
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNl l1007-0214 l l06 /10 l lpp51-64
Volume 19, Number 1, February 2014

On Peer-Assisted Data Dissemination in Data Center Networks:
Analysis and Implementation

Yaxiong Zhao�, Jie Wu, and Cong Liu

Abstract: Data Center Networks (DCNs) are the fundamental infrastructure for cloud computing. Driven by the

massive parallel computing tasks in cloud computing, one-to-many data dissemination becomes one of the most

important traffic patterns in DCNs. Many architectures and protocols are proposed to meet this demand. However,

these proposals either require complicated configurations on switches and servers, or cannot deliver an optimal

performance. In this paper, we propose the peer-assisted data dissemination for DCNs. This approach utilizes

the rich physical connections with high bandwidths and mutli-path connections, to facilitate efficient one-to-many

data dissemination. We prove that an optimal P2P data dissemination schedule exists for FatTree, a specially-

designed DCN architecture. We then present a theoretical analysis of this algorithm in the general multi-rooted tree

topology, a widely-used DCN architecture. Additionally, we explore the performance of an intuitive line structure

for data dissemination. Our analysis and experimental results prove that this simple structure is able to produce a

comparable performance to the optimal algorithm. Since DCN applications heavily rely on virtualization to achieve

optimal resource sharing, we present a general implementation method for the proposed algorithms, which aims to

mitigate the impact of the potentially-high churn rate of the virtual machines.

Key words: data center networks; cloud computing; P2P; scheduling; peer-assisted data dissemination

1 Introduction

Cloud computing has become an transformational
industry trend. Data Center Networks (DCNs), as the
fundamental infrastructures of cloud computing, are
gaining tremendous interest both in industrial and
academic research. Many important and interesting
networking problems are studied. Among all of these
topics, we notice that one is frequently mentioned or
directly considered in a large body of literature, that is,

�Yaxiong Zhao is with Google Inc., Mountain View, CA
94043, USA. This work was done while the author was with
Temple University, Philadelphia, PA 19122, USA. E-mail:
yaxiongzhao@google.com.
� Jie Wu is with Temple University, Philadelphia, PA 19122,

USA. E-mail: jiewu@temple.edu.
�Cong Liu is with Sun Yat-Sen University, Guangzhou 510275,

China. E-mail: gzcong@gmail.com.
�To whom correspondence should be addressed.

Manuscript received: 2013-12-13; accepted: 2013-12-20

the support of efficient one-to-many data dissemination
in DCNs. One-to-many data dissemination refers to
delivering a bulk of data from a single source
to multiple, and potentially a large amount of
receivers. This problem is important because: (1) this
traffic pattern is common in many important DCN
applications, like software update[1] and data shuffle
of massively-parallel computing[2]; (2) historically,
supporting such traffic efficiently is hard, as is
embodied in the Internet multicast problem. These
two driving factors are discussed in various recent
works[3-6].

There are proposals that solve the problem through
an architectural approach, i.e., design new DCN
architectures that provide better multicast support. For
instance, in BCube[7], DCell[6], and CamCube[8], the
authors explicitly demonstrated that their architecture
admits natively-supported efficient multicast. Coupling
with the careful protocol designs, efficient multicast is

52 Tsinghua Science and Technology, February 2014, 19(1): 51-64

achieved, as shown in the prototype implementation
and simulation studies of these papers. However,
we notice that such systems put routing tasks
on commodity servers, which results in extended
processing delay[6, 7]. What is worse is that, the
configuration of such systems is more complicated
than the conventional DCNs. Although an automatic
network configuration algorithm is proposed[9], its
effectiveness has not yet been validated in large-scale
deployment.

Another line of research is the software approach,
which aims to alter the Internet multicast protocol
and make it work better in DCNs[3]. This method
provides heuristics based on the rich multi-path
connections in DCNs. It needs to alter the protocol
stack implementation that resides inside the Operating
System (OS) kernel. This approach lacks support from
the existing industry standard, and the reliability of the
approach has not been verified.

It is difficult for these two approaches to provide
efficient one-to-many data dissemination in a cost-
effective manner. We thus consider leaving the
existing standards intact and employing application
layer overlay technologies. However, the application
layer overlay technology has only been used in
wide area networks. Its performance in a highly
performance-demanding environment, like DCN, is still
in question. To make such a design a viable choice for
DCNs, we must achieve the following goals, ranked on
the basis of priority: (1) high performance, (2) high
fault-tolerance, and (3) low complexity.

In this paper, we avoid the architectural approach
and focus on widely-used DCN architectures: FatTree
and Multi-Rooted Tree (MRT)[10]. We propose that
the peer-assisted transmission can be used for one-
to-many data dissemination in DCNs. This technique
is able to utilize the rich connections in DCNs to
provide fast data delivery. Figure 1 illustrates this
idea. In the figure, the source distributes the data to
different servers, and the servers exchange data between
each other to accelerate the dissemination speed. This

Fig. 1 The one-to-many communication scenario in a DCN.

approach is efficient. As an example, a recent industrial
experience[1] of using BitTorrent[11] to do software
updates in a large DCN (thousands of servers) indicates
that, although BitTorrent is designed for wide area
networks and misses many key properties of DCNs, it
achieves a speed-up of more than 75� compared with
the conventional Client/Server approach.

In this paper, we conduct theoretical analyses and
show that an optimal solution exists for FatTree, a
specially-designed DCN topology. Additionally, the
fact that most DCNs do not follow the particular design
makes its use limited in practice. We then slack the
constraints on the network topology and focus on the
MRT topology. We show that in the single-chunk case,
there is an optimal scheduling that can be found in
polynomial time. We then present a method to apply the
optimal algorithm in MRTs by utilizing the structural
property of MRTs.

However, this solution may not scale well in
practice, since it requires a central scheduler that has
a global view of all peers. Inspired by an existing
industrial initiative[1], we explore the effectiveness of
a simple line structure, i.e., a line of peers that are
connected sequentially. In the first look, this design
restricts the potential of P2P transmission and cannot
achieve optimal throughput. However, in real world
applications, software failures, instead of the optimality
of the algorithm, are more likely to kill the performance.

Our contributions in this paper are as follows:
� We conduct thorough theoretical analyses on

peer-assisted data dissemination for DCNs. We give
an optimal scheduling method for the FatTree
topology. We also present a method for adapting the
optimal algorithm to work for general MRTs.
� We propose a simple line-structure-based data

dissemination scheme. We analyze several structure
manipulation primitives for this structure.
� We give the detailed design and implementation

techniques for applying the proposed algorithms. We
also evaluate the performance of the proposed algorithm
by using simulation studies.

2 Related Work

Many novel data center network topologies and
architectures have been designed[6, 7, 10, 12, 13]. In
Ref. [10], the authors promote using the FatTree[14]

structure as the DCN topology. FatTree uses only
homogeneous Commodity-Off-The-Shelf (COTS)
switches and delivers non-blocking bisection bandwidth

Yaxiong Zhao et al.: On Peer-Assisted Data Dissemination in Data Center Networks: Analysis and Implementation 53

between all servers. FatTree can be seen as a special
instance of MRT. Both are the targeted topologies
of this paper. Server-centric DCNs[6-8] equip every
server with multiple Network Interfaces Cards (NICs)
and let them do routing. Such architectures still use
switches, but they enable more flexible and complex
communication patterns than conventional architectures
do. One-to-many communication is made practical in
these architectures. A serious disadvantage is that the
routing and forwarding performance of servers are no
match to COTS switches. In practice, implementing
such a system is much more difficult.

The authors in Ref. [15] studied the topology-aware
P2P file distribution problem on general topology. The
problem is essentially a generalized version of our
problem and is NP-hard. The most important difference
is that they assume non-equal link capacities, which
cause non-equal upload capacities and an extremely
complicated combinatorial structure for deciding the
upload capacity of chunk transfer. The approximate
solution proposed in the paper is too complicated to be
used in practice.

The scheduling of P2P data dissemination in an
overlay network with non-equal upload capacities was
studied in Ref. [16]. Our theoretical analysis on the
optimal solution for data dissemination in the FatTree
topology is based on the work in Ref. [17], which
studies the optimal scheduling of P2P file dissemination
in a complete graph. Murder[1] is a P2P software
updating tool implemented by Twitter Inc. Murder uses
BitTorrent[11] for P2P transmission. Interesting enough,
the transmission pattern between peers using Murder
converges to a line structure, as indicated in the public
presentation[1].

As far as we know, Ref. [5] is the only work
that studies the same problem as ours. The authors
in Ref. [5] discussed several questions concerning the
efficiency of the BitTorrent-like protocol in DCNs and
proposed potential improvements. They have given
a randomized algorithm based on the analysis given
in Ref. [17], which is asymptotically optimal in the
FatTree topology. However, they have not considered
general multi-rooted tree topologies.

3 Problem Settings

3.1 General data center network topology

Modern DCNs[18] employ the MRT topology. We
give an illustration of an example of such a DCN in

Fig. 2. In an MRT topology, servers are interconnected
by 3 levels of switches. A fixed number of servers
are packaged into a rack and are interconnected by a
Top of Rack (ToR) switch, which delivers non-blocking
bandwidth between the servers. Multiple racks are
interconnected by connecting their ToR switches to an
Edge of Row (EoR) switch, which forms a row. A rack
can connect with other EoR switches to improve fault-
tolerance. Every EoR switch of all rows is connected
with multiple Core switches, which forms a connected
network of all servers.

The downlinks of the switches connect with servers
or switches at a lower level, whereas the uplinks
connect with a higher level. In current industry practice,
ToR switches have 1 Gbps links connecting to servers,
and EoR switches have 10 Gbps links connecting to
ToR switches and Core switches. We assume that all
links are fully duplex, meaning that traffic moving in
both directions on every link can reach the maximal
bandwidth, which is called the capacity of the link.
The capacities of the uplinks are at least as large as the
downlinks.

We have not found formal definitions of MRT
in literature. Since most DCNs use 3 levels of
switches, we fixed the depth of MRTs to 3, which has
3 levels of inner node and 1 level of leaf nodes. The
oversubscription of a switch is the ratio of the aggregate
bandwidth of the downlinks to the uplinks. MRT is
formed by connecting multiple Recursive MRTs
(RMRTs) with multiple switches. RMRT is a
recursively defined structure. RMRT.1; i; o; f / is
a singly-rooted tree, formed by connecting f servers
with a single switch. Figure 3 shows a sample. An
RMRT.k; i; o; f / is constructed by connecting o

RMRT.k � 1; i; o; f /. Each root of the i subtrees
exposes f uplinks to connect with f upper-level
switches. MRT.k; i; o; f / is formed by connecting all

Fig. 2 The abstract view of a multi-rooted tree DCN
topology.

54 Tsinghua Science and Technology, February 2014, 19(1): 51-64

Fig. 3 The construction of RMRT.

of the uplinks of the roots of an arbitrary number of
RMRT.k � 1; i; o; f /. The number of root switches is
determined in such a way where the number of their
links is equal to the total number of the uplinks of the
roots of the RMRT.k � 1; i; o; f /s. In this paper, we
fixed the k of the MRT.k; i; o; f / to 3, since most
DCNs that are used nowadays employ a 3-level switch
network.

The oversubscription of a switch is defined as the
ratio of the aggregate bandwidth of its uplinks to
downlinks. For example, the oversubscription of an
EoR switch is .o�Bu/=.f �Bd /. Note that a switch that
does not have uplinks has no oversubscription. So the
root switches do not have this definition in MRT. The
oversubscription of the network is defined by the
multiplication of the oversubscription of the switches on
the successive levels. For example, the oversubscription
of the network in Fig. 2 is the product of the
oversubscriptions of the ToR and EoR switches. In
order to achieve an oversubscription of 1, all switches in
the network need to ensure that their oversubscriptions
are 1.

3.2 FatTree

FatTree[10] can be seen as a special case of MRT, which
is adapted from Ref. [14]. Like the MRTs that we
introduced previously, we restrict the switches to 3
levels for the FatTree. We give an example of FatTree
in Fig. 4. A key feature of FatTree is that it uses only
one type of switch in the entire network, usually the
cheap COTS switch. The links connecting the switches
in a FatTree all have identical bandwidth. ToR and
EoR switches use an equal number of uplinks and
downlinks to deliver non-blocking bandwidth between
all servers. With k-port switches, FatTree can form
a k=2-ary 3-tree (3 levels of switches), with 5k2=4

switches and k3=4 servers. Another important property
of FatTree is that its oversubscription is 1. We will not

Fig. 4 The illustration of the FatTree topology. Note that all
switches are homogeneous.

go into details here for the sake of space. More details
can be found in Ref. [10].

3.3 Peer-assisted data dissemination problem

We use peer to refer to the servers that are involved
in a peer-assisted data dissemination. We use node to
refer to any device in the MRT, including servers and
switches. Following the terminology of the scheduling
literature, we use makespan to refer to the minimal time
it takes to fully disseminate a file of m chunks from
the source to N peers. Our problem in this paper is
to find algorithms that achieve the minimal makespan
and to design practical protocols for implementing the
algorithms.

We assume that there is only one server/peer initially
holding the data file, which is called the source. Since
we are interested in P2P dissemination, we assume that
a node can not multicast data to other nodes. The only
way for a node to transmit data to multiple receivers is
to establish multiple connections to every receiver and
to transmit the data multiple times, either sequentially
or concurrently. The data file is divided into multiple
equally-sized chunks. We also ignore the delays of
transmitting data from one node to another, which
means that the completion time of transmitting data of
a given size is only determined by the bandwidth.

These assumptions are abstract ones that
are necessary for the theoretical analysis in
Section 4. Implementation details of the proposed
algorithms are given in Section 7.

4 An Optimal Solution for FatTree

4.1 A lower-bound of the makespan of the P2P
data dissemination in MRT

Note that there is a bound to the speed at which the
peers in FatTree can upload and download, which is
the capacity of the links connecting servers and EoR
switches. We denote t as the time used to transfer a
chunk at the capacity of these links; the lower bound

Yaxiong Zhao et al.: On Peer-Assisted Data Dissemination in Data Center Networks: Analysis and Implementation 55

of the makespan of transmitting m chunks to N peers is
given by

T � 6 t � .mC blog2N c/ (1)

This lower bound is derived from two
observations. First, m � 1 chunks must be transmitted
by the source at least once, which takes .m � 1/ � t of
time. Second, after transmitting m � 1 chunks, at least
one chunk needs to be disseminated to all N peers,
which takes at least blog2N c more time.

4.2 The optimal scheduling of P2P data
dissemination in FatTree

It remains unclear whether or not this lower bound
can be achieved in FatTree. In Ref. [15], the authors
proved that finding the minimal makespan of P2P
data dissemination in general topologies is NP-
hard. Fortunately, FatTree admits an optimal P2P data
dissemination schedule that achieves the lower bound
of Formula (1).

The enabling property is that the oversubscription
of FatTree networks is 1. The definition of
oversubscription is given below.

Definition 1 In a communication system
where multiple users share a common resource,
oversubscription refers to the ratio of the allocated
bandwidth per user to the guaranteed bandwidth per
user.

An oversubscription of 1 means that any host can
communicate, both inbound and outbound, with any
other hosts at the full rate of its interface. Note that
the actual achieved throughput may not be as large
as the interface bandwidth due to the sharing of the
bandwidth at the links connecting servers and the access
switches. However, the links between switches will
never be the bottleneck.

In Ref. [17], the authors prove that P2P data
dissemination in the uplink-sharing model with
identical upload capacity has a polynomial-time
optimal solution. The uplink-sharing model basically
has the following requirements:
� The network is a bidirectional complete graph, i.e.,

any host can send and receive messages from any other
hosts.
� The upload bandwidths of all hosts are a

constant. Any host can reach this bandwidth as long as
it has data to transmit.
� The download bandwidth is at least as big as the

upload bandwidth.
An oversubscription of 1 actually guarantees all of

these three requirements. A brief analysis verifies this
fact:
� A non-zero oversubscription means that all hosts

are bidirectionally connected.
� An oversubscription of 1 guarantees that all hosts

can send and receive at the full rate of its interface,
which is a constant.
� The inbound and outbound interface rates are the

same; an oversubscripton of 1 guarantees that the
download bandwidth can be as large as the upload
bandwidth.

The above analysis indicates that DCNs with an
oversubscription of at least 1 have an optimal P2P data
dissemination schedule that achieves the lower-bound
of Formula (1).

Mundinger et al.[17] also proved that the above
optimal result can be achieved by using the pairwise
transmission model, where any server can upload
to and download from at most 1 other server
simultaneously. Pairwise transmission makes the
scheduling easier to implement in practice. They also
provide such an algorithm. The algorithm tries to
disseminate distinctive chunks to a maximal number of
distinctive peers in minimal time.

Immediately following, any topology with an
oversubscription of at least 1 has such an optimal
dissemination schedule, as long as the servers have
the identical links connected to the switches. We
summarize the above analysis in Theorem 1.

Theorem 1 For any topology with an
oversubscription of at least 1, there is a deterministic
P2P data dissemination schedule that achieves the
optimal makespan in Formula (1).

We use “OPT” to denote the optimal algorithm
introduced above. We divide the algorithm into 3
phases. The pseudocode of the 3 phases is listed in
Algorithms 1, 2, and 3. Note that OPT is based on
the description in Ref. [17], but requires a non-trivial

Algorithm 1 OPT Phase I: Round 1 to n

1: S the source
2: m the number of chunks
3: N the number of peers that need the data
4: n blog2N c

5: Let x 2 f1; 2; � � � ; 2ng such that N D 2n � 1C x

6: for all Round i 2 f1; 2; � � � ; ng do
7: S uploads chunk min.i; m/ to a peer that has no chunk
8: 2i�1�1 peers possess a chunk upload it to 2i�1�1 peers

that have no chunk
9: end for

56 Tsinghua Science and Technology, February 2014, 19(1): 51-64

Algorithm 2 OPT Phase II: Round nC 1
1: if x 6 2n�1 then
2: x peers have chunk 1 upload it to x peers that have no

chunk
3: 2n�2 �bx=2c peers have chunk 1 upload to the peers that

have chunk 2
4: 2n�2 � dx=2e peers have chunk 1 upload it to the peers

that have a chunk in 3; � � � ; m

5: 2n�1 � 1 peers have a chunk in 2; � � � ; m upload it to the
peers that have chunk 1

6: else
7: 2n�1 peers have chunk 1 upload it to the x peers have no

chunk
8: 2n�1 � bx=2c peers have chunk 2 upload it to the peers

that have only chunk 1
9: 2n�1�dx=2e peers have a chunk in 3; � � � ; m to the peers

that have only chunk 1
10: bx=2c � 2n�2 peers have chunk 2 upload it to the peers

that have no chunk
11: d2=2e � 2n�2 peers have chunk in 3; � � � ; m to the peers

that have no chunk
12: end if
13: S uploads chunk minfnC 1; mg to a peer that has no chunk

Algorithm 3 OPT Phase III: Round nC 2 to nCm � 1
for all Round nC 1C j in fnC 2; � � � ; nCm � 1g do

DEFINE:
Bj;jC1 fpeers possess chunks j and j C 1g

Bjp fpeers possess chunk j and another in fj C2; � � � ; mgg

Bj fpeers possess only chunk j g

BjC1 fpeers possess only chunk j C 1g

Bp fpeers possess only a chunk in fj C 2; � � � ; mgg

END;
x � 1 peers in Bj upload chunk j to BjC1 and Bp

Bj;jC1 upload chunk j C 1 to Bjp

BjC1 upload chunk j C 1 to bx=2c peers of Bj

Bjp upload a chunk in fj C 2; � � � ; mg to Bj;jC1

Bp upload a chunk in fj C 2; � � � ; mg to dx=2e� 1 peers of
B1

S uploads chunk min.nC 1C j; m/ to a peer of B1

end for

translation of the details. OPT works in rounds. Each
round takes t time, which is the time used to upload a
single chunk, as was discussed previously.

Phase I runs from round 1 to n. The pseudocode is
listed in Algorithm 1. Lines 1-5 give the notations used
in all of the pseudocode. Lines 7 and 8 let the source and
all peers have a chunk to upload to the same number of
peers that have no chunk. In lines 7 and 8, each peer
determines which peer it should upload to. All uploads
are executed concurrently. Note that all peers must
select different recipients, which doubles the number of

peers that possess a chunk in every round. After Phase
I, any chunk i 2 f1; � � � ; min.m; n/�1g is possessed by
2n�i peers. The last chunk being uploaded, min.m; n/,
is possessed by 2n�min.m;n/C1 � 1, and in total, 2n � 1

peers possess a chunk, and x peers has no chunk.
Phase II runs in round n C 1. Lines 2-6 and 8-13

are executed depending on x. Again, all uploads are
performed concurrently in each round. After Phase II,
all peers possess at least one chunk.

After Phase III, all peers will have chunks from 1 to
m � 2; 2n � x peers have also chunks m � 1 and m, x

peers have also chunk m� 1, and x � 1 peers have also
chunk m. In the last round, S and x � 1 peers that have
chunk m upload chunk m to x peers that have chunk
m�1, and the x peers having chunk m�1 upload to x�1

peers having chunk m. The dissemination is completed.

4.3 The limitations of the optimal solution

Most DCN designs do not comply with the pre-
requisites of Theorem 1, so the optimal solution is not
widely applicable. In Section 4.4, we will present a
technique that can be used to readily apply the OPT
algorithm in MRTs.

Additionally, the algorithm requires a central
scheduler that needs to know the statuses of all peers,
i.e., what chunks are received by all peers. The
source, or a peer, can then select an appropriate
peer to disseminate the next chunk by consulting the
scheduler. Although the scheduler is straightforward
to implement in theory, the actual implementation
may potentially be much more complicated. There is
a dilemma between scalability and complexity: A
scheduler that is implemented as a single instance of
service can quickly become a single point of failure
and a performance bottleneck when the number of
peers grows. However, implementing the scheduler as
a distributed service introduces issues like distributed
consensus, which is a non-trivial task[19, 20].

4.4 A distributed approximation algorithm

In implementation, the above optimal algorithm
requires a central scheduler to keep track of the received
chunks of all peers. Each peer, before sending a chunk,
needs to contact the server and obtain the other peer
to which it should send the chunk. This requirement
adds excessive delay and control overheads. In order
to remedy this limitation, a distributed approximation
algorithm based on the above algorithm is presented
in this section. In the design, we try to avoid letting

Yaxiong Zhao et al.: On Peer-Assisted Data Dissemination in Data Center Networks: Analysis and Implementation 57

all peers collect accurate statuses of all other peers,
which will be a faithful distributed implementation of
the above optimal algorithm. Instead, we present a
method for nodes to estimate the status of all other
peers.

By inspecting the optimal algorithm, we found that
it follows a sequential delivery strategy, which is
explained below:
� Sequential delivery. A peer receives the .i C 1/-th

chunk only after receiving the i -th chunk. A peer sends
the (i C 1/-th chunk only after all peers have received
the i -th chunk or the delivery of i -th chunk will be
completed by some other peers.

This strategy indicates that if a peer received the i -th
chunk, all chunks prior it were already received. The
distributed algorithm tries to stick with this rule. A
peer that receives the i -th chunk, the largest-numbered
chunk, and all its previous chunks is called in the i -th
generation. The peers in the i -th generation should send
the i -th chunk to the peers in the .i � 1/-th generation,
and request the .i C 1/-th chunk from the peers in the
.i C 1/-th generation.

The key is to estimate the members of a given
generation when sending or requesting chunks. Each
chunk transmitted in the network is assigned an age,
which is the overlay hop count that this chunk being
forwarded. The age of a chunk at the source is 0. Each
time the chunk is forwarded, its age is incremented by
1. For instance, when the source forwards the first chunk
to peer 1, the age of the first chunk becomes 1. After
peer 1 forwards the first chunk to another peer, the age
of the first chunk becomes 2. The age indicates the
time for which the chunk has already been transmitted
in the network. According to the optimal algorithm,
any chunk will have an age of at most of dlog2N e

or blog2N c C 1. The age of a chunk can be used to
estimate the number of peers that already received the
chunk. Based on the transmission pattern of the optimal
algorithm, this number grows exponentially. A chunk
having an age of g will be possessed by 2g peers.

By inspecting the age value, a peer can deduce the
peers that have not already obtained the chunk. After
obtaining such information, the peer picks multiple
candidates to solicit transmission. We apply a hash
function to mitigate collisions, which refer to the
situations that multiple peers are soliciting transmission
to the same peer. Choosing multiple candidates further
reduces collisions. The number of the candidates, c, is
a tunable parameter, which is set to 3 in this paper. The

same number of hash functions, c, is also required.

5 The P2P Data Dissemination in MRTs

5.1 The single chunk case

If the data file is transmitted as a single chunk,
then there is an optimal P2P dissemination schedule
that can be found in polynomial time. This result is
obtained based on a result of Ref. [21]. The problem is
formulated to find the minimal multicast time of a single
message from a single source to a subset of nodes on an
arbitrarily connected network.

Formally, given a network modeled as a graph
G.V; E/, a source, S 2 V and a set of nodes, D 2

V nS , find the minimal time, T �, to disseminate a
message from S to all nodes of D. The message can
be transmitted from a node to another node (neighbor
or non-neighbor) in a unit of time by using cut-through
routing, which assumes that routing the message
through intermediate nodes does not cause excessive
delay. Two concurrent transmissions can happen only
if they follow edge-disjoint paths. This is called the
line-network model. The following theorem is proved
in Ref. [21].

Theorem 2 for any network G D .V; E/, any node,
S 2 V , and any shortest path routing function on G,
one can compute, in polynomial time, a minimal-time
multicast schedule from S to all nodes of any set, D 2

G, which performs in blog2jDjc C 1 rounds.
In an MRT, ignoring the delay on the path between

any two servers, any paths on the graph can transmit
a single chunk in a unit of time. Thus, the MRT
is equivalent to the above network model. With a
further analysis, we can relate the above model with
the uplink-sharing model given in Section 4. The key
to note here is that since there is only 1 chunk,
although the line-network model does not allow uplink
sharing, the upload speed does not increase since the
download speed of any peer does not increase. Since
no mater how many peers are uploading to the same
downloading peer, they are transferring the same data,
which makes the time for a peer to download a constant
determined by the bandwidth of its uplinks. There is still
a gap: MRT does not allow non-blocking bandwidth
between arbitrary pairs of peers. Fortunately, it has
been proven that there are always pair-wise link-disjoint
paths between arbitrary pairs, as long as the pairs do
not share starting or ending node. That is, any peer
cannot appear twice as starting or ending node of all the

58 Tsinghua Science and Technology, February 2014, 19(1): 51-64

transmission pairs. Note that the result in Theorem 2 is
the same as the lower bound of Formula (1). This is the
optimal P2P data dissemination time.

5.2 An approximation solution for the multiple
chunks case

We conjecture that the optimal P2P data dissemination
scheduling in MRTs is NP-hard. An observation is
that the interconnection between switches made finding
parallel paths between peers much more complex.

The OPT algorithm can be adapted to be used
in the general MRT: The servers connected by the
same ToR switch (or in the same rack) are grouped
together. Figure 5 illustrates this idea. Let one server
of the group to be the leader and directly take part
in the data dissemination process, whereas all other
servers form a pipeline and get data from the leader. The
pipeline transmission achieves an optimal completion
time since all servers in the same rack have non-
blocking bandwidth. Suppose that k servers are put in a
rack; it takes t � .mCk�2/ to transmit m chunks from
the leader to k � 1 other servers. In all practical DCNs,
the bandwidth of the uplinks is at least as large as the
downlinks, so if we force only 1 server to take part in
the dissemination, the effective oversubscription of the
network becomes 1. We can achieve the lower-bound of
Formula (1) for all leaders of all groups.

In this scheme, more time is needed to disseminate
all chunks from the leader to all other servers. We only
consider the worst case scenario, where there exists at
least 1 rack that all its servers are in the session. Firstly,
notice that servers form a pipeline; thus the completion
time to transmit m chunks is the time it takes to transmit
the m-th chunk. After delivering m chunks to all group
leaders, it takes t � .k�1/, at most, for the group leader

Fig. 5 Grouping together the servers in the same rack. Just
the group leaders take part in the optimal P2P data
dissemination. A pipeline is formed inside the group to
forward chunks.

to send the m-th to all other servers in the rack. The
result is in Eq. (2). Since not all servers of a rack
usually take part in the dissemination, the completion
time would be smaller.

T � D t � .mC blog2N 0c/C t � .k � 1/ (2)

5.3 A fine-grained group leader selection technique

Following the previous discussion, note that the key
to applying the OPT algorithm is to choose group
leaders so that the oversubscription for them to be
interconnected is 1. Therefore, we should select the
group leaders in such a way that the aggregate traffic
they pose to upper-level switches does not exceed the
capacity of any uplinks of the ToR switches. Assuming
that the aggregate bandwidth of a switch’s uplinks
is evenly shared by all downlinks, we can calculate
the aggregate bandwidth that can be allocated to each
rack. In this case, we select multiple servers as group
leaders and make sure that the oversubscription is 61.

Denote the number of leaders of a rack as
grack. Following the approach to derive Eq. (2), we
can form grack pipelines in every rack, and each has
.k � grack/=grack servers. The additive term in Eq. (2)
becomes t � .k � grack/=grack. The resultant completion
time is as follows:
T � D t � .mC blog2N c/C t � .k � grack/=grack (3)
We still use OPT to refer to this adapted version

when we consider the MRT topology. Furthermore,
instead of restricting the number of servers (group
leaders) that take part in the OPT algorithm, we
can lower down the bandwidth allocated to every
server. Given an oversubscription value roversub, each
server in a rack gets roversub of the original bandwidth,
which increases the time to upload a single chunk from
t to t=roversub. Substitute t with t=roversub into Formula
(1), we get

T � 6 .t=roversub/ � .mC blog2N c/ (4)

6 Line Structure for the MRT Topology

We use a line structure as the basis to connect all
peers. A line of peers has a few properties that make
it a good candidate for high-performance, peer-assisted
transmission in DCNs. Figure 6 depicts this fact. A line
topology is easy to construct. It can be expanded easily
by inserting or concatenating another line. Removing
nodes is equally as easy by concatenating the two
peering nodes of the line of nodes that need to be
removed. The only necessary information is the source
and the end of the line used in the operations.

Yaxiong Zhao et al.: On Peer-Assisted Data Dissemination in Data Center Networks: Analysis and Implementation 59

Fig. 6 The line topology and the operations that can be
applied.

A line topology is also quite efficient. Following the
notations used previously, delivering m chunks to N

peers takes
T D t � .N Cm � 1/ (5)

For the conventional client/server transmission (like
FTP), which is N times the one-to-one transmission, the
completion time is N �m�t . There is a huge difference
between them. In practice, due to a lot of influence
from background transmissions, the complexity of
maintaining states, and so on, the improvement will be
better.

Twitter[1] has used BitTorrent for disseminating
software patches to thousands of servers in their data
center. They report that the resultant transmission
pattern becomes a line, where most servers request
and send chunks from and to only one other
server. Although extremely simple, the speed is
increased 75� compared to the client/server approach
they used before.

We would like to eliminate the conflicts between
underlying paths. Two paths conflict when they share
common directed links. It is obvious that line topology
has no conflicts for (multi-rooted) tree-like networks,
including FatTree. Two paths conflict if they share at
least one common directed link. A conflict-free line
can be constructed by sorting all servers based on
their positions in the MRT. Align switches from left to
right. A server, A, is ranked before another server, B , if
A is on the left branch of their lowest common ancestor.

6.1 The joining and leaving process

The OPT algorithm: Joining and leaving a line is
straightforward. The tracker records all of the nodes
that have joined since the beginning. Each time a new
peer requests to join, the tracker assigns an appropriate
predecessor node to it. The joining peer then contacts
the predecessor. The predecessor records the peer as

its downstream node, and lets the peer connect to its
previous downstream node. This process is depicted
in the insertion operation of Fig. 6. When leaving,
the peer contacts its upstream and downstream peers
and informs them that it will be leaving the line. The
upstream peer then connects with the downstream peer
to form a new line. This process is depicted in the
removal operation of Fig. 6.

6.2 Line structure manipulation for scalable
dissemination

The length of a line structure grows linearly with the
peer count. In order to reduce delivery time, a long line
is split into two shorter lines and these shorter lines are
spliced into the source to make a new dissemination
tree. This process is illustrated in Figs. 7 and 8. This
process can be recursively performed on sub-trees.

7 Design and Implementation

7.1 The basic interaction scenario

We introduce an overview of the design by going
through a basic interaction process of a complete
transmission. We first define the concepts of the various
components, entities, and processes of the system. We
then give the details of a complete running process of a
transmission.

A de-facto practice of cloud computing is
virtualization, i.e., installing multiple virtual
machines on any physical machine. By virtualization,
virtual machines greatly outnumber physical

Fig. 7 Splicing a partial line to the source.

Fig. 8 Splicing a half line to the source to reduce line length.

60 Tsinghua Science and Technology, February 2014, 19(1): 51-64

machines. Provisioning one-to-many communication
for every virtual machine is an extremely challenging
task. It is doable, but will certainly be too costly to
be practical, as many have stated in Ref. [20]. We
install a daemon process on every physical server that
is running in the hosting OS. This daemon process is
called agent. Every virtual machine can receive data
by asking its agent to join the connection and then will
copy the data to the virtual machine using a specific
service provided by the hypervisor/virtualization
manager. This makes virtual machine migration simple
to handle, which will be discussed in detail later.

Our system works by weaving agents into an
efficient, scalable, and fault-tolerant one-to-many
transmission structure. For the sake of clear
presentation, we may use peer or node to refer to
agents if not specified otherwise.

We assume that there is a single peer initially holding
some bulk data which needs to be disseminated to
multiple peers. This peer is called the source. As we
discussed above, it may likely be the virtual machines
behind the peers that are sending or receiving the data.

We borrow a few designs from BitTorrent. The source
compiles a torrent file containing chunking information
about the data. There is a tracker in the network, which
is responsible for all of the operations that require a
global view of the system. We require the tracker to run
on a physical machine. For any transmission session,
the source designates a tracker; other peers can request
the torrent file and the information necessary for joining
the network from the tracker. We require trackers to
have a designated DNS name, so that we can replicate
and replace them for reliability and load-balancing.

When contacting a tracker, a peer also gets a list of IP
addresses of peers (including the source). Based on the
technique we designed, which will be discussed in the
next section, the peer finds the appropriate position in
the system. It then requests and uploads data from and
to its directed connected peers.

A peer may leave the system because of an
unexpected crash, job completion, or it simply no
longer needs the data. In either case, those peers that
directly connect with them need to find new peers in
order to stay connected. This is done by contacting the
tracker to obtain an appropriate peer to connect with.

7.2 In-order transmission

As depicted in Eq. (5), the completion time of a line
transmission is determined by the number of chunks

of a data file. When the chunk number approaches
infinity, the completion time converges to the time it
takes to complete a single transmission. In this case,
the whole line topology is abstracted as a pipeline
of bit-stream. However, in practice, we do not split
the data file in too many chunks since chunking
introduces additional overhead, like meta-information,
error-handling, connection establishment, and tear-
down costs.

In a line topology, when comparing two nodes, the
one with a smaller hop-count to the source is called the
up-stream node, the other is the down-stream node. If
the line topology is fixed, and the source is the only
node that has the complete data file in the beginning,
then it is clear that any down-stream nodes will not have
more chunks than the up-stream nodes.

However, if the topology constantly changes, this
property may be violated. Specifically, if we require
each node to join an existing line based on its location
in the base-line configuration, a late-coming node may
join a transmission where a lot of chunks have already
been transmitted. When the new node joins the line,
its immediate up-stream node still goes on with the
previous transmission to guarantee that the further along
down-stream nodes can get new chunks. The new
node can get updates from its up-stream node after it
completes the transmission to the down-stream nodes.

8 Simulation Study

8.1 Simulation settings

We use FatTree and MRT as topologies for the
simulation studies of the three algorithms. We
use OPT, Line, and CS to represent the optimal
algorithm for FatTree, the line-structure-based
protocol, and the conventional client/server approach,
respectively. Details of the simulation settings are given
below.

Methodology: We wrote a customized simulator with
C++[22]. Packet-level granularity is implemented. This
is necessary for evaluating the overhead and the
delay of the completion time caused by protocol
interactions. However, transport-layer abstraction is
not implemented due to the excessive complexity. We
assume that all packets can be forwarded reliably,
but with 90% of the available bandwidth of the path
(determined by the bottleneck of the path). This
assumption is based on the measurement studies in
Ref. [23], which state that a TCP connection can

Yaxiong Zhao et al.: On Peer-Assisted Data Dissemination in Data Center Networks: Analysis and Implementation 61

sustain a throughput of approximately 90% of the link
capacity. We deem this is as sufficient for modeling the
scaling properties of the algorithms in a comparative
study. In all simulations, a data file is split into 1000
1-MB chunks. All peers are selected uniformly from all
servers in the network.

Routing: We use load-balanced routing. All flows
are spread evenly on all available paths. A routing
path is established before a chunk transmission session
begins. The path can change between different chunk
transmission sessions, but not during them. In a set
of simulations, background traffic is injected. The
parameters are modeled according to Ref. [4] with
scaled-down traffic, which corresponds to the fact that
the application we consider is usually performed when
the network load is low. All packets are 1500 bytes.

Scheduling: We assume that the central scheduler
can smoothly handle all of the queries from any number
of peers. We acknowledge that this may not hold in
practice, but the system in Ref. [1] demonstrates that
a modified BitTorrent tracker can handle thousands of
servers, which makes this an acceptable assumption for
a comparison study.

Topology: We use a FatTree composed of 48-port
1 Gbps switches, which contains 27 648 servers. For
MRT, 64-port 1 Gbps switches are used for ToR
switches, which support 20 480 servers. We vary the
oversubscription in f1=2; 1=4; 1=8g. The connections
between the ToR and EoR, and the EoR and Core
switches are made accordingly.

8.2 Completion time

We give, in Figs. 9-11, the completion time of three
algorithms in the FatTree network that was specified in
the last section. OPT, Line, and CS refer to the OPT
algorithm, line structure, and the client/server approach

Fig. 9 The completion time of three algorithms in a FatTree
network with 100 chunks and a varying numbers of peers.

Fig. 10 The completion time of three algorithms in a
FatTree network with background traffic.

Fig. 11 The completion time of three algorithms in a
FatTree network with random server failure.

respectively.
Figure 9 shows the completion time in the FatTree

network. The network has no background traffic. The
results demonstrate the analytical results. A chunk
can be uploaded in approximately 0:01 ms. Uploading
1000 chunks takes 10 s, which accounts for the
majority of the upload time for OPT. Approximation
performs closely to OPT. Note that OPT significantly
outperforms Line only when there are more than 210

peers. Part of the results for CS are not included.
Figure 10 shows the completion time in the

FatTree network with background traffic. 10% of the
upload/download cpacities of the servers are allocated
for background traffic. All paths connecting the server
pairs go through the Core switches. 1% of the
server pairs are assigned with a heavy flow with a
bandwidth of 80% of the servers’ upload/download
capcities. Approximation has a close performance and
scaling behavior to the OPT. OPT and Line are more
sensitive to the insufficient link bandwidths than CS.

Figure 11 shows the completion time in the FatTree
network with random server failure. Two types of
recovery methods are used: (1) without rejoin, and (2)
with rejoin. 10% of the peers will fail after the data

62 Tsinghua Science and Technology, February 2014, 19(1): 51-64

dissemination begins. At each round, t time or t=r

time for MRTs, a server is picked uniformly to fail and
leave the network. In the case of without rejoin, the
server will just leave the network; whereas in rejoin,
the server that failed in the last round rejoined the
dissemination but lost all previously received data. In
both cases, after 10% of the servers are selected we stop
picking. Without rejoin, all algorithms perform better
since less transmissions are actually needed.

Figures 12-14 show the completion time of the

Fig. 12 The completion time of the OPT algorithm in an
MRT network with varying oversubscriptions.

Fig. 13 The completion time of the OPT algorithm in an
MRT network with background traffic.

Fig. 14 The completion time of the OPT algorithm in an
MRT network with random server failure.

OPT algorithm in the MRT network with different
oversubscriptions. Since the Line and CS behave the
same in FatTree and MRT, we omit their results. Our
adapted OPT algorithm works very well in MRT, which
only slightly increases the completion time compared
with the FatTree network.

8.3 Control overhead

We measure the number of control packets sent for
each algorithm. The results are shown in Fig. 15. The
OPT algorithm uses much more control packets since
all peers need to communicate with the scheduler to
get the peer for the next round. The Line and CS
algorithms only need to inform the peers once before
the transmission. This large overhead will certainly
cause issues in real-world applications. It is therefore
necessary to explore distributed scheduling in future
research.

9 Conclusions

In this paper, we study peer-assisted data dissemination
in DCNs. Our work is motivated by the inability
of the new DCN architecture and the network-
layer multicast, and is inspired by an existing
engineering practice of using P2P technology in
data center software update. We restrict our attention
to MRT topologies and FatTree—a special case of
MRT. Based on an existing theoretical work of
P2P scheduling, we prove that an optimal solution
exists for FatTree, and the solution achieves a
parametrized additive factor of the lower bound in
general MRTs. Inspired by engineering practices,
we propose a line-structure-based pipelining P2P
transmission algorithm. We also analyze the methods
and techniques for implementing these algorithms. The
performances of the proposed algorithms are evaluated
using packet-level simulations. The results demonstrate

Fig. 15 The overhead of the three algorithms.

Yaxiong Zhao et al.: On Peer-Assisted Data Dissemination in Data Center Networks: Analysis and Implementation 63

the viability of the peer-assisted data dissemination
approach.

Acknowledgements

This research was supported in part by the Natural
Science Foundation of USA (Nos. ECCS 1128209, CNS
10655444, CCF 1028167, CNS 0948184, and CCF
0830289).

References

[1] Murder: Fast datacenter code deploys using bittorrent,
http://engineering.twitter.com/2010/07/murder-fast-data-
center-codedeploys.html, 2010.

[2] J. Dean and S. Ghemawat, Mapreduce: Simplified data
processing on large clusters, in Proc. of OSDI ’04,
Berkeley, CA, USA, 2004.

[3] Y. Vigfusson, H. Abu-Libdeh, M. Balakrishnan, K.
Birman, and Y. Tock, Dr. multicast: Rx for data center
communication scalability, in Proc. Of LADIS ’08, New
York, NY, USA, 2008.

[4] T. Benson, A. Anand, A. Akella, and M. Zhang,
Understanding data center traffic characteristics,
SIGCOMM Comput. Commun. Rev., vol. 40, pp. 92-99,
2010.

[5] S. James and P. Crowley, Fast content distribution on
datacenter networks, in Proc. of ANCS’11, 2011.

[6] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu,
Dcell: A scalable and fault-tolerant network structure for
data centers, in Proc. of SIGCOMM ’08, New York, NY,
USA, 2008.

[7] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu, Bcube: A high performance, server-
centric network architecture for modular data centers,
SIGCOMM Comput. Commun. Rev., vol. 39, pp. 63-74,
2009.

[8] H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea, and
A. Donnelly, Symbiotic routing in future data centers,
SIGCOMM Comput. Commun. Rev., vol. 40, pp. 51-62,
2010.

[9] K. Chen, C. Guo, H. Wu, J. Yuan, Z. Feng, Y. Chen, S. Lu,
and W. Wu, Generic and automatic address configuration
for data center networks, SIGCOMM Comput. Commun.
Rev., vol. 40, pp. 39-50, 2010.

[10] M. Al-Fares, A. Loukissas, and A. Vahdat, A scalable,
commodity data center network architecture, in Proc. of
SIGCOMM ’08, New York, NY, USA, 2008.

[11] “BitTorrent,” http://www.bittorrent.com/, 2013.
[12] R. Niranjan Mysore, A. Pamboris, N. Farrington, N.

Huang, P. Miri, S. Radhakrishnan, V. Subramanya, and
A. Vahdat, Portland: A scalable fault-tolerant layer 2 data
center network fabric, SIGCOMM Comput. Commun. Rev.,
vol. 39, pp. 39-50, 2009.

[13] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, Vl2: A
scalable and flexible data center network, Commun. ACM,
vol. 54, pp. 95-104, 2011.

[14] C. E. Leiserson, Fat-trees: Universal networks for
hardware-efficient supercomputing, IEEE Trans. Comput.,
vol. 34, pp. 892-901, 1985.

[15] S. T. O’Neil, A. Chaudhary, D. Z. Chen, and H. Wang,
The topology aware file distribution problem, in Proc. of
COCOON’11, Springer-Verlag, 2011.

[16] C. Killian, M. Vrable, A. C. Snoeren, A. Vahdat, and
J. Pasquale, Brief announcement: The overlay network
content distribution problem, in Proc. of PODC ’05, New
York, NY, USA, 2005.

[17] J. Mundinger, R. Weber, and G. Weiss, Optimal scheduling
of peer-topeer file dissemination, J. of Scheduling, vol. 11,
pp. 105-120, 2008.

[18] Cisco data center infrastructure 2.5 design guide, http://
www.cisco.com/application/pdf/en/us/guest/netsol/ns107/
c649/ccmigration 09186a008073377d.pdf, 2013.

[19] M. Burrows, The chubby lock service for loosely-coupled
distributed systems, in Proc. of OSDI ’06, Berkeley, CA,
USA, 2006.

[20] T. D. Chandra, R. Griesemer, and J. Redstone, Paxos made
live: An engineering perspective, in Proc. of PODC ’07,
New York, NY, USA, 2007.

[21] J. Cohen, P. Fraigniaud, J.-C. Konig, and A. Raspaud,
Broadcasting and multicasting in cut-through routed
networks, in Proc. of the 11th International Parallel
Processing Symposium, 1997.

[22] B. Stroustrup, The C++ Programming Language. Boston,
MA, USA: Addison-Wesley Longman Publishing Co.,
2000.

[23] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen,
G. R. Ganger, G. A. Gibson, and S. Seshan, Measurement
and analysis of tcp throughput collapse in cluster-based
storage systems, in Proc. of FAST ’08, Berkeley, CA, USA,
2008.

Yaxiong Zhao is a software engineer at
Google’s Platforms Networking group. He
was with Amazon Web Services before
joining Google, working on Amazon
Kinesis, the first hosted stream data
processing service in the world. He
received his PhD degree from Temple
University, USA. His research interests

are in distributed systems, cloud computing, and wireless
networks. He was the founding chair of the First International
Workshop on Resource Management of Cloud Computing,
USA. His current focus is on software defined networking and
data center networking for cloud computing.

64 Tsinghua Science and Technology, February 2014, 19(1): 51-64

Jie Wu is the chair and a Laura H. Carnell
Professor in the Department of Computer
and Information Sciences at Temple
University, USA. Prior to joining Temple
University, he was a program director at
the National Science Foundation and a
distinguished professor at Florida Atlantic
University. He received his PhD degree

from Florida Atlantic University in 1989. His current research
interests include mobile computing and wireless networks,
routing protocols, cloud and green computing, network trust
and security, and social network applications. Dr. Wu regularly
published in scholarly journals, conference proceedings,
and books. He serves on several editorial boards, including
IEEE Transactions on Computers, IEEE Transactions on
Service Computing, and Journal of Parallel and Distributed
Computing. Dr. Wu was general co-chair/chair for IEEE MASS
2006 and IEEE IPDPS 2008 and program co-chair for IEEE
INFOCOM 2011. Currently, he is serving as general chair for
IEEE ICDCS 2013 and ACM MobiHoc 2014, and program
chair for CCF CNCC 2013. He was an IEEE Computer Society
Distinguished Visitor, ACM Distinguished Speaker, and chair

for the IEEE Technical Committee on Distributed Processing
(TCDP). Dr. Wu is a CCF Distinguished Speaker and a Fellow
of the IEEE. He is the recipient of the 2011 China Computer
Federation (CCF) Overseas Outstanding Achievement Award.

Cong Liu is currently an assistant
professor at Sun Yat-sen (Zhongshan)
University, China. He received his PhD
degree from Florida Atlantic University,
USA in 2009. Before that he received
his MS degree in computer software &
theory from Sun Yat-sen (Zhongshan)
University, China, in 2005. He received his

BS degree in micro-electronics from South China University of
Technology in 2002. His main research interests include routing
in Delay Tolerant Networks (DTNs) routing, geometric routing
in Mobile Ad hoc Networks (MANETs), deep packet inspection,
transaction processing, and rough set theory.

