ŜĴU

Correlated Friends' Impacts in Social-crowdsensing

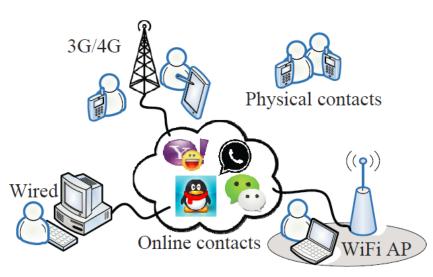
Wei Chang, Department of Computer Science, Saint Joseph's University Wei-Shih Yang, Department of Mathematics, Jie Wu, Department of Computer and Information Sciences, Temple University

Background

- Social sensing is a typical application of the crowdsourcing system.
- Procedure

Job Owner		
	Platform: Amazon Mturk	Workers: Human Sensors

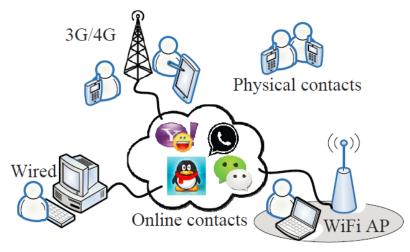
Defects

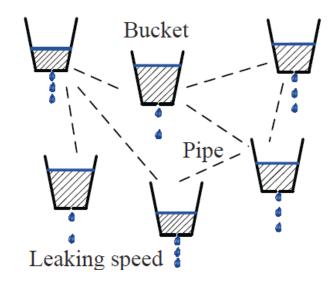

- There are 3 defects with the existing system:
 - 1. Lacks a timely advertising mechanism to recruit works;
 - New task: tempting payment
 - Offline workers are not aware of its existence
 - 2. Centralized and platform-specified;
 - Malfunctions / Unavailable
 - 3. Someone has to pay a fee for using the platform
 - Mturk collects a 10% commission on top of a task's total payment

Social-crowdsensing

- A self-organized, distributed, and crossplatform crowdsensing system
- Main Idea:
 - To create a multilayered outsourcing structure via any stochastic social contacts, including physical encounters between friends and virtual contacts via any online-chatting system

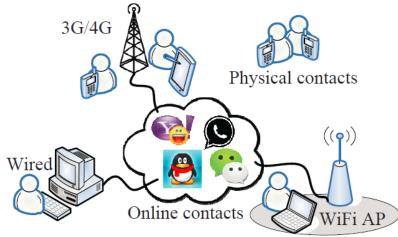
Social-crowdsensing

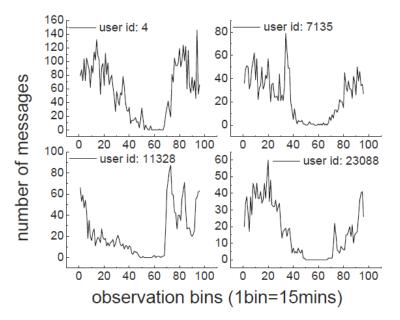

- General procedure:
 - A job owner first creates an
 SC task (first worker)
 - Any worker can further recruit new workers via stochastic social contacts (multi-hop relays)



 Sensing results are returned via the Internet or physical encounters-based multi-hop relays.

Question 1

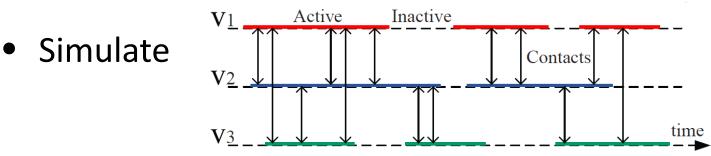

- Given that SC tasks initiate at random nodes, by what workload allocation strategy can the entire task's completion time be minimized?
- Minimizing the completion time = Maximize a system's utilization
- Estimate an overall computing capacity



Question 2

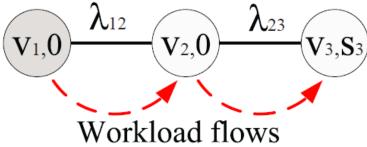
- Friends are correlated.
- For example, colleagues have similar working hours, and therefore, their times of unavailability for participating in the sensing tasks are not independent.
- Incorporate correlations into the decision-making phase of workload allocations
- How to model correlation

Correlations Modeling

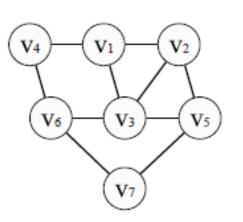

- Based on a user's real-time contacting frequency, we associate a virtual state to each user, called active level. σ_i = {-k, · · · , -2, -1, 1, 2, · · · , k}
- Active levels of all workers at any moment: $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_i, \dots, \sigma_m)$
- The probability distribution of workers' active levels $P(\sigma) = \frac{1}{Z} e^{\sum_{i} X_{i}\sigma_{i} + \sum_{i \neq j} X_{ij}\sigma_{i}\sigma_{j} + \sum_{i \neq j \neq k} X_{ijk}\sigma_{i}\sigma_{j}\sigma_{k}} \cdots$

$$\approx \frac{1}{Z} \times e^{\sum_{i \neq j} J_{ij} \sigma_i \sigma_j + \sum_i h_i \sigma_i}$$

Simulate Stochastic Contacts

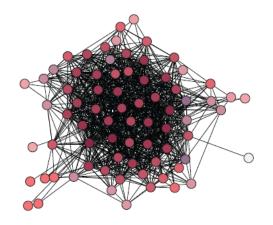

- We build a discrete-time Markov Chain to simulate the changes of users' active levels.
- Assume that, at any moment, at most one worker changes its active level.
- Transition probability $P(\sigma) = \sum_{\sigma'} P(\sigma') P(\sigma', \sigma)$

$$P(\sigma, \sigma') = \begin{cases} \frac{1}{m} \cdot \frac{e^{\sum_{i \neq j} J_{ij} \sigma_i \sigma'_j + h_j \sigma'_j}}{\sum_{\sigma_j = \pm 1} e^{\sum_{i \neq j} J_{ij} \sigma_i \sigma_j + h_j \sigma_j}} & \text{if } \sigma' \sim_j \sigma \\ \frac{1}{m} \cdot \frac{e^{\sum_{i \neq j} J_{ij} \sigma_i \sigma_j + h_j \sigma_j}}{\sum_{\sigma_j = \pm 1} e^{\sum_{i \neq j} J_{ij} \sigma_i \sigma_j + h_j \sigma_j}} & \text{if } \sigma' = \sigma \\ 0 & \text{if others} \end{cases}$$

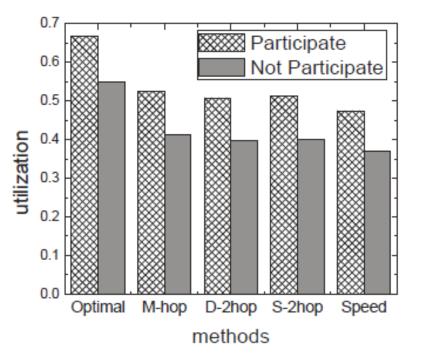

Workload Allocation

- The capacity q reflects the amount of workload that a worker and his friends can process within one unit of time.
- **Basic Rule:** $(w_1^*, w_2^*) = \left[\frac{(w_1 + w_2)q_1}{q_1 + q_2}, \frac{(w_1 + w_2)q_2}{q_1 + q_2}\right]$
- The overall capacity cannot be a fixedvalue

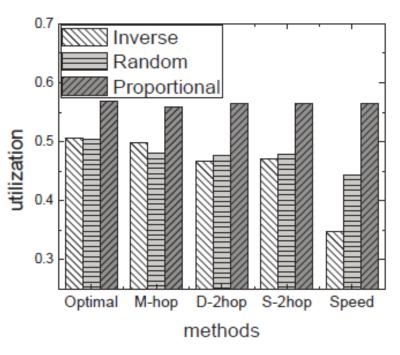
Pairwise-Capacity Estimation


- Approximate it by 2-hop social information
- Without Correlation

Algorithm 1: Pairwise Overall Speed 1: /*Suppose that v_u is contacting with $v_{u'}$ */ 2: Eliminate node $v_{u'}$ from social contact graph G3: Initialization $q_u \leftarrow s_u$ /*Local contribution*/ 4: for $i \in N(u)$ do 5: $q_u \leftarrow q_u + \lambda_{ui}s_i$ /*1-hop contribution*/ 6: for $j \in N(i)$ do 7: $q_u \leftarrow q_u + \lambda_{ui}\lambda_{ij}s_j$ /*2-hop contribution*/ 8: if $j \in N(u)$ then 9: $q_u \leftarrow q_u - \lambda_{ui}\lambda_{ij}\lambda_{uj}s_j$ /*Double counted*/ 10: Return $q_{uu'}^u \leftarrow q_u$

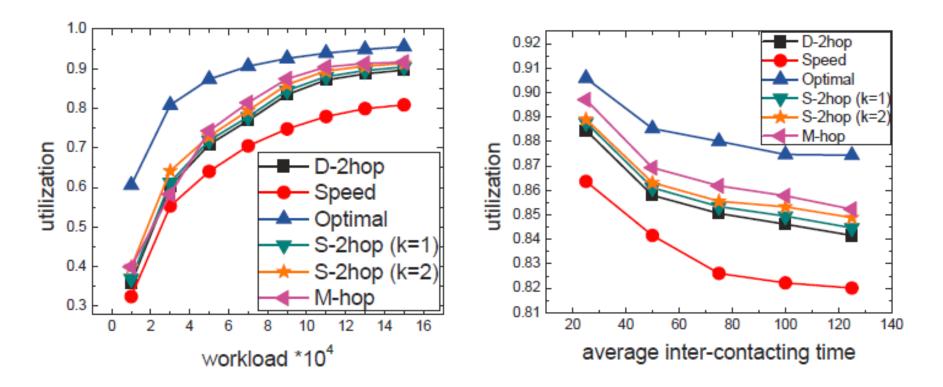

- With Correlation $\lambda_{ij}(\sigma_i, \sigma_j)$
 - It gives the average contacting frequency for each type of active level combination.

Evaluation



Impact of 0-speed workers

System Utilization $U = \frac{\sum_{i=1}^{m} s_i \int_0^{t^*} \delta_i(t) dt}{\sum_{i=1}^{m} s_i t^*}$


Impact of speed distribution

Evaluation

Workload's size

Ave inter-contacting intervals

Thank you !