On the RSU-based Secure Distinguishability Among Vehicular Flows

Wei Chang^{*}, Huanyang Zheng^A, and Jie Wu^A * Department of Computer Science, Saint Joseph's University, USA ^A Department of CIS, Temple University, USA

Introduction

- Future Smart Cities
 - Static roadside sensors
 - Moving vehicles
- Vehicular data is a continuous observation along the vehicle's trajectory.
- Multiple Applications:
 - Crime scene reconstruction
 - Smart traffic flow monitoring
 - Environmental monitoring

Introduction: motivation example

How can we guarantee that the claimed data indeed comes from a car in vehicular flow f2 rather than flows f1 or f3?

Attack Model

- Attackers are non-cooperative.
- Attacking goal:
 - An attacker, who was driving along vehicular flow f', tries to pretend that he was in flow f.

Introduction: RSU-based location proofs for vehicular trajectory data

 A RoadSide Unit (RSU) is a typical infrastructure widely adopted in smart cities.

RSU Placement Requirements

 Distinguishability: the set of bypassed RSUs is unique for each flow

ID	six given vehicle flows	S_1	
f_1	$e_1 \rightarrow e_7 \rightarrow e_5 \rightarrow e_6$	Ø	
f_2	$e_4 \rightarrow e_5 \rightarrow e_6$	e_4	
f_3	$e_4 \rightarrow e_5 \rightarrow e_8 \rightarrow e_3$	e_3, e_4	
f_4	$e_1 \rightarrow e_2 \rightarrow e_8 \rightarrow e_6$	e_2	
f_5	$e_1 \rightarrow e_7 \rightarrow e_5 \rightarrow e_8 \rightarrow e_3$	e_3	
f_6	$e_4 \rightarrow e_7 \rightarrow e_2 \rightarrow e_3$	e_2, e_3	

RSU Placement Requirements

 Distinguishability
 Coverage: Each flow goes through at least one RSU

ID	six given vehicle flows	S_1	S_2	Ι
f_1	$e_1 \rightarrow e_7 \rightarrow e_5 \rightarrow e_6$	Ø	e_7	
f_2	$e_4 \rightarrow e_5 \rightarrow e_6$	e_4	e_4	
f_3	$e_4 \rightarrow e_5 \rightarrow e_8 \rightarrow e_3$	e_3, e_4	e_4, e_8	
f_4	$e_1 \rightarrow e_2 \rightarrow e_8 \rightarrow e_6$	e_2	e_8	
f_5	$e_1 \rightarrow e_7 \rightarrow e_5 \rightarrow e_8 \rightarrow e_3$	e_3	e_7, e_8	I
f_6	$e_4 \rightarrow e_7 \rightarrow e_2 \rightarrow e_3$	e_2,e_3	e_4, e_7	Ι

RSU Placement Requirements

 Securely distinguishable: the set of bypassed RSUs is not the subset of others

ID	six given vehicle flows	S_1	S_2	S_3
f_1	$e_1 \rightarrow e_7 \rightarrow e_5 \rightarrow e_6$	Ø	e_7	e_6, e_7
f_2	$e_4 \rightarrow e_5 \rightarrow e_6$	e_4	e_4	e_4, e_6
f_3	$e_4 \rightarrow e_5 \rightarrow e_8 \rightarrow e_3$	e_3, e_4	e_4, e_8	e_4, e_8
f_4	$e_1 \rightarrow e_2 \rightarrow e_8 \rightarrow e_6$	e_2	e_8	e_6, e_8
f_5	$e_1 \rightarrow e_7 \rightarrow e_5 \rightarrow e_8 \rightarrow e_3$	e_3	e_7, e_8	e_7, e_8
f_6	$e_4 \rightarrow e_7 \rightarrow e_2 \rightarrow e_3$	e_2,e_3	e_4, e_7	e_4, e_7

Model and Formulation

- Graph G = (V, E)
- V: street intersections, and E: streets
- $F = \{f_1, f_2, ..., f_n\}$ is a set of n known traffic flows on G (assume no sub-flow relation)
- S is a subset of E on which RSUs are placed
 S(f) is a subset of S that covers f

Objective is minimizing the number of RSUs
 Secure Distinguishability

Formulation

Objective is minimizing the number of RSUs Secure Distinguishability (SD)

- S(f) \nsubseteq S(f') for $\forall f, f' \in F$ also guarantees:
 - $S(f) \neq S(f')$ for $f \neq f'$ (full distinguishability)
 - $S(f) \neq \emptyset$ for $\forall f \in F$ (full coverage)

Problem Analysis

- minimize |S| passing $f_i \cap f_j$ traffic flow
 s.t. S(f) $\not\subseteq$ S(f') for $\forall f, f' \in F$ for $\forall f, f' \in F$
- To securely distinguish an arbitrary pair of traffic flows (f_i and f_j), two RSUs should be placed on street from two subsets of f_i\f_j and f_j\f_j, respectively.
- The optimal RSU placement is NP-hard and monotonic, but non-submodular.

Greedy Algorithm

- Initialize S = Ø
- for each pair of traffic flows, f_i and f_i do
 - Generate distinguishing sets, f_i\f_j and f_j\f_i
- while there exists a distinguishing set do
 - Update S to place an RSU that hits max # of distinguishing sets, remove corresponding sets

Return S

It achieves a ratio of O(ln n) to the optimal algorithm for the number of placed RSUs.

Advanced Model: Propagated RSU Tags

- Some flows are less-important.
- Idea: propagate RSU tags from high-priority flows to low-priority flows, and use the propagated tags to achieve secure distinguishability.
- Let *l* denote the priority level of a flow *f*, and we require that the secure distinguishability of flows with priority *l* must be provided by the RSU-based credentials within *l*-hop.

According to the requirements of secure distinguishability, at least 5 RSUs are needed: $S = \{ e_{2'} e_{5'} e_{8'} e_{9'} e_{10} \}.$ Received tag sets are: e9 • *f*1: e_q ea • f2: e₂ $((\mathbf{o}))$ e • *f*₃: e₈ e5^{((p))}8 e71 • *f*4: e₅ • *f*₅: e₁₀

- Priority levels: $l_1 = l_3 = l_5 = 0$, $l_2 = l_4 = 1$, $l_{max} = 1$
- Placing 3 RSUs is enough: $S' = \{e_8, e_9, e_{10}\}$
- Received tag sets are:

- Priority levels: $l_1 = l_3 = l_5 = 0$, $l_2 = l_4 = 1$, $l_{max} = 1$
- Placing 3 RSUs is enough: $S' = \{e_8, e_9, e_{10}\}$
- Received tag sets are:

- Priority levels: $l_1 = l_3 = l_5 = 0$, $l_2 = l_4 = 1$, $l_{max} = 1$
- Placing 3 RSUs is enough: $S' = \{e_8, e_9, e_{10}\}$
- Received tag sets are:

General Problem Formulation

 Objective is minimizing the number of RSUs the prob. of securely distinguishing f and f' is no less than a predefined threshold.

min |S|

s.t. $\mathbb{P}\{S^l(f_i) \nsubseteq S^l(f_j)\} \ge T(l_i, l_j) \text{ for } \forall f_i, f_j \in F$

Where $l = \max(l_i, l_j)$ and $S^l(f)$ represents all received tags within *l*-hop. $\mathbb{P}\{\cdot\}$ indicates the probability, and $T(l_i, l_j)$ gives the threshold.

Algorithm for Advanced Model

- Initialize S = Ø
- for priority level *l* from *l*_{max} to *l*_{min}
 - for each pair of undistinguishable flows, f_i and f_i do
 - Generate distinguishing sets, f_i\f_j and f_j\f_i based on the potential RSU tags within *l*-hop
 - while there exists a distinguishing set do
 - Update S to place an RSU that hits max expected # of distinguishing sets, remove corresponding sets
- Return S

Experiments

Thank you.