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Abstract

Spectrum sensing is an essential phase in cognitive radio networks (CRNs). It enables secondary users (SUs)
to access licensed spectrum, which is temporarily not occupied by the primary users (PUs). The widely
used scheme of spectrum sensing is cooperative sensing, in which an SU shares its sensing results with
other SUs to improve the overall sensing performance, while maximizing its throughput. For a single SU,
if its sensing results are shared early, it would have more time for data transmission, which improves the
throughput. However, whenmultiple SUs send their sensing results early, they aremore likely to send out their
sensing results simultaneously over the same signaling channel. Under these conditions, conflicts would likely
happen. Then, both the sensing performance and throughput would be affected. Therefore, it is important to
take when-to-share into account. We model the spectrum sensing as an evolutionary game. Different from
previous works, the strategy set for each player in our game model contains not only whether to share
its sensing results, but also when to share. The payoff for each player is defined based on the throughput,
which considers the influence of the time spent both on sensing and sharing. We prove the existence of the
evolutionarily stable strategy (ESS). In addition, we propose a practical algorithm for each secondary user to
converge to the ESS. We conduct experiments on our testbed consisting of 4 USRP N200s. The experimental
results verify for our model, including the convergence to the ESS.

Keywords: Cognitive radio networks (CRNs), spectrum sensing, game theory, USRP testbed.

1. Introduction
Cognitive radio networks (CRNs) [1] enable secondary
users (SUs) to utilize the licensed spectrum when
primary users (PUs) are not using it. Spectrum sensing
is the key phase in identifying the spectrum availability.
The fundamental task of spectrum sensing is that: when
PUs are using the licensed spectrum, each SU should
be able to detect it, and should quit transmitting on
the corresponding spectrum band. When PUs are not
using the licensed spectrum, each SU should be able to
identify the corresponding spectrum band as available.
The objectives of SUs are to maximize the utilization of
the available spectrum and to prevent interference with
PUs.
The spectrum sensing[2] performance is usually

measured by two metrics: probability of detection,
which denotes the probability of a SU detecting
a PU when the spectrum is occupied by the PU,
and probability of false alarm, which denotes the
probability of a SU falsely declaring a PU as present,
when it is actually not occupied by a PU. To ensure the
spectrum sensing quality, adequate sample collection
is required over a period of time for analysis by SUs.

The time spent by the SU on spectrum sensing, in
turn, will reduce the time spent on data transmission.
The efficiency and performance of spectrum sensing for
all SUs can be improved through cooperative sensing,
because each SU shares its sensing results with others,
and decides whether a spectrum band is available to be
accessed, based on multiple users’ sensing results. The
merits of cooperative spectrum sensing are illustrated
in Fig. 1. In the example, there are three SUs, S1,
S2, and S3, and two active PUs. S1 cannot detect the
existence of the PU T x because of the path fading.
S3 cannot detect the PU Rx. If S3 starts to transmit,
it may cause interference on the PU Rx. However, if
the three perform the cooperative spectrum sensing,
and S2 shares its sensing results with the others, the
interference caused to PUs will be avoided.

Many works have been done on applying game
theory to spectrum sensing, which determines the
relative probability of an SU participating[3, 4, 6]. Since
not all SUs are willing to contribute to cooperative
sensing, the strategy set of each player is usually
{contribute, not contribute}. To contribute indicates
that the SU needs to share its sensing results with other
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Figure 1. Merits of cooperative spectrum sensing.

SUs, or in other words, participate in the cooperative
sensing. The cooperative sensing can ensure the sensing
performance, and save the overall cost in spectrum
sensing among SUs. However, not all SUs are willing to
participate, because they will benefit from the free ride
from others’ sensing results. Whenmore SUs choose not
to contribute, the sensing performance will be affected.
Many works have been done on the decision process of
whether an SU is to contribute its sensing results or not.
However, aside from whether a SU is willing to share

its sensing results or not, it is also important for each
SU to decide when to share. Intuitively, SUs are willing
to share their sensing results early, because this means
that the time spent on this sharing phase is reduced,
and more time can be used for data transmission.
However, conflicts might occur because two or more
SUs may send out their sensing results together, since
the sensing results are usually sent through a common
signaling channel. To ensure the sensing performance,
the conflicted SU needs to back off for a certain amount
of time, and resend its sensing results later. This would
lead to an increase in the time spent on spectrum
sensing, which in turn results in a decrease in the time
spent on data transmission. In a distributed system,
without a base station or central controller, each SU
has to decide whether to share, as well as when to
share, by itself. Moreover, if this is coordinated by the
communication among different SUs, it would cause
more overhead. So, it is better to have each SU decide
when to share, itself, based on its own observation.
In this paper, we consider a CRN, in which the

licensed spectrum band is divided into multiple
subbands and a signaling band. Each SU is assigned
a subband for data transmission, and the signalling
band is for sharing sensing results. Each SU cannot
only decide whether to contribute its sensing results
by sharing with others, but also must decide when
to send out its sensing results if it chooses to
contribute. We model the process as an evolutionary
game, in which each SU aims at maximizing its
throughput, while assuring the sensing performance.
We propose replicator dynamics for each SU, and prove

the existence of an evolutionarily stable strategy (ESS).
We propose a distributed algorithm for each SU to
evolutionarily reach the ESS.
To testify for our algorithm, we build a testbed

consisting of four SUs, and one PU, using five USRP
N200s. We generate a random active sequence for
the PU. Each SU runs our algorithm to conduct
spectrum sensing and data transmission. We collect
data regarding the throughput and the spectrum
sensing performance metrics to verify our model.
The main contributions of our paper are as follows:

• To the best of our knowledge, this is the first
work that models the spectrum sensing as an
evolutionary game, in which the strategy set of
each SU (player) consists not of only whether to
share its sensing results, but when to share its
sensing results.

• We prove the existence of ESS in our game model,
and propose a distributed algorithm for each SU
to converge.

• We construct a testbed consisting of five USRP
N200s, and have the SUs run our distributed
algorithm. Our model is testified, in terms of the
convergence to the ESS.

The remainder of our paper is organized as follows:
In Section 2, related works are introduced. Section
3 describes our network model, and formulates the
objective and constraints of our problem. We build the
game model and propose the algorithm in Section 4.
The experiment settings and results using USRP N200s
regarding our model are introduced in Section 5. We
discussion extensions in Section 6. We conclude our
paper in Section 7.

2. Related Works
In this section, we introduce related works regarding
cooperative spectrum sensing from two aspects. One
is mainly the cooperative models applied on spectrum
sensing. The other one is about the efforts of improving
the cooperative sensing performance.
Many works are done on the cooperative model

design of spectrum sensing [3–10]. [3] proposes an
evolutionary game model for spectrum sensing. In
the model, each user has a probability of performing
sensing. The strategy set for each player is to contribute
or not to contribute. The payoff of each player is
defined based on the throughput, which considers
the time spent on spectrum sensing. Our model is
different from the model in [3] in two aspects. One
is that our strategy set considers both whether to
contribute, and also when to contribute. Another is that
our payoff function considers the influence caused by
conflicts, while sharing the sensing results. [4] studies
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Figure 2. Example of subbands and time slot division.
spectrum sensing as a noncooperative game under the
constraints of sensing performance and QoS. Their
game model is decoupled into a lower-level uncoupled
game, and a higher-level optimization problem. A
distributed hierarchical iterative algorithm is proposed
for their model. [6] has a base station for performing
the scheduling among all SUs. They advocate SUs
to contribute, by assigning higher priorities to be
accessed. Other models, besides those using game
theory, are also widely studied. [8] uses random
matrix theory. Distributed rule-regulated cooperative
sensing is proposed in [10]. [9] adopts cluster theory,
and divides SUs into different clusters to perform
cooperative sensing.
Much of the existing literature focuses on improving

the spectrum sensing performance[11–15]. [11] intro-
duces a spatial diversity technique to reduce the error
probability between SUs and the data fusion center. The
error in their model is mainly caused by the fading on
the reporting channel. [12] aims at solving the problem
when sensing samples are not sufficient for precisely
detecting available channels. They apply matrix com-
pletion and joint sparsity recovery to improve the sens-
ing performance. Cooperative compressed spectrum
sensing is studied in [13]. They propose the belief
propagation, based on compressed spectrum sensing
for the statistical prediction of spectrum availability,
and build a probabilistic graph model. A recent work
in [15] has each SU equipped with multiple antennas.
Each SU decides the availability of a spectrum band
through combining the statistic results obtained by an
improved energy detector. Our work focuses mainly on
improving the sensing performance through choosing a
better strategy during cooperative spectrum sensing.

3. System model & Problem Formulation
In this section, we first introduce our network model.
Then, we formulate the requirements of the spectrum
sensing performance, as well as the objective function
for each SU.

3.1. Network Model
We consider a set of SUs, or nodes, S = {Si} in a CRN.
Each node is assumed to know the total number of
nodes N (N = |S |), and is able to reach another node
within one hop. The privileged band is divided into
N subbands. There is one signaling band. Each user
is assigned one subband for data transmissions, and
shares its sensing results on the signaling band, as
shown in Fig. 2. We assume that each SU, or node,
is equipped with two antennas. One antenna is used
for spectrum sensing, sensing results sharing, and data
transmission. The other antenna is used for listening to
the signaling channel to overhear the sensing results
shared by others, and sending back ACKs when the
sensing results from others are received. The time-
slotted system is used. During each time slot, the SU
needs to first sense the PU’s activity. Since the PU
operates on the whole licensed spectrum band, its
activity can be sensed by any SU. This means that each
SU can choose to cooperate and share the sensing results
over the signaling channel, as to ensure a high detection
probability, and a low false alarm probability.
Each time slot T is divided into three parts: sensing

phase Ts, sharing phase with a maximal length of
Tc, and data transmission phase Td , as shown in Fig.
2. The sensing phase is for each node to sense the
channel independently. We assume that for each node,
the time spent on independent sensing is static. The
sharing phase is for each node to send its sensing results
over the signaling channel. Suppose the minimal time
required for sending the sensing results when there
is no conflict is tc. Then Tc is divided into ⌈Tctc ⌉ sub
slots. For a certain SU, it can choose whether to share
its sensing results or not. If a node decides not to
share its sensing results, its sharing time length would
be 0. Also, if it chooses to cooperate with others, it
needs to choose one sub slot of Tc to send the sensing
results. The sensing results are confirmed to be received
successfully through the ACKs. The sharing phase of a
node ends as long as one ACK is received. Before that,
the current SU keeps listening to the signaling channel
for others’ sensing results. The transmission phase is
for data transmission. Therefore, as more time is spent
on spectrum sharing, less time will be left for data
transmission.

3.2. Objective & Constraints
The objective for each node in our model is to maximize
the throughput of data transmission, while ensuring
the spectrum sensing performance. Next, we will
formulate the constraints regarding spectrum sensing
performance, and the throughput for each node.
First, we use PH0

to denote the probability that
the PU does not occupy the licensed spectrum band,
which means that SUs can access and transmit on their
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subbands. Then 1 − PH0
denotes the probability that

the PU occupies the licensed channel, which means
none of the subbands are available. We assume that
each SU uses an energy detector for spectrum sensing.
Suppose the PU activity is a random process with
mean 0 and variance σ2

s . Suppose the additive Gaussian
white noise is a circularly symmetric complex Gaussian
with mean 0 and variance σ2

w. For a single SU Si , the
probability of detection pd(Si) and false alarm pf (Si)
can be calculated[16]:

pd(Si) =
1
2
erf c((

λ

σ2
w
− λ − 1)

√
K

2(2λ + 1)
), (1)

pf (Si) =
1
2
erf c(

√
2λ + 1etf −1(1 − 2P̄D ) +

√
K
2
λ), (2)

where erf c() denotes the complementary error func-
tion; erf −1() denotes the inverse function of the error
function; K is the number of collected samples; P̄D is
the given target detection probability; λ denotes the
received signal-to-noise ratio (SNR) of a PU under H1,
which is equal to h2σ2

s /σ
2
w, and h is the gain of the

channel from the PU’s transmitter to the SU’s receiver,
which is assumed to be slow flat fading.
We assume that each SU overhears others’ sensing

results on the signaling channel. The channel availabil-
ity is decided by both its own sensing results, and the
others’ collected sensing results. The data transmission
starts after the sharing phase ends, and the current
subband is identified as available. The fusion rule of
deciding whether the channel is available or not can be
different (AND, OR, Majority, etc.). Suppose we apply
the OR rule here. Other fusion rules can be applied
if necessary. For a SU Si , its probability of detection
and false alarm after the sensing results sharing phase
would be:

Pd(Si) = 1 −
N∏
k=1

(1 − pd(Si)A(Si , Sk)), (3)

Pf (Si) = 1 −
N∏
k=1

(1 − pf (Si)A(Si , Sk)), (4)

where A(Si , Sk) = 1 means that the sensing results of a
SU Sk is received by a SU Si before Td starts; A(Si , Sk) =
0 otherwise.
The expected throughput for a SU Si under PH0

is
defined as [17]:

U (Si) = PH0
(1 − Ts+δ(tr )

T )(1 − Pf (Si))CH0
(Si) + (1 − PH0

)

(1 − Ts+δ(tr )
T )(1 − Pd(Si))CH1

(Si),
(5)

where CH0
(Si) is the data rate of SU Si underH0, CH1

(Si)
is the data rate of SU Si under H1, and δ(tr ) denotes

the time used to send the sensing results. This is due
to the fact that conflicts may occur when more than
one SU sends the sensing results together. Then they
would need to backoff and resend the sensing results
later. We use δ(tr ) to represent the total time spent on
this sensing results sharing, and obviously 0 ≤ δ(tr ) ≤
Tc. Since CH1

(Si) is much smaller than CH0
(Si), due to

the interference from the PU, the second term can be
omitted. Therefore, the expected payoff for Si can be
approximated as:

U (Si) = PH0
(1 − Ts + δ(tr )

T
)(1 − Pf (Si))CH0

(Si). (6)

The objective of each SU is to maximize its ownU (Si),
while satisfying the following constraints:

Pd(Si) > α and Pf (Si) < β, (7)

where α and β are the required thresholds for Pd(Si) and
Pf (Si).

4. Game Model
Game theory is widely used for analyzing the
strategic interactions among multiple players[18, 19].
In this section, we first introduce some main concepts
regarding the evolutionary game. Then we explain how
to model our problem as an evolutionary game, and
prove the existence of ESS. Finally, we provide the
algorithm for each SU, so that it can decide its strategy.

4.1. Evolutionary Game
The key insight of evolutionary game theory is that
many behaviors involve the interactions of multiple
strategies of different players, and the success of any
strategy depends on how it interacts with others.
Therefore, the payoff of an individual strategy should
be evaluated in the context of all players that it interacts
with, rather than be measured in isolation. Similar
to the NASH equilibrium in classic game theory, the
analogous notion in evolutionary game theory is an ESS.
We have the formal definition of an ESS, as follows [20]:

Definition 1. A strategy q∗ is an ESS if and only if, for any
strategy q , q∗ and all θ > 0,

U (q∗, θq + (1 − θ)q∗) > U (q, θq + (1 − θ)q∗),

where U (q∗, θq + (1 − θ)q∗) denotes the payoff of a
player who adopts q∗, while the θ portion of the others
adopt q, and the remaining portion adopt q∗.

From the definition, we can see that the strategy is an
ESS, which tends to persist once it is adopted by most
players. Due to dynamics in the spectrum availability
in CRNs, there is not a static stable strategy for each
user conducting spectrum sensing. Therefore, we apply
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the evolutionary game here to solve the problem. The
strategy set of our game model is not only whether to
contribute or not, but when to share the sensing results
if the secondary user decides to contribute. If a node
decides not to contribute but always take the “free ride”,
its sensing performance should be affected. Also, when
to share should also be decided by the node to gain
better payoff. We also consider the influence on the
throughput caused by conflicts in the signaling channel
during the sharing process of sensing results.

4.2. Model Construction and Analysis
The SUs are players in our game. We first give the
strategy set and payoff for each player. Then, we prove
the existence of the ESS.

Strategy Set. Different than traditional works,
the strategy set here is no longer limited
to {contribute, not contribute}, but has more
considerations regarding when to share. Specifically,
as introduced in Sec. 3, each user needs to pick a sub
slot from Tc to send its sensing results. Since each node
tries to maximize its throughput, it would be more
willing to increase the time spent on data transmission,
which means the time spent on the sensing results
sharing phase is less. Thus, intuitively, an SU tends to
send its sensing results during the early sub slots of
Tc, or even may not share its sensing results, in order
to have more time for data transmission. However,
if more and more SUs choose not to contribute, the
sensing performance constraints in Eq. 7 cannot be
satisfied. If many SUs choose the sub slots in the early
part of Tc, more conflicts would occur in the signaling
channel, and the interfered SUs would need to resend
their sensing results. Then, the Tc is delayed and Td is
reduced, which results in the decrease of throughput.
Therefore, in our model, the strategy q for each SU

needs to contain not only either C (share its sensing
results to contribute) or D (deny to contribute), but
also when to send out its sensing results over the
signaling channel. We have the following definition of
the strategy set:

Definition 2. The strategy set of an SU is {(C, j)}, where
j ∈ {0, 1, ..., ⌈Tctc ⌉}. j = 0 means the SU refuses to share
its sensing results. Otherwise, the SU sends its sensing
results at the jth sub slot of Tc.

Payoff. The payoff is defined based on the throughput
of Eq. 6. For a secondary user Si that adopts strategy
(C, j), we have

δ(tr ) = jtc + ∆,

where ∆ is the time spent on backing off and resending
the sensing results of Si when conflicts happen. The
value of ∆ depends on the strategies chosen by others.

To replace the δ(tr ) in Eq. 6, the payoff for Si that adopts
strategy (C, j) is:

U(C,j)(Si) = PH0
(1 −

Ts + jtc + ∆

T
)(1 − Pf (Si))CH0

(Si).

(8)

Analysis. Suppose the mixed strategy adopted by user
Si is x(Si), which contains whether and when to share
the information. Since the starting point of Tc is the
same for all SUs, the strategy set is homogenous for all
SUs. Suppose that during a time slot t, the probability
of an SU Si to adopt strategy (C, j) is: p(C,j)(Si). The
time evolutionary dynamic ṗ(C,j)(Si) that determines
p(C,j)(Si) is:

ṗ(C,j)(Si) = [Ū(C,j)(Si ,−Si) − Ūx(Si )(Si)]p(C,j)(Si), (9)

where Ū(C,j)(Si ,−Si) is the average payoff for Si playing
pure strategy (C, j), and other SUs playing strategies
other than Si ’s strategy; Ūx(Si )(Si) is the average payoff
of user i using mixed strategy xSi . The intuition for
these dynamics is that if Si achieves a higher payoff
using pure strategy (C, j), strategy (C, j) will be adopted
more frequently. The growth rate is proportional to the
excess of pure strategy (C, j) and the average payoff of
the mixed strategy.
Next, we use y(C,j) to denote the proportion of nodes

that adopt the pure strategy (C, j) at a given time
t. The evolutionary dynamics ẏ(C,j) of y(C,j) is given
by the following equation, according to the replicator
dynamics:

ẏ(C,j) = [Ū(C,j) − Ū ]y(C,j), (10)

where Ū(C,j) is the average payoff of players who use
strategy (C, j), and Ū (x) is the average payoff of all
players. The Ū(C,j) depends on both of the populations
that adopt (C, j). If more players adopt the same
(C, j), then conflicts will happen, and the decrease in
payoff will be shown in the replicator dynamics. In
the following, we prove that starting from any y∗, the
replicator dynamics converges to an ESS.

Theorem 1. There exists an ESS to our game model.
Specifically, the replicator dynamics could converge to
y∗(C,0) =

1
N , y∗(C,k) = 1/min{N, ⌈Tctc ⌉}, k ∈ [1, min{N, ⌈Tctc ⌉}]

is a unique and consequent number for all users, or
y∗(C,0) = σ, y∗(C,l) = (1 − σ )/min{N, ⌈Tctc ⌉}, l is a unique and

consequent number from 1 to min{N, ⌈Tctc ⌉}, and σ is the
probability of choosing not to share sensing results.

Proof. The first step is to prove the existence of an ESS.
Since the maximal number of pure strategies for each
SU is 1 + ⌈Tctc ⌉, the overall strategy set is closed. Since
the probability of a certain SU Si to adopt strategy c ∈
{(C, j)} is xc,Si (t), assume that the backoff window size is
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Table 1. Payoff table of S1 and S2

(C, 0) (C, 1) (C, 2)

(C, 0) 0, 0 Θ1,Θ2 − Ktc Θ1,Θ2 − 2Ktc
(C, 1) Θ1 − Ktc,Θ2 Θ1 − K(tc + ∆1),Θ2 − K(tc + ∆2) Θ1 − Ktc,Θ2 − 2Ktc
(C, 2) Θ1 − 2Ktc,Θ2 Θ1 − 2Ktc,Θ2 − Ktc Θ1 − K(2tc + ∆1),Θ2 − K(2tc + ∆2)

doubled after each conflict for a single user during one
time slot, and the initial backoff window size is tc, then
δ(tc) is a linear function of tc. Therefore, δ(tc) will not

affect ∂2U (Si )
∂S2i

. From [4], we have ∂2U (Si )
∂S2i

> 0. Therefore,

an ESS exists.
Secondly, all players are treated equally. We use σ and

1 − σ to first distinguish the probability of users that
do not share their results, and users that share sensing
results. From [3], we know that there three cases exist:

1. σ = 0: Ts + δ(tc) = 0;

2. σ = 1: all nodes choose to share their sensing
results;

3. σ is the solution to the derivation of the payoff
difference among users who choose to share and
not to share[3].

When case 2 happens, for any Si that satisfies y∗(C,k) =

1/min{N, ⌈Tctc ⌉}, k ∈ [1, min{N, ⌈Tctc ⌉}] is a unique and
consequential number for all users, Si ’s strategy is
(C, ki). If Si switches to another strategy (C, k′i ), there
are two situations:

• No conflict happens:

∆U (Si) = PH0
(α − Tc+δ(t′c)

T )(1 − Pf (Si))CH0

−PH0
(α − Tc+δ(tc)

T )(1 − Pf (Si))CH0
,

t′c > tc because k ∈ [1, min{N, ⌈Tctc ⌉}]. Therefore,
∆U (Si) < 0, which causes a decrease in Eq. 10.

• A conflict happens between SU Si and SU Si′
that chooses (C, k′i ). The new tc for both Si and
S ′i would increase because of the backoff policy,
which also causes a decrease in Eq. 10.

For case 3, the value of σ is solved in [3]. The part of
y∗ is similar to that in case 2.

We give an example here to describe our game model.
Suppose there are two players, S1 and S2. There are 2
sub slots in Tc. The strategy set is {(C, 0), (C, 1), (C, 2)}.
Without loss of generality, assume CH0

(Si) and Pf (Si) in
8 are static. Then the payoff of the two players underH0
can be written as Θi − K(jtc + ∆), where K is constant.
We also assume that the sensing results of a single SU
cannot assure the performance requirements in Eq. 7.

The payoff table of S1 and S2 is shown in Table 1. There
are 3 main categories regarding the different strategies
picked by S1 and S2:

• t1 = t2: If both are equal to 0, then neither of
them share their sensing results. Without 7 being
satisfied, the payoff is 0. If both are equal to 1, only
one of them can resend successfully by backing
off 1 sub slot to send. The payoff for the player
that resends successfully would be 0, since it does
not receive the other’s sensing results to ensure
Eq. 7. If both are equal to 2, since the length of Tc
has only 2 sub slots, neither of the sensing results
can be shared. We can treat ∆ in two cases as
infinity here, which means that both payoffs are
approximately 0.

• t1 = 0, t2 = 1 or 2 or t1 = 1 or 2, t2 = 0: Since
we assume that the sensing results of a single
SU cannot ensure the sensing performance
requirements, the one that shares would have
payoff 0 with an infinite ∆i . The other one that
does not share would have the maximal payoff Θi .

• t1 = 1, t2 = 2 or t2 = 2, t1 = 1: Both sensing results
are shared without conflicts. The requirements in
Eq. 7 are satisfied. The payoff equals to Θi minus
the time slots spent on sharing.

In the first two situations, they are not ESS, because
the user with payoff 0 can change its strategy in the next
round to get a better payoff. In the third situation, the
change of strategy by a single SU cannot get a higher
payoff in the next round, because conflicts would occur,
causing the payoff to be 0 in our example. If we have
more users here, the second situation is also able to
become an ESS. This is because, not all SUs’ sensing
results need to be shared to satisfy sensing performance
constraints in Eq. 7.

4.3. Evolutionary Algorithm
The evolutionary dynamics for each player are in

Eq. 9. To implement a distributed algorithm for each
player, we need to define a practical way to calculate
Ū (Si). Therefore, we define a valid time window T̃ .
Only the payoff within T̃ will be counted to calculate
the approximate values of Ū(C,j)(Si) and Ū (Si), denoted
as
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Algorithm 1 Evolutionary algorithm for Si
1: t0 = 0, ∀(C, j), p(C,j)(Si) = p0
2: temp = 0
3: while NOT an ESS do
4: t̃ = t0
5: while t̃ < t0 + T̃ do
6: Choose (C, j) with probability p(C,j)
7: Calculate U(C,j)(Si) using Eq. 8
8: t̃ = t̃ + T
9: t0 = t0 + 1

10: Calculate Ū(C,j)(Si) and Ū (Si)
11: ∀(C, j), update p(C,j),Si using Eq. 13
12: if temp ∗ (Ū(C,j)(Si) − Ū (Si)) < 0 then
13: µ = µ/2
14: temp = Ū(C,j)(Si) − Ū (Si)

Ū(C,j)(Si) =

∑t0+T̃
t̃=t0

U(C,j)(Si)B(C,j)(Si)∑t0+T̃
t̃=t0

B(C,j)(Si)
, (11)

Ū (Si) = ⌈
T̃
T
⌉
t0+T̃∑
t̃=t0

U (Si , t̃), (12)

where t0 is the first time slot of a new time window T̃ ;
B(C,j)(Si) is the indicator function which is equal to 1
when Si adopts (C, j) and is 0 otherwise; USi (t̃) is the
throughput of Si during t̃; T denotes the default length
of one time slot, as indicated before.
Therefore, the probability p(C,j)(Si) of a user Si to

adopt the pure strategy (C, j) can be updated using
Eq. 13. The value of the stepwise µ is not constant.
To reduce the oscillation, µ would be divided by 2 if
the value of the Ū(C,j)(Si) − Ū (Si) changes from positive
to negative, or from negative to positive, during two
adjacent time slots. The initial value of µ would be
studied in our experiment.

p(C,j),Si ((t̃ + 1)) = p(C,j),Si (t̃)
+µ(Ū(C,j)(Si) − Ū (Si))p(C,j)(Si , t̃)

(13)

The algorithm for each player to reach the ESS is in
Algorithm 1. The player tries to converge to ESS within
the loop from Step 3 to 14. In Step 4, the new starting
time of calculating the average payoff is initialized.
From Step 5 to 10, we calculate the average payoff only
within the window size T̃ . The starting point of the
window moves forward by 1 in Step 9. At the end of
T̃ , each player uses the above equations to update the
probability of choosing each strategy in Step 11. From
Steps 12 and 14, the value of µ regarding to the stepwise
is adjusted. Step 12 decides whether the player has
passed the ESS. If it happens, the value of µ would be
reduced by half, which means the stepwise is reduced.
The process will end when reaching the ESS.

Figure 3. The positions of four USRP N200s.

Figure 5. Secondary user receives at 1.3GHz.

Figure 6. Secondary user receives at 1.30025GHz.

Figure 7. Secondary user receives at 1.3005GHz.

5. Experiment
In this section, we testify for our model using our
testbed of USRP N200s/Gnuradio. We first introduce
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Figure 4. Primary user sends at multiple bands.

Figure 8. Sensing results according time at 1.30025GHz.

Figure 9. Sensing results according time at 1.3005GHz.

the structure and parameter settings of our experiment.
Then, we present the experimental results.

5.1. Environment Settings

Our experiment consists of four USRN N200s. Three
USRPs simulate three SUs, and each works on a sub
band. The remaining USRP simulates a PU. We place
them at different positions. The distance between an SU
and a PU ensures that the sensing results of a single SU
is not sensitive enough to detect the signal from the
PU. Their relative positions are shown in Fig. 3. The
PU occupies multiple bands at the same time, while

each SU works on a single subband. As shown in Fig.
4, the PUs occupy wide bands. The received signals
on each SU have different central frequencies (1.3GHz,
1.30025GHz, 1.3005GHz), as shown in Figs. 5, 6, and 7.
The green lines are the peak points.
We set the time slot length as 20s here (for better

synchronization reasons). The static sensing time is
set as 5s. The maximal length of Tc is 5s, which is
divided into 5 sub slots. The window size for each
SU to calculate the average throughput is 4 slots. The
bandwidth of each SU is 50k bps. The gain at each
receiver is set as 20. We generate an active sequence
for the PU with PH0

equal to 0. The thresholds for

8
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probability of detection and probability of false alarm
are set as 0.9 and 0.1, respectively. Our experiment
works as follows:

• The PU sends out signals while in its active slots.

• SUs sense their own sub band for 4s. We set
the threshold as −60 dB, as to decide if the PU
is active. The sensing results are sharing on a
different subband with a central frequency of
1.30075 GHz.

• After the sharing phase ends, and if it is
successful, we calculate how much time remains
in the current time slot. If the sharing phase
does not succeed, the time left is treated as 0.
The payoff is denoted by the time left for data
transmission in each time slot, instead of the
real throughput. This is reasonable, based on the
payoff definition in Eq. 8.

5.2. Experimental Results
In this section, we first testify to the importance
of sharing sensing results. Then, we evaluate the
convergence based on different initial probabilities of
choosing different strategies, and different values of
step size.

Unreliability of single sensing. We have the PU to be
active and plot the detecting results of each SU,
according to the time. The results are shown in Figs. 8
and 9. Due to space limitations, we only show two SUs’
receiving results here. The blue parts indicate that no
signal is detected, while the green parts indicate that a
signal is detected. From the two figures, we can see that
the sensing results by a single SU are unstable. Here, for
the SU receiving at the central frequency 1.30025GHz,
the blue and green parts are mixed, although the PU
is active. If this node makes a decision based on its
own sensing results, it is possible that it mistakes
the unavailable band for an available one, and causes
interference to the PU.

Performance versus different initial probabilities. Since the
maximal number of sub slots in Tc is 5, the size of
the strategy set is 6 for each SU, which is (C, j) and
0 ≤ j ≤ 5. We generate two different situations for the
initial probabilities of choosing each strategy. One is
the random choice, whichmeans each initial probability
is equal to 1/6. The second situation is that initial
probabilities for 6 strategies are sorted. (C, 0) has the
largest initial probability to be chosen, while (C, 5) has
the minimal value. The results are shown in Figs. 10
and 11. We can see that under both settings, all three
users converge to one pure strategy, and achieve a stable
data transmission time, which indicates a stable payoff.
We also testify to the sensing performance in Tables 2
and 3. The probability of detection converges to 1. The

probability of false alarm is low initially. It converges to
around 0.01.

Performance versus different settings of step size. We also
evaluate the influence caused by different values of step
size u. We set four different values for u, and calculate
the time left for data transmission for SU 1 under the
random settings of initial probabilities. The results are
shown in Fig. 12. We can see that all four lines converge
to the same point, eventually. This is because the value
of u is adjusted (reduced by half) during the process.
Also, from Fig. 12, we can see that when u = 3 or 4, the
line has oscillation instead of a continual increase when
u = 1 or 2. Among these four settings, u = 2 achieves
the best result.

5.3. Summary of Experimental Results
We implement a testbed consisting of four USRP
N200s. One USRP node simulates the PU, and works
on multiple subbands simultaneously. Three other
USRP nodes simulate SUs. Each works on a subband,
and keeps listening to their subband. The sensing
results are shared through a common channel. We
testify the convergence under different settings of
initial probabilities of choosing each strategy. Each SU
converges to its stable strategy. We also calculate the
probabilities of detection and false alarm, which satisfy
both constraints. Finally, we evaluate the influence
caused by different settings of step sizes. The larger
the initial value of step size, the more oscillated
the performance will be. u = 2 achieves the best
performance under our settings.

6. Extensions
In this section, we introduce two possible extensions
for our model. One is about the dynamic sensing time.
Another is about achieving the real throughput for our
testbed.

6.1. Dynamic Sensing Time
In our current game model, each SU spends the same
amount of time for spectrum sensing. This means that
the average amount of sensing samples is the same for
every SU during the sensing phase in one time slot.
In our settings, the sensing samples for one single SU
cannot ensure the performance requirements regarding
the probability of detection and false alarm. Therefore,
the sharing phase is necessary.
However, instead of setting the sensing time as a

constant for all SUs, one possible extension is to have
the sensing time be dynamic. Each SU can decide,
by itself, how long the sensing time will last. This
brings two main problems to our current game model.
First, the strategy set would be changed. Because the
starting point for the sharing phase is changed, it is
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Figure 10. Random initial values.
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Figure 11. Sorted initial values.
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Figure 12. Convergence under different u.

Table 2. Probability of Detection

5 10 15 20 25

random 0.850 0.924 0.985 1.0 1.0

sorted 0.800 0.901 0.961 1.0 1.0

Table 3. Probability of False Alarm

5 10 15 20 25

random 0.030 0.053 0.025 0.016 0.011

sorted 0.044 0.034 0.020 0.025 0.015

also different for different SUs. The new strategy set
would have one more dimension, as to indicate the
ending of the sensing phase, e.g., {(C, k, j)}, where k is
the time slot at the end of the sensing phase, and j still
denotes when the sensing results are sending out (with
the new starting point of the sharing phase). Besides
the changes in the strategy set, the payoff function
is different from our existing model. Ts is no longer
static, but is related to k in the chosen strategy. ∆ is
also changed, because the starting points of the sharing
phases for different SUs are different, which means the
conflicts only happen on the overlaps of the sharing
phases. Based on the changes, we need to find the new
evolutionary dynamics, and a practical algorithm for
each SU to converge.

Testbed Extension. In our current experiment, we
calculate the time left for data transmission during each
time slot, to approximately represent the throughput
performance. However, we can introduce more USRP
nodes, and test the real throughput.
The main challenge is the coordination between the

sending node and the receiving node. In our current
settings, each USRP that represents a SU has its own
working subband. It keeps sensing for a static time over
its subband, and then shares the sensing results over the
signaling channel. If we introduce more USRP nodes

to implement sessions with the current USRP nodes,
a coordination scheme is needed between the senders
and receivers. A pair of one sender and one receiver
needs to know each other’s working subband before
data transmission. Moreover, when a sender wants to
transmit data to a new receiver, it needs to coordinate
with the new receiver again, regarding the transmission
subband. One possibility is to coordinate through the
common signaling channel. However, more conflicts
would be brought on the signaling channel. The payoff
would also be affected. Therefore, it is impractical to
coordinate through the signaling channel.
The above problem can be possibly solved through

both centralized schemes. We would implement
another USRP serving as a centralized controller. The
controller keeps listening on its own subband, the
information of which is known by all others. Also, the
scheduler knows all the other nodes’ current working
subbands. Every time a new session is created, the
sender sends a request to the scheduler over the
scheduler’s channel. Then, the scheduler sends the
information to the receiver over the receiver’s subband.
After the receiver switches to the sender’s subband, it
sends back an ACK directly to the sender, over the
sender’s subband. Then, the new session is created. If
the sender does not receive ACK, it waits for a certain
period of time, and sends the request again later.

7. Conclusion
In this paper, we consider both whether-to-share and
when-to-share problems, regarding the cooperative
spectrum sensing in CRNs. We build an evolutionary
game model, in which each SU is treated as a player,
and the payoff is the throughput.We extend the strategy
set for each SU, and define the payoff based on the
time left for transmission. We prove the existence of
the evolutionary stable strategy (ESS). Then, a practical
algorithm is proposed for each SU to converge. A
constant window is defined for each SU to calculate
its average throughput. In addition, we construct a
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testbed using 4 USRP N200s. One simulates the PU,
and the other three simulate the SUs. We evaluate
the performance under different settings, regarding
the initial probabilities of choosing each strategy. The
performance is measured based on the length of time
left in each time slot for data transmission. We also
show that the probability of detection and false alarm
satisfy the constraints. Finally, we study the influence
of different values of step sizes on convergence to the
ESS. A more in-depth study of extensions is needed,
including an implementation of verification of their
effectiveness.
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