On the RSU-based Secure Distinguishability Among Vehicular Flows

Wei Chang*, Huanyang ZhengΔ, and Jie WuΔ
* Department of Computer Science, Saint Joseph’s University, USA
Δ Department of CIS, Temple University, USA
Future Smart Cities
- Static roadside sensors
- Moving vehicles

Vehicular data is a continuous observation along the vehicle’s trajectory.

Multiple Applications:
- Crime scene reconstruction
- Smart traffic flow monitoring
- Environmental monitoring
How can we guarantee that the claimed data indeed comes from a car in vehicular flow f_2 rather than flows f_1 or f_3?
Attack Model

- Attackers are non-cooperative.
- Attacking goal:
 - An attacker, who was driving along vehicular flow f', tries to pretend that he was in flow f.
A RoadSide Unit (RSU) is a typical infrastructure widely adopted in smart cities.
RSU Placement Requirements

- Distinguishability: the set of bypassed RSUs is unique for each flow

<table>
<thead>
<tr>
<th>ID</th>
<th>six given vehicle flows</th>
<th>S_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>$e_1 \rightarrow e_7 \rightarrow e_5 \rightarrow e_6$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>f_2</td>
<td>$e_4 \rightarrow e_5 \rightarrow e_6$</td>
<td>e_4</td>
</tr>
<tr>
<td>f_3</td>
<td>$e_4 \rightarrow e_5 \rightarrow e_8 \rightarrow e_3$</td>
<td>e_3, e_4</td>
</tr>
<tr>
<td>f_4</td>
<td>$e_1 \rightarrow e_2 \rightarrow e_8 \rightarrow e_6$</td>
<td>e_2</td>
</tr>
<tr>
<td>f_5</td>
<td>$e_1 \rightarrow e_7 \rightarrow e_5 \rightarrow e_8 \rightarrow e_3$</td>
<td>e_3</td>
</tr>
<tr>
<td>f_6</td>
<td>$e_4 \rightarrow e_7 \rightarrow e_2 \rightarrow e_3$</td>
<td>e_2, e_3</td>
</tr>
</tbody>
</table>
RSU Placement Requirements

- Distinguishability
- Coverage: Each flow goes through at least one RSU

<table>
<thead>
<tr>
<th>ID</th>
<th>six given vehicle flows</th>
<th>S_1</th>
<th>S_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>$e_1 \rightarrow e_7 \rightarrow e_5 \rightarrow e_6$</td>
<td>\emptyset</td>
<td>e_7</td>
</tr>
<tr>
<td>f_2</td>
<td>$e_4 \rightarrow e_5 \rightarrow e_6$</td>
<td>e_4</td>
<td>e_4</td>
</tr>
<tr>
<td>f_3</td>
<td>$e_4 \rightarrow e_5 \rightarrow e_8 \rightarrow e_3$</td>
<td>e_3, e_4</td>
<td>e_4, e_8</td>
</tr>
<tr>
<td>f_4</td>
<td>$e_1 \rightarrow e_2 \rightarrow e_8 \rightarrow e_6$</td>
<td>e_2</td>
<td>e_8</td>
</tr>
<tr>
<td>f_5</td>
<td>$e_1 \rightarrow e_7 \rightarrow e_5 \rightarrow e_8 \rightarrow e_3$</td>
<td>e_3</td>
<td>e_7, e_8</td>
</tr>
<tr>
<td>f_6</td>
<td>$e_4 \rightarrow e_7 \rightarrow e_2 \rightarrow e_3$</td>
<td>e_2, e_3</td>
<td>e_4, e_7</td>
</tr>
</tbody>
</table>
RSU Placement Requirements

- Securely distinguishable: the set of bypassed RSUs is not the subset of others

<table>
<thead>
<tr>
<th>ID</th>
<th>six given vehicle flows</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>$e_1 \to e_7 \to e_5 \to e_6$</td>
<td>\emptyset</td>
<td>e_7</td>
<td>e_6, e_7</td>
</tr>
<tr>
<td>f_2</td>
<td>$e_4 \to e_5 \to e_6$</td>
<td>e_4</td>
<td>e_4</td>
<td>e_4, e_6</td>
</tr>
<tr>
<td>f_3</td>
<td>$e_4 \to e_5 \to e_8 \to e_3$</td>
<td>e_3, e_4</td>
<td>e_4, e_8</td>
<td>e_4, e_8</td>
</tr>
<tr>
<td>f_4</td>
<td>$e_1 \to e_2 \to e_8 \to e_6$</td>
<td>e_2</td>
<td>e_8</td>
<td>e_6, e_8</td>
</tr>
<tr>
<td>f_5</td>
<td>$e_1 \to e_7 \to e_5 \to e_8 \to e_3$</td>
<td>e_3</td>
<td>e_7, e_8</td>
<td>e_7, e_8</td>
</tr>
<tr>
<td>f_6</td>
<td>$e_4 \to e_7 \to e_2 \to e_3$</td>
<td>e_2, e_3</td>
<td>e_4, e_7</td>
<td>e_4, e_7</td>
</tr>
</tbody>
</table>
Model and Formulation

- Graph $G = (V, E)$
 - V: street intersections, and E: streets
 - $F = \{f_1, f_2, \ldots, f_n\}$ is a set of n known traffic flows on G (assume no sub-flow relation)
- S is a subset of E on which RSUs are placed
- $S(f)$ is a subset of S that covers f

- Objective is minimizing the number of RSUs
- Secure Distinguishability
Formulation

- Objective is minimizing the number of RSUs
 Secure Distinguishability (SD)

- minimize $|S|$ (# of RSUs)
- s.t. $S(f) \not\subset S(f')$ for $\forall f, f' \in F$ (SD)

- $S(f) \not\subset S(f')$ for $\forall f, f' \in F$ also guarantees:
 - $S(f) \neq S(f')$ for $f \neq f'$ (full distinguishability)
 - $S(f) \neq \emptyset$ for $\forall f \in F$ (full coverage)
minimize $|S|$

s.t. $S(f) \not\subseteq S(f')$

for $\forall f, f' \in F$

To securely distinguish an arbitrary pair of traffic flows (f_i and f_j), two RSUs should be placed on street from two subsets of $f_i \setminus f_j$ and $f_j \setminus f_i$, respectively.

The optimal RSU placement is NP-hard and monotonic, but non-submodular.
Greedy Algorithm

- Initialize $S = \emptyset$
- for each pair of traffic flows, f_i and f_j do
 - Generate distinguishing sets, $f_i \setminus f_j$ and $f_j \setminus f_i$
- while there exists a distinguishing set do
 - Update S to place an RSU that hits max # of distinguishing sets, remove corresponding sets
- Return S

- It achieves a ratio of $O(\ln n)$ to the optimal algorithm for the number of placed RSUs.
Some flows are less-important.
- Idea: propagate RSU tags from high-priority flows to low-priority flows, and use the propagated tags to achieve secure distinguishability.
- Let l denote the priority level of a flow f, and we require that the secure distinguishability of flows with priority l must be provided by the RSU-based credentials within l-hop.
According to the requirements of secure distinguishability, at least 5 RSUs are needed:
\[S = \{e_2, e_5, e_8, e_9, e_{10}\}. \]

Received tag sets are:

- \(f_1: e_9 \)
- \(f_2: e_2 \)
- \(f_3: e_8 \)
- \(f_4: e_5 \)
- \(f_5: e_{10} \)
Advanced Model: Example

- Priority levels: $l_1 = l_3 = l_5 = 0$, $l_2 = l_4 = 1$, $l_{\text{max}} = 1$
- Placing 3 RSUs is enough: $S' = \{e_8, e_9, e_{10}\}$
- Received tag sets are:
 - f_1: $\{e_9^{[0]}, e_9^{[1]}\}$
 - f_2: $\{e_8^{[1]}, e_9^{[1]}\}$
 - f_3: $\{e_8^{[0]}, e_8^{[1]}\}$
 - f_4: $\{e_8^{[1]}, e_{10}^{[1]}\}$
 - f_5: $\{e_{10}^{[0]}, e_{10}^{[1]}\}$
Advanced Model: Example

- Priority levels: $l_1 = l_3 = l_5 = 0$, $l_2 = l_4 = 1$, $l_{\text{max}} = 1$
- Placing 3 RSUs is enough: $S' = \{e_8, e_9, e_{10}\}$
- Received tag sets are:
 - f_1: $\{e_9^{[0]}, e_9^{[1]}\}$
 - f_2: $\{e_8^{[1]}, e_9^{[1]}\}$
 - f_3: $\{e_8^{[0]}, e_8^{[1]}\}$
 - f_4: $\{e_8^{[1]}, e_{10}^{[1]}\}$
 - f_5: $\{e_{10}^{[0]}, e_{10}^{[1]}\}$
Priority levels: $l_1 = l_3 = l_5 = 0$, $l_2 = l_4 = 1$, $l_{\text{max}} = 1$

Placing 3 RSUs is enough: $S' = \{e_8, e_9, e_{10}\}$

Received tag sets are:

- f_1: $\{e_9^{[0]}, e_9^{[1]}\}$
- f_2: $\{e_8^{[1]}, e_9^{[1]}\}$
- f_3: $\{e_8^{[0]}, e_8^{[1]}\}$
- f_4: $\{e_8^{[1]}, e_{10}^{[1]}\}$
- f_5: $\{e_{10}^{[0]}, e_{10}^{[1]}\}$
Objective is minimizing the number of RSUs, the probability of securely distinguishing f and f' is no less than a predefined threshold.

\[
\begin{align*}
\text{min} & \quad |S| \\
\text{s.t.} & \quad \mathbb{P}\{S^l(f_i) \not\subseteq S^l(f_j)\} \geq T(l_i, l_j) \text{ for } \forall f_i, f_j \in F
\end{align*}
\]

Where $l = \max(l_i, l_j)$ and $S^l(f)$ represents all received tags within l-hop. $\mathbb{P}\{\cdot\}$ indicates the probability, and $T(l_i, l_j)$ gives the threshold.
Algorithm for Advanced Model

- Initialize $S = \emptyset$
- for priority level l from l_{max} to l_{min}
 - for each pair of undistinguishable flows, f_i and f_j
 - Generate distinguishing sets, $f_i \setminus f_j$ and $f_j \setminus f_i$ based on the potential RSU tags within l-hop
 - while there exists a distinguishing set do
 - Update S to place an RSU that hits max expected # of distinguishing sets, remove corresponding sets
- Return S
Experiments

Dublin bus trace

Seattle bus trace
Thank you.