairs {v, u} with paths
(v, ...w, ..., u), and {v′, u′} with paths (v′, ..., w′, ..., u′). That
is, edge (w,w′) can be removed in the new pairings. This
contradicts to the goal of minimum cost perfect matching.
Therefore, the total length of virtual edges generated from
Algorithm 1 for G′ is no larger than the total length of edges
in G (i.e., the total length of sensing edges). As Algorith-
m 2 is an enhancement of Algorithm 1 for matching in G′

and not all virtual edges are non-sensing edges, Theorem 3

1 2 3 4 5 6 7 8
0

2000

4000

6000

8000

10000

The number of AUVs

D
e
la

y

Algorithm 1 with depth 100

Algorithm 2 with depth 100

Algorithm 1 with depth 1000

Algorithm 2 with depth 1000

(a) Given 20 additional edges.

1 2 3 4 5 6 7 8
0

2000

4000

6000

8000

10000

12000

The number of AUVs

D
e
la

y

Algorithm 1 with depth 100

Algorithm 2 with depth 100

Algorithm 1 with depth 1000

Algorithm 2 with depth 1000

(b) Given 100 additional edges.

1 2 3 4 5 6 7 8

5000

10000

15000

20000

25000

The number of AUVs

D
e
la

y

Algorithm 1 with depth 100

Algorithm 2 with depth 100

Algorithm 1 with depth 1000

Algorithm 2 with depth 1000

(c) Given 500 additional edges.

Figure 5: The simulation results for the first kind of synthetic traces with multiple AUVs.

clearly holds. Note that, in general, only a subset of virtual
edges in Algorithm 1 are replaced by non-sensing edges in
Algorithm 2. That is, some sensing edges still may appear
twice in the resultant cycle as shown in Fig. 4.

5. SIMULATIONS
In our simulations, synthetic traces are used to test the

difference between Algorithms 1 and 2 (construct the cy-
cle through shortest paths and through geometry paths).
This trace is generated through uniform, random placement
of 100 nodes on a 100×100 square unit. To guarantee the
graph connectivity, a minimum spanning tree is construct-
ed. Then, additional edges, with given total numbers of 20,
100, and 500, are used to uniform-randomly connect these
nodes. Note that the given number of edges represents the
graph density. Since this trace is randomly generated, sim-
ulations on this type of trace are repeated to determine the
average, until the confidence interval of the average result is
sufficiently small (1% percent for 90% probability). As pre-
viously mentioned, the speed of the AUV is one unit. The
data generation speed is also set to be one unit, which is
faster than the cycling period of the AUV. For both of the
two traces, the given depth of the search space is set as 10,
100, and 1,000, respectively. Finally, the average data delay
is used as the performance metric.
The simulation results on the average data delay reduction

brought by using multiple AUVs are shown in Fig. 5. The
performance gap (in terms of average data delay) between
Algorithm 1 and Algorithm 2 is rather significant, especially
in Fig. 5(a) that represents the results for the most sparse
trace. However, the performance gap between these two al-
gorithms decreases when the trace becomes denser, as shown
in Figs. 5(b) and 5(c). The reason is because the gap of
pairwising odd vertices through the shortest path and that
through the geometry link is becoming smaller, when the
trace gets denser. Another important observation is that
the delay reduction brought by one more AUV decreases,
with respect to the current number of AUVs (i.e., the effect
of diminishing return). Generally speaking, a denser and
larger trace needs more AUVs.

6. CONCLUSIONS
We consider a data collection and event detection prob-

lem in deep sea: combining scheduling of AUV trajectory
planning as well as AUV resurfacing frequencies and their
locations. The deep sea trajectory planning is simplified to
an extended Euler cycle problem. An optimization problem
is formulated by minimizing the average data delay. The
cost-effectiveness of the proposed approach is validated both

in terms of theoretical analysis and extensive simulation. As
a part of future work, we will consider a more general search
space that is not a set of connected segments. The challenge
lies in the decision of merging (or not merging) different con-
nected components of the search space.

7. REFERENCES
[1] http://www.washingtonpost.com/wp-

dyn/content/article/2010/05/05/AR2010050505369.html.

[2] I. F. Akyildiz, D. Pompili, and T. Melodia.
Underwater acoustic sensor networks: research
challenges. Ad hoc networks, 3(3):257–279, 2005.

[3] M. Ayaz, I. Baig, A. Abdullah, and I. Faye. A survey
on routing techniques in underwater wireless sensor
networks. Journal of Network and Computer
Applications, 34(6):1908–1927, 2011.

[4] N. Baccour, A. Koubâa, L. Mottola, M. A. Zúñiga,
H. Youssef, C. A. Boano, and M. Alves. Radio link
quality estimation in wireless sensor networks: A
survey. ACM Trans. Sen. Netw., 8(4):34:1–34:33, 2012.

[5] H.-H. Cho, C.-Y. Chen, T. K. Shih, and H.-C. Chao.
Survey on underwater delay/disruption tolerant
wireless sensor network routing. IET Wireless Sensor
Systems, pages 1–10, 2014.

[6] H. Fleischner. X.1 Algorithms for Eulerian Trails.
Eulerian Graphs and Related Topics: Part 1 (Annals
of Discrete Mathematics), 2(50):1–13, 1991.

[7] Z. Guo, Z. Peng, B. Wang, J.-H. Cui, and J. Wu.
Adaptive routing in underwater delay tolerant sensor
networks. In Proc. of IEEE ChinaCom 2011, pages
1044–1051.

[8] S. Jain, K. Fall, and R. Patra. Routing in a delay
tolerant network. In Proc. of ACM SIGCOMM 2004,
pages 145–158.

[9] V. Kolmogorov. Blossom V: a new implementation of
a minimum cost perfect matching algorithm. Math.
Prog. Comp., 1(1):43–67, 2009.

[10] Y. Li and R. Bartos. A survey of protocols for
intermittently connected delay-tolerant wireless sensor
networks. Journal of Network and Computer
Applications, 41(0):411–423, 2014.

[11] F. Yunus, S. H. S. Ariffin, and Y. Zahedi. A survey of
existing medium access control (mac) for underwater
wireless sensor network (uwsn). In Proc. of AMS 2010,
pages 544–549.

[12] W. Zhao, M. Ammar, and E. Zegura. A message
ferrying approach for data delivery in sparse mobile ad
hoc networks. In Proc. of ACM MobiHoc 2004, pages
187–198.

