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Dache: A Data Aware Caching for Big-Data Applications Using
the MapReduce Framework
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Abstract: The buzz-word big-data refers to the large-scale distributed data processing applications that operate on

exceptionally large amounts of data. Google’s MapReduce and Apache’s Hadoop, its open-source implementation,

are the defacto software systems for big-data applications. An observation of the MapReduce framework is that

the framework generates a large amount of intermediate data. Such abundant information is thrown away after the

tasks finish, because MapReduce is unable to utilize them. In this paper, we propose Dache, a data-aware cache

framework for big-data applications. In Dache, tasks submit their intermediate results to the cache manager. A task

queries the cache manager before executing the actual computing work. A novel cache description scheme and a

cache request and reply protocol are designed. We implement Dache by extending Hadoop. Testbed experiment

results demonstrate that Dache significantly improves the completion time of MapReduce jobs.
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1 Introduction

Google MapReduce[1] is a programming model and
a software framework for large-scale distributed
computing on large amounts of data. Figure 1
illustrates the high-level work flow of a MapReduce
job. Application developers specify the computation
in terms of a map and a reduce function, and
the underlying MapReduce job scheduling system
automatically parallelizes the computation across a
cluster of machines. MapReduce gains popularity
for its simple programming interface and excellent
performance when implementing a large spectrum of
applications. Since most such applications take a large
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amount of input data, they are nicknamed “Big-data
applications”. As shown in Fig. 1, input data is first split
and then feed to workers in the map phase. Individual
data items are called records. The MapReduce system
parses the input splits to each worker and produces
records. After the map phase, intermediate results
generated in the map phase are shuffled and sorted
by the MapReduce system and are then fed into the
workers in the reduce phase. Final results are computed
by multiple reducers and written to the disk.

Fig. 1 A high-level illustration of the MapReduce
programming model and the underlying implementation
architecture.
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Hadoop[2] is an open-source implementation of
the Google MapReduce programming model. Hadoop
consists of the Hadoop Common, which provides access
to the file systems supported by Hadoop. Particularly,
the Hadoop Distributed File System (HDFS) provides
distributed file storage and is optimized for large
immutable blobs of data. A small Hadoop cluster will
include a single master and multiple worker nodes. The
master node runs multiple processes, including a
JobTracker and a NameNode. The JobTracker is
responsible for managing running jobs in the Hadoop
cluster. The NameNode, on the other hand, manages
the HDFS. The JobTracker and the NameNode are
usually collocated on the same physical machine. Other
servers in the cluster run a TaskTracker and a DataNode
processes. A MapReduce job is divided into tasks. Tasks
are managed by the TaskTracker. The TaskTrackers
and the DataNode are collated on the same servers to
provide data locality in computation.

MapReduce provides a standardized framework
for implementing large-scale distributed computation,
namely, the big-data applications. However, there
is a limitation of the system, i.e., the inefficiency
in incremental processing. Incremental processing
refers to the applications that incrementally grow
the input data and continuously apply computations
on the input in order to generate output. There are
potential duplicate computations being performed in
this process. However, MapReduce does not have the
mechanism to identify such duplicate computations
and accelerate job execution. Motivated by this
observation, we propose Dache, a data-aware cache
system for big-data applications using the MapReduce
framework. Dache aims at extending the MapReduce
framework and provisioning a cache layer for efficiently
identifying and accessing cache items in a MapReduce
job. The following technical challenges need to be
addressed before implementing this proposal.
� Cache description scheme. Data-aware caching

requires each data object to be indexed by its
content. In the context of big-data applications, this
means that the cache description scheme needs to
describe the application framework and the data
contents. Although most big-data applications run on
standardized platforms, their individual tasks perform
completely different operations and generate different
intermediate results. The cache description scheme
should provide a customizable indexing that enables
the applications to describe their operations and the

content of their generated partial results. This is a non-
trivial task. In the context of Hadoop, we utilize the
sterilization capability provided by the Java[3] language
to identify the object that is used by the MapReduce
system to process the input data.
� Cache request and reply protocol. The size

of the aggregated intermediate data can be very
large. When such data is requested by other worker
nodes, determining how to transport this data becomes
complex. Usually the programs are moved to data nodes
in order to run the processing locally. However, this
may not always be applicable since the identities of
the worker nodes may not be easily changed. Data
locality is another concern. The protocol should be
able to collate cache items with the worker processes
potentially that need the data, so that the transmission
delay and overhead are minimized.

In this paper, we present a novel cache description
scheme. A high-level description is presented in
Fig. 2. This scheme identifies the source input from
which a cache item is obtained, and the operations
applied on the input, so that a cache item produced by
the workers in the map phase is indexed properly. In
the reduce phase, we devise a mechanism to take into
consideration the partition operations applied on the
output in the map phase. We also present a method for
reducers to utilize the cached results in the map phase
to accelerate the execution of the MapReduce job. We
implement Dache in the Hadoop project by extending
the relevant components. Our implementation follows
a non-intrusive approach, so it only requires minimum

Fig. 2 High-level description of the architecture of Dache. A
cache query phase is appended in the map and reduce
phases. A cache manager is incorporated to manage cache
items and answer queries for mappers and reducers.



Yaxiong Zhao et al.: Dache: A Data Aware Caching for Big-Data Applications Using the MapReduce Framework 41

changes to the application code.

2 Cache Description

2.1 Map phase cache description scheme

Cache refers to the intermediate data that is produced
by worker nodes/processes during the execution of a
MapReduce task. A piece of cached data is stored
in a Distributed File System (DFS). The content of a
cache item is described by the original data and the
operations applied. Formally, a cache item is described
by a 2-tuple: fOrigin, Operationg. Origin is the name
of a file in the DFS. Operation is a linear list of
available operations performed on the Origin file. For
example, in the word count application, each mapper
node/process emits a list of fword, countg tuples that
record the count of each word in the file that the mapper
processes. Dache stores this list to a file. This file
becomes a cache item. Given an original input data file,
word list 08012012.txt, the cache item is described by
fword list 08012012.txt, item countg. Here, item refers
to white-space-separated character strings. Note that the
new line character is also considered as one of the white
spaces, so item precisely captures the word in a text file
and item count directly corresponds to the word count
operation performed on the data file.

The exact format of the cache description of different
applications varies according to their specific semantic
contexts. This could be designed and implemented
by application developers who are responsible for
implementing their MapReduce tasks. In our prototype,
we present several supported operations:
� Item Count. The count of all occurrences of each

item in a text file. The items are separated by a user-
defined separator.
� Sort. This operation sorts the records of the

file. The comparison operator is defined on two items
and returns the order of precedence.
� Selection. This operation selects an item that meets

a given criterion. It could be an order in the list of
items. A special selection operation involves selecting
the median of a linear list of items.
� Transform. This operation transforms each item in

the input file into a different item. The transformation
is described further by the other information in the
operation descriptions. This can only be specified by the
application developers.
� Classification. This operation classifies the items

in the input file into multiple groups. This could be an

exact classification, where a deterministic classification
criterion is applied sequentially on each item, or
an approximate classification, where an iterative
classification process is applied and the iteration count
should be recorded.

Cache descriptions can be recursive. For example, in
sequential processing, a data file could be processed
by multiple worker nodes/processes. In that case, a
cache item, generated by the final process, could
be from the intermediate result files of a previous
worker, so its description will be stacked together to
form a recursive description. On the other hand, this
recursive description could be expanded to an iterative
one by directly appending the later operations to the
older ones. However, this iterative description loses the
context information about the later operations, that is,
if another process is operating on a later cache item
and is looking for potential cache that could save its
own operations. By inspecting an iterative description,
one cannot discern between a later cache item and a
previous one because the origin of the cache item is the
one that was fed by the application developers. In this
way, the worker processes will be unable to precisely
identify the correct cache item, even if the cache item is
readily available.

2.2 Reduce phase cache description scheme

The input for the reduce phase is also a list of
key-value pairs, where the value could be a list of
values. Much like the scheme used for the map phase
cache description, the original input and the applied
operations are required. The original input is obtained
by storing the intermediate results of the map phase
in the DFS. The applied operations are identified by
unique IDs that are specified by the user. The cached
results, unlike those generated in the Map phase, cannot
be directly used as the final output. This is because, in
incremental processing, intermediate results generated
in the Map phase are likely mixed in the shuffling phase,
which causes a mismatch between the original input of
the cache items and the newly generated input.

A remedy is to apply a finer description of the original
input of the cache items in the reduce phase. The
description should include the original data files
generated in the Map phase. For example, two data files,
“file1.data” and “file2.data”, are shuffled to produce
two input files, “input1.data” and “input2.data”, for
two reducers. “input1.data” and “input2.data” should
include “file1.data” and “file2.data” as its shuffling
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source. As a result, new intermediate data files of
the Map phase are generated during incremental
processing; the shuffling input will be identified in a
similar way. The reducers can identify new inputs from
the shuffling sources by shuffling the newly-generated
intermediate result from the Map phase to form the
final results. For example, assume that “input3.data”
is a newly generated results from Map phase; the
shuffling results “file1.data” and “file2.data” include
a new shuffling source, “input3.data”. A reducer can
identify the input “file1.data” as the result of shuffling
“input1.data”, “input2.data”, and “input3.data”. The
final results of shuffling the output of “input1.data”
and “input2.data” are obtained by querying the cache
manager. The added shuffling output of “input3.data” is
then added to get the new results.

Given the above description, the input given to the
reducers is not cached exactly. Only a part of the input
is identical to the input of the cache items. The rest
is from the output of the incremental processing phase
of the mappers. If a reducer could combine the cached
partial results with the results obtained from the new
inputs and substantially reduce the overall computation
time, reducers should cache partial results. Actually,
this property is determined by the operations executed
by the reducers. Fortunately, almost all real-world
applications have this property.

2.3 Case study with Hadoop MapReduce

2.3.1 Map cache
Apache Hadoop[2] (HDMR) is an open-source
implementation of the MapReduce distributed
parallel processing algorithm originally designed
by Google. Map phase is a data-parallel processing
procedure in which the input is split into multiple file
splits which are then processed by an equal number
of Map worker processes. As depicted in Fig. 3, a
file split divides one or more input files based on
user-supplied rules. The intermediate results obtained
by processing file splits should be cached. Each file
split is identified by the original file name, offset, and
size. This identification scheme causes complications
in describing cache items. In an ideal situation, each
cache item would only correspond to a single input
file, which makes identifying it with the above scheme
straightforward. In reality, such a situation is seldom
the case. This scheme is slightly modified to work for
the general situation. The original field of a cache item
is changed to a 3-tuple of ffile name, offset, sizeg. Note

Fig. 3 A file in a DFS. This file is stored as multiple blocks,
which are fixed-size data blocks. A file split is identified by
the original file name, offset, and size.

that a file split cannot cross file boundaries in Hadoop
MapReduce, which simplifies the description scheme
of cache items. The operation field required by the
cache description is described by a serialized Java
object. This field is read by the Java program and tested
against known Java class definitions to determine what
operations are used.

Map cache items can be aggregated by grouping file
splits. Multiple cache items that were generated from
the same original file in the DFS are grouped under the
path of the original file, i.e., ffile name, foffset, sizeg,
foffset, sizeg,� � � g. The actual storage of aggregated
cache items could be optimized accordingly. For
example, they could be put on a single datanode in
the HDFS cluster to avoid costly queries to multiple
datanodes.

2.3.2 Reduce cache
Cache description in the reduce phase follows the
designs in Section 2.2. The file splits from the map
phase are included in the cache description. Usually,
the input given to the reducers is from the whole input
of the MapReduce job. Therefore, we could simplify
the description by using the file name together with
a version number to describe the original file to the
reducers. The version number of the input file is used
to distinguish incremental changes. A straightforward
approach is to encode the size of the input file with
the file name. Since we assume that only incremental
changes, i.e., appending new data at the end of the
file, are allowed, the size of the file is enough to
identify the changes made during different MapReduce
jobs. Note that even the entire output of the input files
of a MapReduce job is used in the reduce phase, the file
splits can still be aggregated as described in Section 2.1,
i.e., by using the form of ffile name, split, � � � , splitg.

As shown in Fig. 4, file splits are sorted and shuffled
to generate the input for the reducers. Although this
process is implicitly handled by the MapReduce
framework, the users are able to specify a shuffling
method by supplying a partitioner, which is
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Fig. 4 The input stream to a reducer is obtained by sorting
and then shuffling multiple output files of mappers. This
mapping is used to identify the input to the reducer.

implemented as a Java object in Hadoop. The partitioner
examines the key of a record and determines which
reducer should process this record in the reduce
phase. Therefore, the cache description should be
attached with the partitioner, which can be implemented
as a serialized object in Hadoop. The same input file
splits that are partitioned by different partitioners
produce different reduce inputs, therefore cannot be
treated as the same. At last, the index of the reducer
assigned by the partitioner is attached. The whole
description is a 3-tuple: ffile splits, partitioner, reducer
indexg. The description is completed to accurately
identify the input to a reducer. The reducer then
appends its output with the description to produce a
cache item. However, This process is automatically
handled by the reducers.

3 Protocol

3.1 Relationship between job types and cache
organization

The partial results generated in the map and reduce
phases can be utilized in different scenarios. There are
two types of cache items: the map cache and the reduce
cache. They have different complexities when it comes
to sharing under different scenarios. Cache items in the
map phase are easy to share because the operations
applied are generally well-formed. When processing
each file split, the cache manager reports the previous
file splitting scheme used in its cache item. The new
MapReduce job needs to split the files according to
the same splitting scheme in order to utilize the cache
items. However, if the new MapReduce job uses a
different file splitting scheme, the map results cannot
be used directly, unless the operations applied in the
map phase are context free. By context free, we mean
that the operation only generates results based on the
input records, which does not consider the file split
scheme. This is generally true.

When considering cache sharing in the reduce phase,

we identify two general situations. The first is when the
reducers complete different jobs from the cached reduce
cache items of the previous MapReduce jobs, as shown
in Fig. 5. In this case, after the mappers submit the
results obtained from the cache items, the MapReduce
framework uses the partitioner provided by the new
MapReduce job to feed input to the reducers. The saved
computation is obtained by removing the processing in
the Map phase. Usually, new content is appended at the
end of the input files, which requires additional mappers
to process. However, this does not require additional
processes other than those introduced above.

The second situation is when the reducers can
actually take advantage of the previously-cached
reduce cache items as illustrated in Fig. 6. Using
the description scheme discussed in Section 2, the
reducers determine how the output of the map phase
is shuffled. The cache manager automatically identifies
the best-matched cache item to feed each reducer, which
is the one with the maximum overlap in the original
input file in the Map phase.

Fig. 5 The situation where two MapReduce jobs have the
same map tasks, which could save a fraction of computation
by requesting caches from the cache manager.

Fig. 6 The situation where two MapReduce jobs have the
same map and reduce tasks. The reducers combine results
from the cache items and the appended input to produce the
final results.
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3.2 Cache item submission

Mapper and reducer nodes/processes record cache items
into their local storage space. When these operations
are completed, the cache items are forwarded to
the cache manager, which acts like a broker in
the publish/subscribe paradigm[4]. The cache manager
records the description and the file name of the cache
item in the DFS. The cache item should be put on
the same machine as the worker process that generates
it. This requirement improves data locality. The cache
manager maintains a copy of the mapping between the
cache descriptions and the file names of the cache items
in its main memory to accelerate queries. It also flushes
the mapping file into the disk periodically to avoid
permanently losing data.

A worker node/process contacts the cache manager
each time before it begins processing an input data
file. The worker process sends the file name and the
operations that it plans to apply to the file to the cache
manager. The cache manager receives this message and
compares it with the stored mapping data. If there is a
exact match to a cache item, i.e., its origin is the same
as the file name of the request and its operations are the
same as the proposed operations that will be performed
on the data file, then the manager will send back a reply
containing the tentative description of the cache item to
the worker process.

The worker process receives the tentative description
and fetches the cache item. For further processing,
the worker needs to send the file to the next-stage
worker processes. The mapper needs to inform the
cache manager that it already processed the input file
splits for this job. The cache manager then reports these
results to the next phase reducers. If the reducers do
not utilize the cache service, the output in the map
phase could be directly shuffled to form the input for
the reducers. Otherwise, a more complicated process is
executed to obtain the required cache items, which will
be explained in Section 3.4.

If the proposed operations are different from the
cache items in the manager’s records, there are
situations where the origin of the cache item is the
same as the requested file, and the operations of
the cache item are a strict subset of the proposed
operations. The concept of a strict super set refers to
the fact that the item is obtained by applying some
additional operations on the subset item. For example,
an item count operation is a strict subset operation of

an item count followed by a selection operation. This
fact means that if we have a cache item for the first
operation, we could just add the selection operation,
which guarantees the correctness of the operation.

One of the benefits of Dache is that it automatically
supports incremental processing. Incremental
processing means that we have an input that is partially
different or only has a small amount of additional
data. To perform a previous operation on this new
input data is troublesome in conventional MapReduce,
because MapReduce does not provide the tools for
readily expressing such incremental operations. Usually
the operation needs to be performed again on the new
input data, or the application developers need to
manually cache the stored intermediate data and pick
them up in the incremental processing. In Dache, this
process is standardized and formalized. Application
developers have the ability to express their intentions
and operations by using cache description and to
request intermediate results through the dispatching
service of the cache manager.

3.3 Lifetime management of cache item

The cache manager needs to determine how much time
a cache item can be kept in the DFS. Holding a cache
item for an indefinite amount of time will waste storage
space when there is no other MapReduce task utilizing
the intermediate results of the cache item. There are
two types of policies for determining the lifetime of a
cache item, as listed below. The cache manager also can
promote a cache item to a permanent file and store it in
the DFS, which happens when the cache item is used
as the final result of a MapReduce task. In this case,
the lifetime of the cache item is no longer managed by
the cache manager. The cache manager still maintains
the mapping between cache descriptions and the actual
storage location.

3.3.1 Fixed storage quota
Dache allocates a fixed amount of storage space for
storing cache items. Old cache items need to be evicted
when there is no enough storage space for storing
new cache items. The eviction policy of old cache
items can be modeled as a classic cache replacement
problem[5]. In our preliminary implementation, the
Least Recent Used (LRU) is employed. The cost of
allocating a fixed storage quota could be determined by
a pricing model that captures the monetary expense of
using that amount of storage space. Such pricing models
are available in a public Cloud service. We will discuss
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more details about the model in Section 3.3.2.

3.3.2 Optimal utility
Increasing the storage space of cache items will likely
hit a plateau due to the diminishing return effect. A
utility-based measurement can be used to determine
an optimal space allocated for cache items which
maximizes the benefits of Dache and respect the
constraints of costs. This scheme estimates the saved
computation time, ts, by caching a cache item for a
given amount of time, ta. These two variables are used
to derive the monetary gain and cost. The net profit, i.e.,
the difference of subtracting cost from gain, should be
made positive. To accomplish this, an accurate pricing
model of computational resources is required. Although
conventional computing infrastructures do not offer
such a model, cloud computing does. Monetary values
of computational resources are well captured in existing
cloud computing services, for example, in Amazon
AWS[6] and Google Compute Engine[7]. For many
organizations that rely on a cloud service provider
for their IT infrastructure, this would be a perfect
model. According to the official report from Amazon
AWS, the amount of organizations that are actively
using their services is huge, which help them to
achieve near billion dollar revenue. Therefore, this
pricing model should be very useful in real-world
application. On the other hand, for organizations that
rely on their own private IT infrastructure, this model
will be inaccurate and should only be used as a
reference.

Expensets
D Pstorage � Scache � ts (1)

Savets D Pcomputation �Rduplicate � ts (2)

Equations (1) and (2) show how to compute the
expense of storing cache and the corresponding saved
expense in computation. The details of computing the
variables introduced above are as follows. The gain of
storing a cache item for ts amount of time is calculated
by accumulating the charged expenses of all the saved
computation tasks in ts. The number of the same task
that is submitted by the user in ts is approximated by an
exponential distribution. The mean of this exponential
distribution is obtained by sampling in history. A newly-
generated cache item requires a bootstrap time to do the
sampling. The cost is directly computed from the charge
expense of storing the item for ta amount of time. The
optimal lifetime of a cache item is the maximum ta, such
that the profit is positive. The overall benefits of this
scheme are that the user will not be charged more and

at the same time the computation time is reduced, which
in turn reduces the response time and increases the user
satisfaction.

3.4 Cache request and reply

3.4.1 Map cache
There are several complications that are caused
by the actual designs of the Hadoop MapReduce
framework. The first is, when do mappers issue
cache requests? As described above, map cache items
are identified by the data chunk and operations
performed. In order to preserve the original splitting
scheme, cache requests must be sent out before the
file splitting phase. The jobtracker, which is the central
controller that manages a MapReduce job, issues cache
requests to the cache manager. The cache manager
replies a list of cache descriptions. The jobtracker then
splits the input file on remaining file sections that have
no corresponding results in the cache items. That is,
the jobtracker needs to use the same file split scheme
as the one used in the cache items in order to actually
utilize them. In this scenario, the new appended input
file should be split among the same number of mapper
tasks, so that it will not slow the entire MapReduce job
down. Their results are then combined together to form
an aggregated Map cache item. This could be done by a
nested MapReduce job.
3.4.2 Reduce cache
The cache request process is more complicated. The
first step is to compare the requested cache item with
the cached items in the cache manager’s database. As
described in Section 2.2, the cached results in the reduce
phase may not be directly used due to the incremental
changes. As a result, the cache manager needs to
identify the overlaps of the original input files of the
requested cache and stored cache. In our preliminary
implementation, this is done by performing a linear
scan of the stored cache items to find the one with the
maximum overlap with the request. When comparing
the request and cache item, the cache manager first
identifies the partitioner. The partitioner in the request
and the cache item have to be identical, i.e., they
should use the same partitioning algorithm and the same
number of reducers. This requirement is illustrated in
Fig. 7. The overlapped part means that a part of the
processing in the reducer could be saved by obtaining
the cached results for that part of the input. The
incremented part, however, will need to be processed
by the reducer itself. The final results are generated by
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Fig. 7 In order to compare a cache description and a cache
request, the cache manager needs to examine the partitioner
and the reducer indexes and make sure that they are the
same.

combining both parts. The actual method of combining
results is determined by the user.

4 Performance Evaluation

4.1 Implementation

We extend Hadoop to implement Dache. Hadoop
is a collection of libraries and tools for DFS and
MapReduce computing. The complexity of the entire
package is beyond our control, so we take a non-
intrusive approach to implement Dache in Hadoop
and try not to hack the Hadoop framework itself, but
implement Dache by changing the components that are
open to application developers. Basically, the cache
manager is implemented as an independent server. It
communicates with task trackers and provides cache
items on receiving requests. The cache manager stands
outside of the Hadoop MapReduce framework. The
cache manager uses HDFS, the DFS component of
Hadoop, to manage the storage of cache items.

In order to access cache items, the mapper
and reducer tasks first send requests to the cache
manager. However, this cannot be implemented in
Mapper and Reducer classes. Hadoop framework fixes
the interface of Mapper and Reducer classes to only
accept key-value pairs as the input. They cannot identify
the file split they are working on; therefore, cache
requests cannot be sent from mappers or reducers. We
alter two components of Hadoop to implement this
function. The first component is InputFormat class,
an open-accessed component that allows application
developers to modify. It is responsible for splitting
the input files of the MapReduce job to multiple file
splits and parse data to key-value pairs. As stated in
Section 2.1, InputFormat class should query the cache
manager to fetch the splitting scheme of the cache
item, if they are the same Map tasks that were being
executed previously. It then splits the input files in the

same way as the cache item and puts the incremental
parts into new file splits. The second component that
needs to be altered is the TaskTracker, which is the
class responsible for managing tasks. TaskTracker is
able to understand filesplit and bypass the execution
of mapper classes entirely. TaskTracker also manages
reducer tasks. Similarly, it could bypass reducer tasks
by utilizing the cached results. Additionally, application
developers must implement a different reduce interface,
which takes as input a cache item and a list of key-value
pairs and produces the final results.

Our non-intrusive approach has a performance
penalty. It is because Dache fundamentally requires
changes to the MapReduce framework to better utilize
cache items. For example, InputFormat incurs an
overhead in following the splitting scheme of the cache
items. This could be avoided by employing a native
cache query mechanism by altering the MapReduce
framework.

4.2 Experiment settings

Hadoop is run in pseudo-distributed mode on a server
that has an 8-core CPU, each core running at 3 GHz,
16 GB memory, and a SATA disk. The number of
mappers is 16 in all experiments, the reducers’ count
varies. We use two applications to benchmark the
speedup of Dache over Hadoop (the classic MapReduce
model): word-count and tera-sort. Word-count counts
the number of unique words in large input text
files; tera-sort sorts key-value records based on the
lexical order of the key. More details are in Hadoop
manual[2]. Word-count is an IO-intensive application
that requires loading and storing a sizeable amount of
data during the processing. On the other hand, tera-sort
uses more mixed word loads. It needs to load and store
all input data and needs a computation-intensive sorting
phase. The inputs of two applications are generated
randomly, and all are 10 GB in size.

4.3 Results

Figures 8 and 9 present the speedup and completion
time of two programs. The completion time and the
speedup are put together. Data is appended to the
input file. The size of the appended data varies and
is represented as a percentage number to the original
input file size, which is 10 GB. Tera-sort is more CPU-
bound compared to word-count, as a result Dache
can bypass computation tasks that take more time,
which achieves larger speedups. The speedup decreases
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Fig. 8 The speedup of Dache over Hadoop and their
completion time of word-count program.

Fig. 9 The speedup of Dache over Hadoop and their
completion time of tera-sort program.

with the growing size of appended data, but Dache
is able to complete jobs faster than Hadoop in all
situations. The map phase of tera-sort does not perform
much computation, which also makes it easier for
Dache to work.

Figures 10 and 11 show the CPU utilization ratio
of the two programs. It is measured by averaging the
CPU utilization ratio of the processes of the MapReduce
jobs over time. Tera-sort consumes more CPU cycles
than word-count does, which is determined by the
CPU-bound nature of the sorting procedure. From the
figures, it is clear that Dache saves a significant amount
of CPU cycles, which is demonstrated by the much
lower CPU utilization ratio. These results are consistent
with Figs. 8 and 9. With a larger incremental size,
the CPU utilization ratio of Dache grows significantly,
too. This is because Dache needs to process the new
data and cannot utilize any cached results for bypassing
computation tasks. Figures 8-11 collectively prove that

Dache indeed removes redundant tasks in incremental
MapReduce jobs and reduces job completion time.

Figure 12 presents the size of all the cache items
produced by a fresh run of the two programs with
different input data sizes. In tera-sort, cache items
should have the same size as the original input data
because sorting does not remove any data from the
input. The difference between the input data size and the
cache size is caused by the data compression. Note also
that the cache item in tera-sort is really the final output,

Fig. 10 CPU utilization ratio of Hadoop and Dache in the
word-count program.

Fig. 11 CPU utilization ratio of Hadoop and Dache in the
tera-sort program.

Fig. 12 Total cache size in GB of two programs.
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which means that the used space is free in the sense
that no extra cost is incurred in storing cache items. The
word-count results are more related to the input record
distribution.

5 Related Work

A comprehensive survey on incremental computation
is given in Ref. [8]. Google Bigtable[9] is a distributed
storage system for managing structured data built on
top of the Google File System (GFS)[10]. It is able
to efficiently handle incremental processing with the
structure information in the data. Google Percolator[11]

is an incremental processing platform, which achieves
much faster web index processing compared to the
previous MapReduce-like batch-processing system. It
is used in Google’s new web page indexing engine,
which achieves 50% fresher web indexing than the
old system. Ramcloud[12] is a distributed computing
platform, where all data is kept in RAM instead of
on disk. Unlike Hadoop, Ramcloud focuses on the
computation and processing performed on small data
objects.

Dryad[13], is a distributed programming model
that is targeted at the same application scenarios
as MapReduce. Unlike MapReduce’s simple two-
phase execution model, Dryad employs a Directed
Acyclic Graph (DAG) based model. Dryad is
thus able to provide a more natural representation
of many real-world problems. However, from an
implementation point of view, such a design causes
excessive complexity for application developers to
implementation with Dryad, which substantially
hinders its adoption. DryadInc[14] is an extension to
Dryad to reuse identical work to accelerate processing.
NOVA[15] is a workflow manager proposed designed
for the incrementally executing Pig[16] programs
upon streaming data. CEAL[17, 18] is a framework
for dynamically describing application computation
requirements in a cloud environment. Our work focuses
on dynamically identify redundant computation in
MapReduce job.

Memorycached[19] is a distributed caching system
designed as an object accessing layer between the
application and underlying relational database. The
cache manager of Dache could utilize Memorycached
to accelerate query response because the size of cache
item is generally small. Scheuermann et al.[20] studied
how to optimize the performance of distributed storage

with disks. In Ref. [21], Zaharia et al.[21] studied the
speculative execution of tasks that potentially slows
down the entire MapReduce job in order to accelerate
the execution of a MapReduce job. This work does
not address the data sharing problem identified in this
paper. This mechanism is orthogonal to ours and could
be integrated straightforwardly.

Performance optimization in data-intensive
applications with MapReduce is an active research
topic. Herodotou et al.[22] proposed a intelligent
cluster sizing algorithm for data-intensive analytics
applications. Wu et al.[23] studied the query
optimization problem in using MapReduce to do
online query processing. Both Wu et al.’s work and
our work aim to accelerate processing by removing
redundancy in the computing process. Their work is
focused on a higher layer than ours. Logothetis et
al.[24] presented a general architecture for continuous
bulk processing. Although it has a similar problem as
ours, it focuses on programming models instead of
actual implementation. Comet[25] and Nephele[26] are
frameworks for batch analytical processing on bulk
data. The input data is modeled as a stream. The system
answers query by utilizing the continuing coming data
stream.

ActiveSLA[27] is an admission control framework
that takes into account the monetary gain of admitting
jobs to run on a cloud-based database service
provider. Their methodology is similar to ours in using
actual profit to make management decisions. This work
could be refined by taking into account the saved costs
by employing Dache. Google fushion tables[28] is a
service for integrating data in Cloud platform, which
has integrated data analytic capability.

6 Conclusions

We present the design and evaluation of a data-
aware cache framework that requires minimum change
to the original MapReduce programming model
for provisioning incremental processing for Big-
data applications using the MapReduce model. We
propose Dache, a data-aware cache description scheme,
protocol, and architecture. Our method requires only a
slight modification in the input format processing and
task management of the MapReduce framework. As a
result, application code only requires slight changes in
order to utlize Dache. We implement Dache in Hadoop
by extending relevant components. Testbed experiments
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show that it can eliminate all the duplicate tasks in
incremental MapReduce jobs and does not require
substantial changes to the application code. In the
future, we plan to adapt our framework to more general
application scenarios and implement the scheme in the
Hadoop project.
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