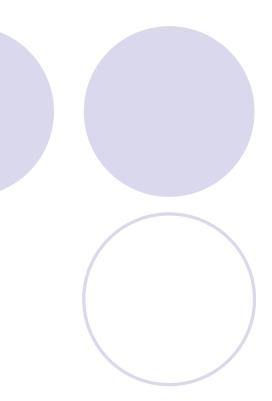
Cyber Security Defense:

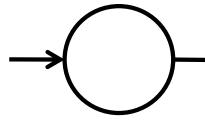
From Moving Target Defense to Cyber Deception

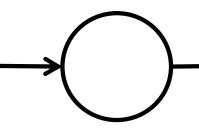

Jie Wu

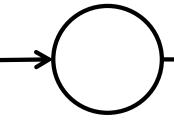
Temple University

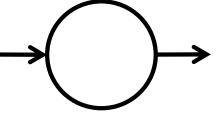
Frontiers in Cyber Security, 2019

Outline


- 1. Cyber Security Defense
- 2. Cyber Deception
- 3. Honeypots and Honey-X
- 4. Moving Target Defense
- 5. Game-Theoretic Approaches
- 6. Challenges of Cyber Deception
- 7. Conclusions




1. Cyber Security Defense


- Security: a collection of protection mechanisms
 - Deny and isolation: deny unauthorized access
 - Degradation and obfuscation: slow down once penetrated
 - Negative info and deception: lead attackers stray
 - Attributions and counter-operation: hiking back

Cyber kill-chain

Deny & isolation

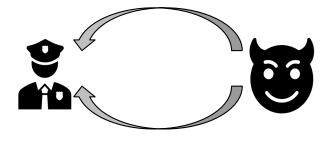
Degradation

Deception

Attribution

2. Cyber Deception

- The Art of War (孙子兵法)
 - All warfare is based on deception
- Offense vs. Defense
 - Attack is the secret of defense
 - Defense is the planning of an attack



2. Cyber Deception

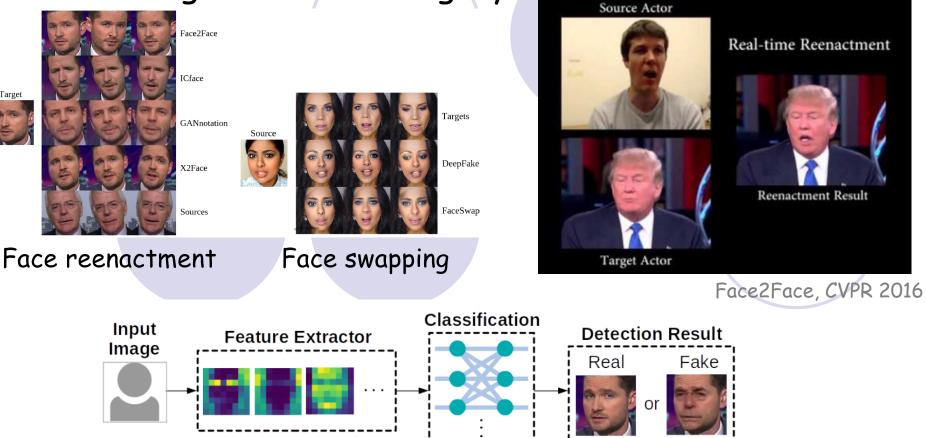
- Cyber deception
 - Planned actions to mislead/confuse (i.e. trap) attackers

Goals

- Complement detection, enhance prevention, and mitigate successful attacks
- Unit and layer
 - Parameter, file, account, profile, ...
 - Network, system, application, data, ...
- Life cycle of cyber deception
 - Collect knowledge of attacker
 - Implement deception schemes

Adversary Model

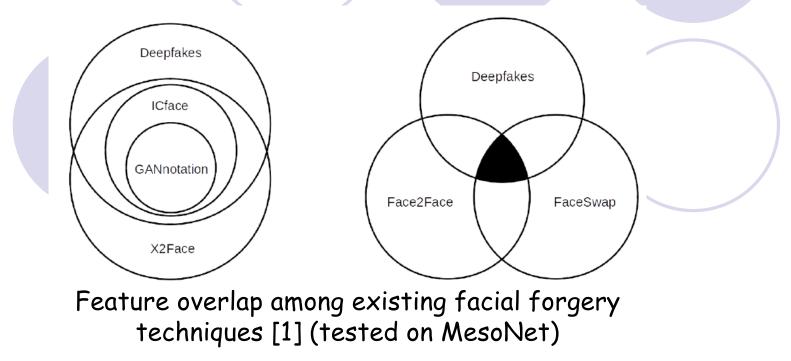
Kerckhoffs' principle: system is public knowledge


- It is unclear how smart an adversary can be
- Traffic analysis challenge: algorithm + big data
 - An adversary can use a sophisticated ML method
 - An adversary can use compressive traffic analysis (CCS 2017)

Perform traffic analysis on compressed features instead of raw data

Deepfake

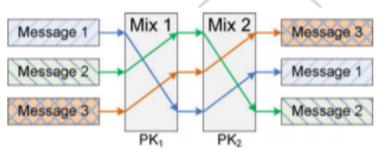
Defend against facial forgery



Architecture of deepfake defense systems

Deepfake Detection

- Limitation of current defense systems
 - Cannot defend against unseen attack methods
 - Features of different attack methods can be independent



[1] J. Brockschmidt et al., "On the Generality of Facial Forgery Detection", Proc of REUNS 2019 (Best Paper)

Different Types of Deception

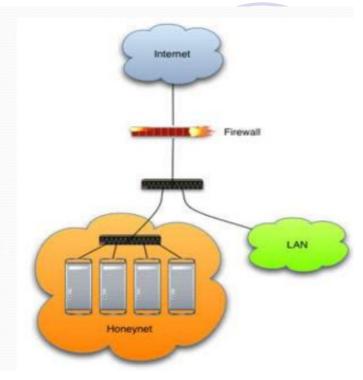
Perturbation

- Perturb sensitive data with noises
- Obfuscation
 - Decoy targets and/or reveal useless info
- Mixing
 - Prevent linkability (mixing zone)
- Honey-X
 - Disguise honeypots as real systems
- Moving target defense
 - Change attack surfaces

3. Honeypots and Honey-X

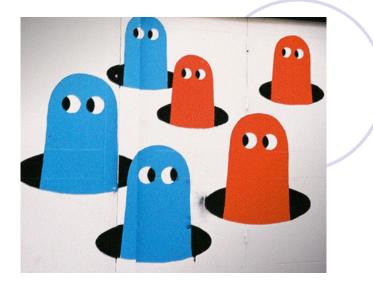
Honeypots

- Bears: honey eaters
- Traps



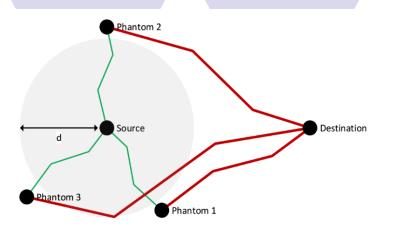
Honey-X

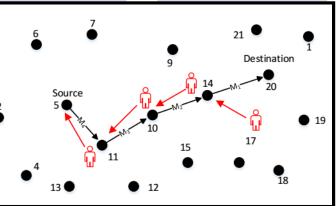
Honeynet: two ore more honeypots on a network

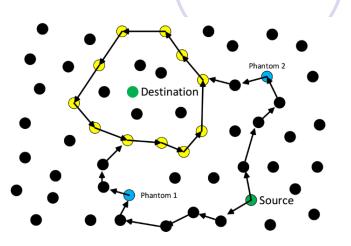

Honeyfile, honeyword, ...

4. Moving Target Defense (MTD)

MTD

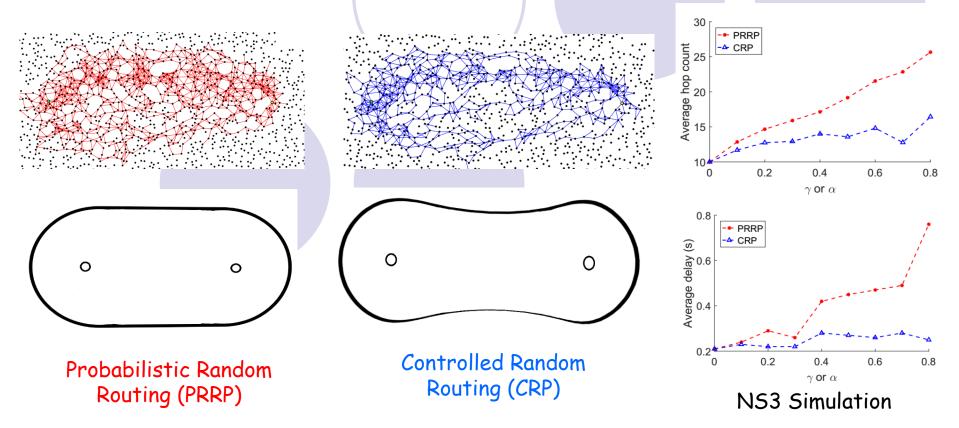

- Controlling change across multiple system dimensions to increase uncertainty and complexity for attackers
- Network: Route change
- Firewall: Policy change
- Host: Address change
- OS: Version/release change



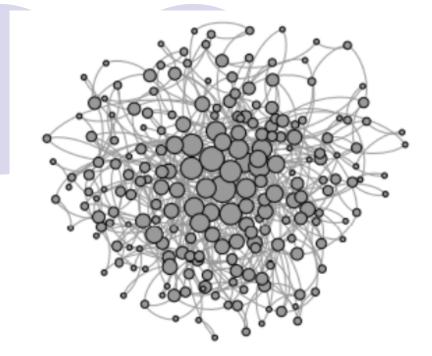

MTD vs. Deception: Intractability

 Source and destination location privacy (Panda-hunter game)

• Phantom/Circular Ring Routing



Probabilistic/Controlled Random


Performance gain ^[2]

[2] R. Biswas and J. Wu, "Preserving Source and Destination Location Privacy with Controlled Routing Protocol," *IJSN*, 2018

Adaptive Changes

- Hierarchical military command chains
- Network hierarchy
 - SDN controllers: load balance and fault tolerance

Self-Organized Systems

Theory community

• Dijkstra's self-stabilizing system (Dijkstra, 1974)

 An illegitimate state (caused by some *perturbations*) can be changed back to a legitimate state in a finite number of steps

 How can we handle the long convergence time that usually occurs in dynamic labeling in a distributed solution? (ICDCS 2017^[2])

[2] J. Wu, "Uncovering the Useful Structures of Complex Networks in Socially-Rich and Dynamic Environments" *Proc. of IEEE ICDCS*, 2017.

Self-Organizing Solutions

Local decision

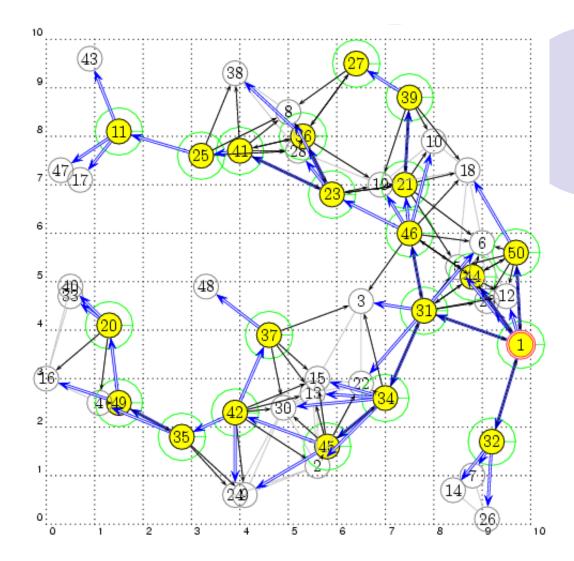
Principles

Agility

 P2P and simple interaction (mostly local and without sequential propagation)

Global functionality

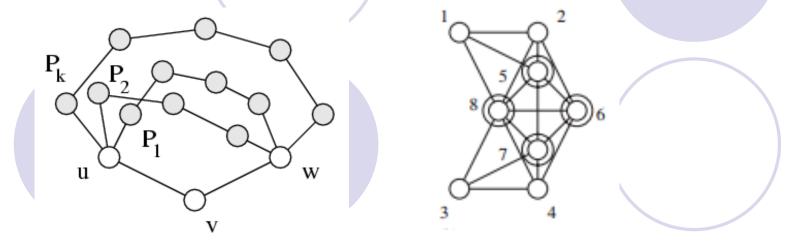
Adaptive, robust, and scalable


P₁: Local interactions with global properties (scalability)

P₂: Minimization of maintained state (usability)

P₃: Adaptive to changes (self-healing)

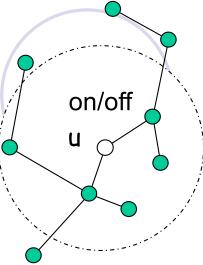
P₄: Implicit coordination (efficiency)


MTD Applications

Connected Dominating Set (CDS) Local decision: backbone nodes based on node priority (ID, degree, ...) Global properties: Connectivity Coverage

Application: Resiliency and Rotation

- Redundancy: K-connected & K-dominated [4]
 - Non-backbone node: K node-disjointed paths for any neighbor pairs (for multiple CDS)



Moving target defense (MTD): CDS rotation

[4] F. Dai and J. Wu "On Constructing k-Connected k-Dominating Set in Wireless Networks," *Proc. Of IEEE IPDPS*, 2005

Self-Healing

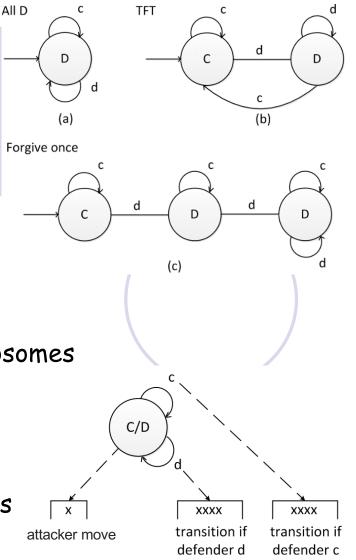
- How can we deal with the complexity of building a structure along with a change of topology? (ICDCS 2017)
- Switched-on/off nodes
 - Status changes in 1-hop/2-hop neighbors only
- Seamless integration in a dynamic network
 - Iterative application of a local solution

5. Game-Theoretic Approaches

• Nash game

- Static games and simultaneous move
- Each player chooses a move which is optimal, given the other player's move

Stackelberg game


- Single-shot dynamic game
- The follower (attacker) moves after observing the leader's (defender) action

• Messaging game

- Single-shot dynamic game
- The sender (defender) sends a message (action) to the receiver (attacker). Message may not be the sender's type.

Repeated Nash Game

 Repeated prisoner's dilemma
 Cooperate (C) or Defecting (D)
 Payoff metrics between 1 and 2
 C₁ (3,3 0,5) D₁ (5,0 1,1)

- Genetic algorithm (ADS 14)
 - 148 bits for 16 recent states: 9-bit chromosomes
 - Mutation and crossover
- From Moore machine to timed automata
 - Adversary's learning through timing analysis
 - Fitness levels with imperfect information

6. Challenges of Cyber Deception

- Limited Applications
 - Projected market to be \$1B by 2020
- Isolation
 - Fully integrated or separated
- Effectiveness
 - How to measure?

Learning

• Ability of both attackers & users

CNS 2019

Limited Applications

- Still limited in cyber deception, why?
 - Differences: cyber deception vs. deceptions in warfare
 - Domain: cyber vs. physical, social, ...
 - Time: different scales, logical clock vs. physical clock (i.e., real time)
 - Space: virtual space vs. physical space
 - Speed: speed of light vs. physical space laws (e.g., movement of a tank)
 - Do not understand the attackers well: known vs. unknown
 - Know your enemies and know yourself
 - How to attract attackers to interact with them in cyberspace?
 - It is relatively easy to engage your enemies in a battle field

CNS 2019

Isolation

Isolation

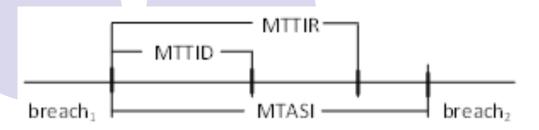
- Fake information only for attackers (assuming legitimate users won't visit)
- Protection layer: detect suspicious users and lead them to fake information

Feedback to attackers

- Feedback should be carefully designed in order to prevent the attacker from detecting the deception
 - Increase the level of deception using return partial valuable data
 - Stop deception to avoid exposure of deception schemes

Effectiveness

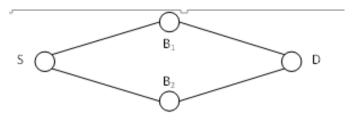
Key


- Learn the behavior of the attacker: learning theory
- Effectiveness measurement for attackers
 - Rate frustration in time and cost
- Effectiveness measurement for systems: dependability
 - Time and place of attacker's action
 - How much attacker's resources are wasted (e.g. num. of packets)
 - How long before attacker breaks the system/ stop acting
 - How much valuable data are breached
 - And more...

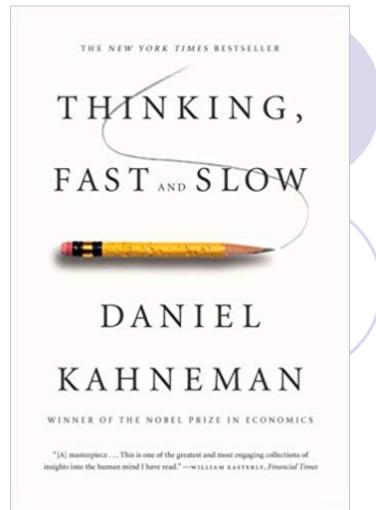
Measurement

Lord Kelvin: If you cannot measure it, then we cannot improve it

Extended dependability that includes security


- Mean time between security incidents (MTBSI)
- Mean time to incident discovery (MTTID)
- Mean time to incident recovery (MTTIR)

Performability: work completed before the next security breach


Degradation

- B₁: Level 1 breach, 1,000 hrs
- B₂: Level 4 breach, 5 hrs

Learning: Cognitive Biases

- Deception is strongly relied on human psychology
 - Cognitive biases
- Cultural biases
 - Power Distance Index (PDI)
 - Uncertainty Avoidance (UAI)

Final Thoughts

- Cyber-deception: friend or foe?
- Misinformation vs. disinformation
 - Disinformation is information that is deliberately false or misleading
 - Recent events in HK, Lebanon, Chile, Spain, ...

Challenges

 Identifying disinformation is not merely about the truth, but about referring the intent (to mislead)

7. Conclusions

- Importance of cyber deception
 Complement to the existing security methods
- Self-organized design for agility
 Basic principles and challenges
- Future
 - A better learning model for attackers/users
 - Security vs. ML
 - Science of security (5 & P 2017)
 - Induction and deduction

Questions

