T-dominance: Prioritized Defense Deployment for BYOD Security

IEEE CNS 2013

Wei Peng1 Feng Li1 Keesook J. Han2 Xukai Zou1 Jie Wu3

1Indiana University-Purdue University Indianapolis

2Air Force Research Laboratory

3Temple University

14 October 2013
bring your own device (BYOD)

- an enterprise IT policy rising with blackberry/smartphones...
- ...that encourage employees to use their own devices to access the enterprise IT infrastructure at work
- some cited justifications
 - employees’ demand/satisfaction
 - decreased IT acquisition and support cost,
 - increased use of virtualization
- security concerns
 - “bring your own virus”
 - inadvertently or maliciously bring malware on a personal device to other devices...
 - ...through the enterprise network behind firewalls
prioritized defense deployment

motivation

▷ BYOD devices need to be monitored and audited for malware protection...
▷ ... but constantly doing so on all devices:
 ▷ negates the perceived convenience
 ▷ is costly to implement

idea

▷ observation: some device are more security-wise representative
▷ prioritize these devices for defense deployment

question

▷ How to define security-wise representative?
▷ How to find these users?
T-dominance

as a structural property on temporal-evolving topology

Fig. 1: T-dominance exploits temporal-spatial patterns of BYOD devices to implement prioritized defense deployment. The black node T-dominates the white ones for $T > 4$.

the black node is security-wise representative...

...because it T-dominants the white nodes with $T = 4$
T-dominance

as a distributed algorithm that constructs a T-dominating set

Fig. 1: T-dominance exploits temporal-spatial patterns of BYOD devices to implement prioritized defense deployment. The black node T-dominates the white ones for $T > 4$.

the T-dominating set election process is carried out by **individual** nodes... ...with knowledge of **local** (rather than global) neighborhood
Fig. 1: T-dominance exploits temporal-spatial patterns of BYOD devices to implement prioritized defense deployment. The black node T-dominates the white ones for $T > 4$.

more stringent security mechanism deployed on the T-dominating set . . .

. . . provides a quantified (by T) security trade-off . . .

. . . between deployment cost and detection delay
T-dominance structural property

- given connectivity history\(^1\), expected encounter delays (reachability) $r(u, v)$ between devices $u, v \in P = \{u, v, w, \ldots\}$ can be estimated

- $G^T(P)$ (reachability graph filtered by T): undirected graph with P as vertices and $r(u, v)$ as weight on edge (u, v), and all edges with weight greater than T removed

Definition (T-dominance)

Let P be a set of devices and A be a subset of P called the agents. Agents A are said to T-dominate the smartphones P at moment t if, for any $u \in G^T(P)$, either $u \in A$ or u is a neighbor of an agent $a \in A$ in $G^T(P)$.

- example: prioritizing a T-dominating set for deploying a security patch will have the patch reach all devices within a maximal delay of T with a high probability

\(^1\) a built-in feature of many smartphones
info exchange upon encounters...

- agent keeps info on encountered devices; non-agent does not
- time-stamped info: device ID, agent/non-agent status, connectivity history
- info helps make the following activation/deactivation decisions
- \(u \) constructs its domination graph \(G_D(u) \), based on exchanged info

Fig. 2: After exchanging auxiliary information during their encounter, agent \(u \)'s scope expands to include another agent \(v \)'s direct acquaintance and vice versa.

... plus 2 circumstances

- agent meets agent: deactivation
- agent meets non-agent: activation
T-dominance distributed algorithm

deactivation

- when agent u meets another agent (after u has been an agent for at least a period of W), u decides whether to deactivate itself
- $N[w] = N(w) \cup \{w\}$: the closed neighborhood of $w \in G_D(u)$

2 alternative decision rules for u

- **Individual.** u deactivates itself if there exists an agent w with higher priority in $G_D(u)$ so that $N[u] \subseteq N[w]$.
- **Group.** u deactivates itself if there exists a connected set of agents U in $G_D(u)$, each of which has a higher priority than u, so that $N[u] \subseteq \bigcup_{w \in U} N[w]$. Such a U is said to be a replacement of u.

2 alternative priority comparisons

- **Strong.** w has a priority higher than u if 1) $N_n \neq \emptyset$; 2) $\exists x \in N_n, r(x, w) < r(x, u)$; 3) $\forall x \in N_n, r(x, w) \leq r(x, u)$.
- **Weak.** w has higher priority than u if 1) $N_n \neq \emptyset$; 2) $\sum_{x \in N_n} r(x, w) < \sum_{x \in N_n} r(x, u)$.
T-dominance distributed algorithm
activation

- when agent u meets non-agent v, u decides whether to activate v
- problem: indiscriminate activation wastes resources in thrashing
- solution: activate v **unless it is highly likely to be deactivated later**

2 consecutive stages
- **Deactiviability.** u pretends v is an agent, plays v’s role in u’s own perspective $G_D(u)$
 - if v is not to be deactivated, then u activates v
 - if v is to be deactivated, then u proceeds to the next stage.
- **Coverage.** u estimates v’s *unique* coverage (in addition to the agent set $A(u)$ that u knows of) and activates v with a corresponding probability
 - $c(v \setminus A(u))$: v’s unique coverage; $c(A(u))$: $A(u)$’s total coverage
 - u activates v with a probability:

$$1 - \exp\left(-\frac{c(v \setminus A(u))}{c(A(u))}\right).$$
Property (Correctness)
The T-dominance structural property is maintained by the algorithm.

Property (Localization)
An agent makes its activation/deactivation decisions locally.

Property (Temporal robustness)
Correctness is achieved even if the info obtained from other devices is outdated.
Theorem
If an agent a deactivates itself in its local (and potentially outdated) view at the moment t, then, in the global (and updated) view, each of the devices T-dominated by a, including a itself, is still T-dominated by some agent at t.
evaluation
data set and preprocessing
dataset

- from the Wireless Topology Discovery (WTD) project\(^2\)
- collected from over 150 UC San Diego freshmen using hand-held mobile devices over an 11-week period
- periodic Wi-Fi AP scanning and association results were recorded every 20 seconds

preprocessing

- consecutive association records (every 20 seconds) are combined into a single session
- took the first 200 record entries
- use the first 30% of the data (with 190 nodes) to accumulate connectivity history
- some nodes are randomly selected as initial agents
- simulate the activation/deactivation processes

\(^2\)http://sysnet.ucsd.edu/wtd/data_download/wtd_data_release.tgz
evaluation
agent election results

Fig. 3: A representative T-dominating agent election process with 5, 10, and 15 initial agents (out of the 190 nodes) and $T = 18,000$ s (5 hours). Agent set size is normalized by epidemic activation strategy: the y-axis is shown in normalized agent set size (NASS). Strategy notations: gs (Group-Strong), gw (Group-Weak), is (Individual-Strong), iw (Individual Weak).

agent election is normalized by the epidemic activation strategy
evaluation
prioritized defense deployment effectiveness

can compare at the same rate
- T-dominance-based strategic malware sampling/patching
- random sampling/patching

on different malware propagation model
- epidemic propagation
- static/no propagation
evaluation

prioritized defense deployment effectiveness

Fig. 4: Delay from the malware breakout to the first patching of a malware-infected smartphone. The patching rate is once per ten seconds. The row heading shows initial agent number before malware election; the column heading shows the number of malware-infected smartphone at the malware breakout. Strategy notation: er (epidemic malware, random sampling/patching), es (epidemic malware, strategic sampling/patching), sr (static malware, random sampling/patching), ss (static malware, strategic sampling/patching). The y-axis is shown in a log$_{10}$ scale.

the delay till first detection

T-dominance strategic sampling can detect malware faster than random sampling
the number of malware infected nodes averaged over the whole time period T-dominance strategic patching is more effective in preventing malware epidemic than random patching
take-aways

- prioritized defense deployment provides a less-intrusive BYOD security solution
- \(T \)-dominance provides a quantified trade-off between defense deployment cost and time-to-full-coverage
- the activation/deactivation distributed algorithm preserves the \(T \)-dominance structural property with temporal robustness
- \(T \)-dominance-based strategy sampling/patching is more effective than random sampling/patching
thank you
connectivity log entry \((ST = s, ET = e, APID = AP_i)\): the device is associated with access point \(AP_i\) from time \(s\) to \(e\)

- given \(u\) and \(v\)'s connectivity logs, find encounter durations in time window \([t - W, t]\) to be \([s_1, e_1], [s_2, e_2], \ldots, [s_k, e_k]\) (define \(s_{k+1} = s_1 + W\))

- at time \(m\), delay until the next encounter:

\[
g(m) = \begin{cases}
0 & \exists i, \text{s.t. } s_i \leq m \leq e_i, \\
\min_{s_i \geq m} (s_i - m) & \text{otherwise}.
\end{cases}
\]

- reachability between \(u\) and \(v\) as expected delay:

\[
r(u, v) = \frac{\int_{s_1}^{s_{k+1}} g(m) \, dm}{W} = \frac{\sum_{i=1}^{k} (s_{i+1} - e_i)^2}{2W}.
\]

back to \(T\)-dominance definition