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Abstract—The lightning network (LN) is a special network in
Bitcoin that uses offchain micropayment channels to scale the
blockchain’s capability to perform instant transactions without
a global block confirmation process. However, micropayment
scalability in a large LN and liquidation for small nodes still
remain major challenges for the LN. In this paper, we introduce
the notion of supernodes and the corresponding supernodes-
based pooling to address these challenges. In order to meet
the high adaptivity and low maintenance cost in the dynamic
LN where users join and leave, supernodes are constructed
locally without any global information or label propagation. Each
supernode, together with a subset of (non-supernodes) neighbors,
forms a supernode-based pool. These pools constitute a partition
of the LN. Additionally, supernodes are self-connected. Micro-
payment scalability is supported through node set reduction
as only supernodes are involved in searching and in payment
with other supernodes. Liquidation is enhanced through pooling
to redistribute funds within a pool to external channels of its
supernode. Extensive simulations have been conducted to validate
the improvement in routing scalability and liquidation of the
proposed architecture under different settings.

Index Terms—Bitcoin, blockchain, lightning networks, local-
ized algorithms, pooling, supernodes.

I. INTRODUCTION

Lightning networks (LNs) [1] recently emerged as a promis-

ing approach that addresses the scalability issue of the

blockchain and its applications in Bitcoin [2]. In the original

blockchain, each transaction has to go through a global block

confirmation process. Using smart contracts, trusted neigh-
bors (or simply neighbors) in LNs can set up micropayment
channels (or simply channels) that support instant transactions

without block confirmation. Such a transaction can be done

via neighbors directly or non-neighbors with a path of mi-

crochannels connecting these nodes. In this way, LNs offer

more opportunities for fast transactions between nodes. Each

LN node with a given amount of funds will split funds to

channels to set up bidirectional payment channels with its

neighbors. A node can send a payment to another party in LNs

as long as this payment does not exceed the funds allocated to

this node on the channel. Each channel maintains its balances

on two numbers associated with its two end nodes.

LNs support non-neighbor transactions by supporting trans-

actions between two nodes that are not neighbors (as u and

v in Fig. 1 (a)) or two neighbors with inefficient funds along

connecting channels (as u and v in Fig. 1 (b)). In both cases, a

transaction involving a transfer of $4 from u to v has w as the
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Fig. 1: A fund transfer of $4 from u to v via w without (a) and with (b) the
existence of {u, v}.

third node in the path. When u sends $4 to v, its balance on the

channel {u,w} is changed to $1. The balance of the channel

associated with w is changed to $6. The transaction completes

through transferring $4 from w to v. Various extensions of LNs

have been proposed that address different performance and/or

security aspects since its advent in 2016. For example, we can

use multiple flows to implement a transaction ($2 from u to v
and $2 more from u to v via w in Fig 1 (b)). However, LNs

and their extensions still face two challenges: micropayment

scalability in a large LN and liquidation for small nodes (i.e.,

nodes with a small amount of funds with funds assigned to

different channels). A small node with the lack of liquidation

on one channel will seek help from its other channels through

a path connection process.

In this paper, we introduce an LN pooling method based on

a special clustering approach using the notion of supernodes.

Given a connected graph G = (V,E) with node set V and

channel (also known as a link) set E, we assume that E only

connects trust neighbors who are willing to join for payment

channels. It has been shown in [3] that when the node degree

of a random graph is sufficiently large, the resultant graph is

connected with a high probability.

Supernode-based pooling is constructed by partitioning G
into clusters such that each cluster has one supernode. This

supernode connects to all its members (as shown in Fig. 2).

Additionally, all supernodes are self-connected. In graph ter-

minology, we require that supernode-induced subgraph G[S]
be a connected graph for S ⊂ V and V − S ⊆ N(S) is in

G, where N(S) in the neighbor set of supernode set S. In

supernode-based pooling, each supernode pools and manages

all funds within the cluster to increase liquidation of the

network. As G[S] is an induced subgraph from G, there is no

extra maintenance cost. To support path searching (or routing)

scalability, we require that a relatively small S is derived to

reduce the routing space. In order to meet the high adaptivity

and low maintenance cost in the dynamic LN where users join

and leave, the selection process for S should be local.

In this paper, we address three challenges: (1) Formation

of connected supernodes in LNs should be local, rather than



clusterhead
cluster member 2

1

3

4

5

67

8

Fig. 2: Supernode-based pooling.

global, to better fit a dynamic environment. (2) Mainte-

nance of supernodes and the corresponding clusters should

be lightweight. (3) Effectiveness of the proposed architecture

in addressing the issues related to microchannel scalability

for simple searching and liquidation for small nodes must

be experimentally validated. The following summarize our

contributions: (1) We apply a localized algorithm to determine

S without any global information or label propagation by

removing nodes and pruning links. (2) We propose how to

further reduce the size of S through a hierarchy of supernodes.

(3) We discuss how S can be maintained and updated in the

dynamic LN . (4) We evaluate the performance in terms of

scalability and liquidation on different network settings.

II. BACKGROUND

Payment channel in LNs: Micropayment channels are the

core element of the LN. A channel can be seen as a smart

contract between two nodes, allowing them to make multiple

payments without the need to commit every payment to the

blockchain. In Fig. 1, u and w jointly create a payment

channel, in which they deposit funds, e.g. u deposits $5 and

w deposits $2. After this transaction is committed to the

blockchain, a channel with a capacity of $7 ($5 + $2) is open

between u and w. Thereafter, u and w are able to perform

payments back and forth freely by issuing transactions. At

any moment, u and w can close the channel and refund the

balance each one has in the channel by committing a closing

transaction with their final balances to the blockchain.

Payment path in LNs: In the lifecycle of a payment chan-

nel, there are two transactions, i.e., a creating transaction

and a closing transaction, that have to be committed to the

blockchain, thereby causing transaction fees and waiting time.

Payment channels are a suitable choice for any two nodes with

long-term and high-frequency mutual transactions. Another

feature of LNs is the ability to perform payments between

nodes not directly connected. Two nodes can make a trans-

action as long as they can find a path consisting of multiple

payment channels between them where the transaction amount

is no larger than the minimum channel balance of the path.

The transaction sender is required to reward each intermediate

node with a small routing fee for routing help.

Pooling via clustering: We assume that each node has

a distinct ID and all nodes are initially colored white in

coloring schemes for pooling. In pseudo local clustering [4],

when a white node has the maximum ID among all its white

neighbors, it becomes a clusterhead and colors itself black.

All white neighbors of a black node join in the cluster and

change their colors to gray. This iterative process continues

until there are no white nodes left. The black nodes form

the set of clusterheads. Each gray node joins one clusterhead.

This process is pseudo local because it may require multiple

rounds as color labels can propagate sequentially. In another

clustering approach [5], a white node selects the node with

the maximum ID within its 1-hop neighborhood (including

itself) as its dominator. After the white node has chosen

its dominator, it colors itself gray if it is not selected as a

dominator by itself or by its neighbors; otherwise, it marks

itself black. The coloring process continues until no white

nodes are left. All the black nodes become clusterheads. This

process is local in one step with no label propagation.

The above approaches are not suitable in LNs as two

adjacent clusters may not be connected by their clusterheads,

making transactions among pools more complex. The third

clustering scheme [6] works as follows: A node marks itself

black (i.e., a clusterhead) only when it has two unconnected

neighbors. We use k-hop neighborhood information (for a

small k, say k = 2) to determine the connectivity of two

neighbors for each node locally in a decentralized way. Black

nodes form a set of connected clusterheads, also called the

connected dominating set. In this case, a false negative - as

two connected neighbors u and v are falsely identified as

unconnected, may occur if after removing link (u, v), the

shortest path between u and v is longer than k hops. There

are several local pruning methods to further reduce the size

of the clusterhead set.

III. SUPERNODE-BASED LOCAL POOLING

A. Local pooling

Given an undirected connected graph G = (V,E), each

node v ∈ V is identified with a long term public key as its

distinct ID. The priority of a node pri(v) is a distinct integer

from each distinct ID based on mapping pri, to be used in the

symmetric breaking process of local pooling. To avoid cheat-

ing at each node, asymmetric and homomophic encryption

are used for secure ID priority comparison without decryption

during local pooling, together with neighbor watchdogs. We

assume that trusted neighbors are willing to exchange their

budget and neighbor sets. Each node v maintains a 2-hop

view, i.e., 2-hop subgraph: its neighbor set N(v) and its 2-hop

neighbor set N(N(v)), denoted as N2(v), through neighbor

set exchanges with its neighbors. That is, v’s 2-hop subgraph

is (N2(v), E2(v)), where E2(v) = E∪(N1(v)×N2(v)). Note

that in Fig. 2, (3, 4) ∈ E2(1), but (4, 6) /∈ E2(2), although

both 4 and 6 are in N2(2).
The following are highlights of our 3-step local pooling

scheme for a given graph G = (V,E):

1) Supernode selection. Using 2-hop subgraph to find a set

of supernodes S ⊂ V locally at each node, such that the

induced subgroup G[S] is connected and V − S ⊆ N(S).
2) Fund pooling. Each node in V −S joins one pool headed

by one of its neighbor supernodes. Each supernode “vir-



tually” pools funds from its members and re-distributes

funds to its external channels in G[S].
3) Routing in the induced subgraph. All fund transfers

among clusters are conducted in G[S].

Supernode set S basically forms a dominating set of G, i.e.,

each node not in S has a neighbor in S. G[S] is also connected.

In the proposed pooling, funds within a cluster are virtually

pooled and re-assigned to external channels of the supernode.

Note that each supernode and its members still maintain and

manage internal channels so that all members will not be over-

committed in transactions. Although, each member can still

maintain payment channels directly with nodes outside the

pool (like channel {1, 2} in Fig 2). To simplify discussion,

we assume that all members allow the supernode to manage

their funds by using only channels connected to the supernode.

The supernode virtually re-allocates pool funds to its external

channels to boost liquidation. In Fig. 2, funds associated with

nodes 1, 4, and 8 are redistributed to two external channels

{4, 6} and {4, 3} in the cluster headed by supernode 4, with

each internal channel to 4 having the initial budget of each

member. Note that each supernode itself is a member so its

channel allocation should be managed accordingly as well.

Searching (via routing) is handled exclusively by supernodes.

As S is smaller than V , the scalability issue is alleviated. Note

that a supernode may not have any other members – its role

is primarily for connection among supernodes.

B. Supernode selection
We adopt a scheme proposed in [7]:

• Supernode selection. All nodes are initially supernodes.

A supernode v becomes a non-supernode if any two

neighbors of v are connected by (a) a link or (b) a path

(constructed from the local 2-hop view of v) such that

for each node u (excluding two end nodes) on the path,

pri(u) > pri(v).

The formation of supernodes in a given graph depends

on topology, priority distribution, and the amount of local

information. With 2-hop view, node 1 is a non-supernode in

Fig 2, because any pair of node 1’s neighbors are connected

via nodes with a higher priority than node 1. However, if

link {1, 4} does not exist, node 1 with 2-hop view will be

labelled a supernode as node 1 does not “see” link {3, 4}. In

this case, 3-hop view (k = 3) is needed to label node 1 as a

non-supernode. The supernode selection process is intriguing

as non-supernodes are “removed” asynchronously without any

centralized coordination. The priority is used so that nodes

with the highest priority in the 2-hop view cannot be removed

to ensure both coverage and connectivity.
Local pooling can potentially be extended in a couple of

ways. To further improve searching (i.e., routing) scalability,

we can construct supernodes of supernodes. For example,

in Fig. 2, node 6 is the supernode (double-circled) in the

supernode set {3, 4, 6}. With this new structure, the routing

process becomes multi-level. The benefit of a multi-level

process is the ease of routing discovery, but at the cost of

with more maintenance overhead.

C. Neighbor set reduction

When we conduct routing, it is assumed that all neighbors of

a node in G[S] are involved in the routing process. In reality,

only a subset of neighbors is needed in order to allocate more

funds per channel to improve liquidation. How can we reduce

a node’s neighbor set in G[S] without losing reachability?

Here, we propose a link pruning (i.e., neighbor set re-

duction) process without global connectivity information in

G[S]. This is analogous to the supernode selection process by

replacing nodes with links. We first define the link priority

of {u, v} (like node priority in supernode selection) based on

the reverse lexicographical order of the two end nodes of the

link as pri(max{pri(u), pri(v)},min{pri(u), pri(v)}), e.g.

pri(3, 2) > pri(3, 1) > pri(2, 1).

• Link pruning. Link {u, v} can be removed if a replace-

ment path (under k-hop view) connecting u and v exists

such that all links along the path have a higher priority

than {u, v}.

To ensure the end nodes of a link make the same decision,

we assume that both nodes of each link exchange its local

view before the decision. In Fig 2, suppose we assume that

link pruning happens before supernode selection, thus link {2,

1} can be removed under the 2-hop view of each node because

it can be replaced by a path ({2, 3}, {3, 4}, {4,1}). Link {3,

4} itself can be replaced by path ({3, 6}, {6, 4}), and link

{4, 1} by path ({4, 8}, {8, 1}).

Given a graph, we can apply local pooling to generate the

supernode set S, and then, apply link pruning on G[S]; we

can also apply the link pruning on G first, followed by local

pooling. Note that in the latter case, link pruning reduces

the average node degree which will make it easier to reduce

the supernode set in the second step. To maintain a certain

node degree for network fault tolerance, link pruning can be

controlled in a probabilistic way, e.g. the actual link removal is

controlled by a pre-defined probability p on each link pruning.

Fig. 3 (a) shows a 25-node LN that follows the power-law

distribution. Figs. 3 (b) and (c) apply supernode set selection

of 10 nodes colored red (node reduction), followed by link

pruning (link reduction). Figs. 3 (d) and (e) adopt link pruning

first, followed by supernode set selection of 7 nodes.

D. Properties

The link pruning process is asynchronous at each node and

without global coordination. To show that the link pruning

is correct, i.e., the resultant graph is still connected, we only

need to show that for a link {u, v} connecting u and v to be

removed, there always exists an “irreplaceable” replacement

path connecting u and v after link pruning. First, we give a

definition of a max-min link {x′, y′} from replacement paths

connecting x and y with link priorities higher than {u, v}. x
and y are node IDs, which are initialized as u and v.

Definition 1. Max-min link for (x, y, {u, v}): A min link in
a path is a link with the lowest priority. Assume {P} is a set
of paths connecting x and y such that all links of each path
in the set have a higher priority than {u, v}. A max-min link



(a) The original LN topology. (b) Pooling only. (c) Pooling then pruning. (d) Pruning only. (e) Pruning then pooling.

Fig. 3: Two different orders of processes using local pooling and neighbor set reduction on a 25-node LN (red nodes: supernodes).

{x′, y′} in {P} is a link with the highest priority among all
min links in {P}.

In the following, we define a recursive process called

MAXMIN(u, v, {u, v}) to construct an irreplaceable replace-

ment path for replacing link {u, v}.

MAXMIN(x, y, {u, v}):

1) If x = y then return ∅.

2) Determine the max-min link {x′, y′} for (u, v, {u, v}).
3) Return replacement path (MAXMIN(x, x′, {u, v}),

{x′, y′}, MAXMIN(y′, y, {u, v})), assuming x′ is closer

to x than y′ does in the corresponding replacement path.

To illustrate, for link {2, 1} in Fig. 2, the max-min link is

{2, 3} among four replacement paths: ({2, 3}, {3, 4}, {4, 1}),
({2, 3}, {3, 6}, {6, 4}, {4, 1}), ({2, 3}, {3, 4}, {4, 8}, {8, 1}),
and ({2, 3}, {3, 6}, {6, 4}, {4, 8}, {8, 1}). 3 is closer to 1

than 2 is in the replacement path. Then, the max-min link

for a replacement path connecting node 3 and node 1 is

{3, 6}, selected among four min nodes {4, 1}, {4, 1}, {3, 4},

and {3, 6} from the same four replacement paths above after

removing link {3, 2}, respectively. The max-min link for a

placement path connecting node 6 and node 1 is {6, 4}.

Eventually, the irreplaceable replacement path for link {2, 1}
is ({2, 3}, {3, 6}, {6, 4}, {4, 8}, {8, 1}).

Theorem 1. The process MAXMIN(u, v, {u, v}) will complete
in a finite number of steps and generate an irreplaceable
replacement path for {u, v} that cannot be further replaced.

Proof. We show that all links generated are distinct. Suppose

{x′, y′} is the max-min link among all links in replacement

paths connecting u and v. Clearly, {x′, y′} will not be se-

lected as the max-min link in MAXMIN(u, x′, {u, v}) or

MAXIMIN(y′, v, {u, v}) as any path includes no repeated

nodes/links. Next, we show that MAXMIN(u, x′, {u, v}) and

MAXIMIN(y′, v, {u, v}) have no common links. We assume

that MAXMIN(u, x′, {u, v}) is non-empty: ({u, u1}, {u1, u2},

..., {un, x
′}) and MAXIMIN(y′, v, {u, v}) is non-empty:

({y′, vm}, ..., {v2, v1}, {v1, v}). Suppose {ui, ui+1} =
{vj+1, vj} (a common link), then {{u, u1}, ..., {ui, vj}, ...,
{v1, v}} is a replacement path for {u, v}. The fact that all links

in this path have a higher priority than {x′, y′} contradicts

the fact that {x′, y′} is the max-min link. Since the recursive

call selects a distinct link, the process will complete in a

finite number of steps. Based on the max-min link definition,

{x′, y′} cannot be further replaced and the path generated from

MAXMIN is irreplaceable.

Corollary 1. Given a connected graph, the resultant graph
after the link pruning process is still connected.

Proof. This corollary follows Theorem 1 that each link has an

irreplaceable replacement path that cannot be replaced.

E. Node joining and leaving

When a node v joins or leaves, local pooling can perform

status update of the 2-hop neighborhood of v without propaga-

tion. This is because the status of a node (with label supernode

or non-supernode) depends only on the connections of this

node’s 2-hop neighborhood, not the status (i.e., label) of the

2-hop neighborhood. When a node v joins or leaves, v will first

inform its neighbors N(v). Each node u in N(v) in turn will

inform its neighbors in N(u) through neighbor set exchanges.

Finally, each node in N2(v) (i.e., nodes within 2-hop view of

v) will update its status. Once updated, node v, together with

the status changes of its 2-hop neighborhood, will be published

in the blockchain. When a channel {u, v} is added or deleted,

the status updates of the two end nodes u and v, together with

all nodes in N(u) and N(v), can be done in a similar way.

Note that adding or deleting a node will cause status

changes in its 2-hop neighborhood, from supernode to non-

supernode or from non-supernode to supernode. For example,

adding a new node 9 connecting nodes 3, 4, 6, and 7 in Fig.

2 will change node 6 to a non-supernode, while node 9 has

a supernode label. Adding a new node 9 connecting node 2

alone will change node 2 to a supernode, while node 9 is

labeled a non-supernode. Similarly, adding or deleting a node

may not cause status changes of any nodes within its 2-hop

neighborhood. For example, removing node 2 from Fig. 2 will

not cause status changes of any node.

IV. RELATED WORK

Routing in LNs: The original routing algorithm described

in the LN white paper [8] applies a BGP-like protocol, where

every node accumulates a global map of the network to

perform routing. To support scalability, Flare [9] reduces the

size of routing tables maintained by nodes, allowing them to

only store neighbors within certain hops. Meanwhile, Flare

introduces beacon nodes with a richer network information

to supplement a node’s local view, while violating the spirit

of decentralization. Both SilentWhispers [10] and Speedy-

Murmurs [11] propose landmark-based routing schemes. The

above routing algorithms fall into static routing, without

capturing the payment channel dynamics. Thus, Revive [12],
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Fig. 4: A custom network of 100 nodes and 340 edges (not shown), where node degrees are represented in colors (yellow: high degree, blue: low degree).

Spider [13], and Flash [14] propose dynamic routing algo-

rithms, leading to a higher throughput and success volume of

an LN. We focus on reducing the routing space itself, and

hence, all of the above extensions can be directly applied.

Supernode selection: Supernode selection usually goes

through a cluster formation, where a distinct IP address is

used to select supernodes. In non-local solutions, an iterative

process is applied to identify supernodes (also called cluster-

heads) such that all other non-clusterhead nodes are directly

connected to at least one supernode. Clusterheads generated

out of the iterative process usually have some desirable proper-

ties such as clusterheads forming a maximal independent set as

in [4] that aims to reduce the number of clusters. However, this

approach is hard to be directly applied to LNs as clusterheads

of adjacent clusters are not necessarily directly connected,

making transactions among clusterheads more complex. To

better handle network dynamics, local solutions are used to

identify self-connected clusterheads using local information

and without label propagation as in [5, 6]. Our approach

adopted from [7] is local and can also ensure that the derived

clusterheads are connected. Additionally, we introduce the

neighbor set reduction process to control network density.

V. PERFORMANCE EVALUATION

A. Setup

In the simulation, we generate LN topologies using the

GraphStream library [15] in Java [16] and implement routing

algorithms using the Graph package in Matlab R2018a [17].

Topology: Based on [18], LNs can be approximated by the

scale-free model where the node degree distribution follows

the power law [3]. The network is comprised of a small central

clique and a loosely connected periphery. Low degree nodes

tend to connect to high degree nodes rather than low degree

ones. Thus, we apply the Barabasi-Albert (BA) model [19]

based on the preferential attachment rule: nodes are generated

one by one by attaching one or more edges to other existing

nodes, using a biased random selection that gives more chance

to a node with a higher node degree.

Channel capacity and balance: Each channel’s capacity

is set randomly from an interval ranging from [1000, 1500)
with probability 50%, [1500, 2000) with probability 35%, and

[2000, 2500) with probability 15%. For the balance of the pair

of nodes of a given channel at the start of an experiment, we

consider two scenarios: (1) randomly balanced, i.e., the two

nodes partition the channel capacity in a stochastic manner,

and (2) perfectly balanced, i.e., the two nodes of a channel

have an identical balance, half of channel capacity.

Transaction parameters: For each transaction, the sender-

receiver pair is randomly selected. For the transaction size,

we use two settings, (1) homogeneous: each transaction has an

identical transfer amount, and (2) heterogeneous: 40% of them

are micro, with the transfer amount from (0, 200]; 30% of

them are small from (200, 800]; 20% of them are medium from

(800, 1000]; and 10% of them are large from (1000, 1600]. All

selections are random.

Metric and benchmark: We use two evaluation metrics for

liquidation: (1) single transaction success ratio: the number of

transactions that can find a reachable path over the number of

total transactions, and (2) transaction flow success ratio: after

sequentially executing all of the transactions of random pairs

in the given flow, the number of completed transactions over

the number of total transactions. Scalability is measured by the

node reduction ratio, i.e., the size of the supernode set over

the original set. We only use single path routing under BSF

searching, which favors the shortest path to save routing fees

for the sender. Routing fees are not included in our evaluation,

however, we measure the average path length and node degree.

B. Performance

We generate a custom network based on the BA model with

100 nodes and 340 edges in Fig. 4 (a). Each node is colored

based on its node degree, where yellow is the highest and

the purple the lowest. After pooling, we obtain a set of 42
supernodes, red nodes in Fig. 4 (b), and the size of each pool

is shown in Fig. 4 (c). Since the supernode set size depends

on ID distribution, we perform ID permutation on the network

100 times and obtain the set size varies from 35 to 49 with

43 as the mean. In the following simulation, ID assignment is

fixed so we can focus on other metrics.

Pooling only: We conduct experiments on the custom

network of Fig 4 and the network generated by pooling only.

We specify an identical transfer amount for each transaction

in the homogeneous setting. We generate a flow of 150
transactions with random parings. To see the impact of the

transfer amount, we vary its value and re-run the experiment

under the fixed network setting, including 150 sender-receiver

pairs. Fig. 5 (a) shows the single transaction success ratio



50 550 1050 1550
Transactin size/usd

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s r

at
io

With pooling
Without pooling

(a) Single transaction success ratio.

50 550 1050 1550
Transactin size/usd

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s r

at
io

With pooling
Without pooling

(b) Transaction flow success ratio.

Fig. 5: Transactions of identical transfer over randomly balanced channels.
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Fig. 6: Transactions of identical transfer over perfectly balanced channels.

under different transfer amounts when all the channels are

randomly balanced initially. Obviously, pooling improves the

success ratio, especially when the transfer amount grows. We

can observe from Fig. 5 (b) that pooling outperforms without

pooling for the transaction flow, although its success ratio

deteriorates quicker than the single transaction results. Figs. 6

(a) and (b) show success ratios for the single transaction and

the transaction flow, respectively, when all of the channels

are balanced initially. The performance without pooling stays

close to the one with pooling for small transaction sizes. Like

in Fig. 5, pooling helps the success ratio as the transaction size

grows, even under an elephant (i.e., large) transaction flow.

Figs. 7 (a) and (b) show the results from the heterogeneous

setting on the custom network, under the two different channel

balance settings: random and perfect. We generate 17 trans-

action flows, each containing 150 transactions. On average,

our pooling strategy could improve network liquidation: for

the single transaction by 66% for random and by 33% for

perfect, and for the transaction flow by 60% for random and

by 34% for perfect, compared to without pooling.

Pooling and pruning: We conduct experiments under three

different topologies generated by pooling only, pooling then

pruning, and pruning then pooling, respectively, on the custom

network. The pooling-only topology contains 255 links con-

necting 42 supernodes. Based on this topology, we remove

some channels through link pruning, and obtain the pooling

then pruning topology with 213 links. The pruning then

pooling is generated by applying the reversing order and

contains 43 supernodes with 226 links. Again, each supernode

re-distributes its fund equally to all its external channels.

The performance comparison starts by specifying an iden-

tical transfer amount for each transaction in the homogeneous

setting. We show the impact caused by the transfer amount in

Fig. 8. As before, we generate a flow of 150 transactions with

random pairs, then gradually increase the transfer amount. In

Figs. 8 (a) and (b), we can observe that the network after
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Fig. 7: Transactions of random transfer amounts.
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Fig. 8: Transactions of identical transfer over randomly balanced channels.

pruning has higher success ratios for both cases. This is

intuitive, as fewer links lead to more funds assigned to each

external channel. Because relatively fewer links are pruned

after pooling, the improvement of the success ratio for pruning

is less obvious than pooling for the custom network.

In a separation simulation for the case of Fig. 8 (b), but with

a 20% variation in the identical transfer size of the transaction

flow, the success ratio increases by around 5% compared with

Fig. 8 (b). Hence, we conduct simulation of transaction flow

in the heterogeneous setting with random transfer amounts, a

more realistic setting. We use the same set of flows for Fig. 7

and apply to the following: (1) the custom network, (2) pooling

only, (3) pooling then pruning, (4) pooling then pruning with

p = 0.5, for probabilistic pruning, (5) pruning then pooling,

and (6) pruning with p = 0.5 then pooling. All external

channel capacities are assumed to be randomly balanced after

pooling. The corresponding mean results are shown in Table I.

STSR, TFSR, PL, ND are short for single transaction success

ratio, transaction flow success ratio, average path length, and

average node degree, respectively.

Based on Table I, success ratios of both single transaction

and transaction flow improve after pooling and pruning. How-

ever, the impact of the ordering between pooling and pruning

is less obvious for the custom network. Probabilistic pruning

offers a desirable trade-off among success ratio, path length,

and node degree. Note that the success ratio increases due

to the pruning efficiency, but will cause a longer path on

average, meaning the sender has to pay more routing fees

since each intermediate node should be rewarded, according

to [20]. The path length (PL) after pooling represents the hop

count between sender and receiver, which includes internal

channels. The node degree (ND) after pooling measures only

supernodes, which includes external channels only. As the

custom network is constructed based on the power-law model,

a supernode tends to have a higher node degree, even after

removing internal channels connecting pool members.



(|V |, |E|) Operation STSR TFSR PL ND

(100, 340) W/O pooling 0.45 0.48 4.89 6.80

(42, 255) W pooling 0.75 0.77 6.35 12.14

(42, 213) Pooling, pruning 0.88 0.83 7.01 10.14

(42, 241) Pooling, 0.5pruning 0.79 0.79 6.77 11.48

(43, 226) Pruning, pooling 0.87 0.86 7.12 10.51

(43, 244) 0.5Pruning, pooling 0.81 0.80 6.74 11.35

TABLE I: A comprehensive comparison of methods on the custom network.

We also evaluate the algorithms on two popular topologies:

an ISP topology [21] and a Watts-Strogatz (WS) topology [22].

The same setting used in Table I for channels and transactions

is applied, but generate 1, 000 random transactions for ISP and

5, 000 for WS. We summarize the performance comparison in

Table II, which shows the same trend as that of Table I, except

for the relatively low ND after pooling. This is because ISP

and WS do not follow the power-law distribution, supernodes

usually do not have high node degrees as in the BA model,

which are further reduced after discounting internal channels.

Summary: Our simulation on the custom network shows

a node reduction between 51% to 65%, which is a desirable

result for searching scalability. Simulations using the hetero-

geneous setting on three networks show promising results on

network liquidation in terms of success ratio improvement, as

is summarized in Table III. The improvement of pooling then

pruning and pruning then pooling varies dependents primarily

on the network topology. Note that link pruning comes at

the cost of a longer routing path, as any two non-supernodes

have to perform transactions through supernodes. Among all

proposed algorithms, we find that pooling then pruning and

pruning then pooling tend to perform better than pooling only

in terms of transaction liquidation, as these two algorithms

enlarge the channel capacity among supernodes.

VI. CONCLUSION

This paper introduces a new notion of local pooling to

address two challenges in lightning networks: scalability and

liquidation. The central idea of local pooling is local clustering

with supernodes as clusterheads such that supernodes are self-

connected. Supernodes pool all funds in the whole network

and they form a smaller network for searching. Local pooling

can also be extended by introducing multi-level clustering. Our

simulation results show the effectiveness of the local pooling

in terms of supporting routing scalability as well as overall

network liquidation, especially for transactions that involves

high transfer amounts. Our future work will focus on the

impact of view (k), pruning probability (p), and routing fees

on performance and cost trade-offs. Finally, the impact of

the diversity of transfer amounts in transaction flows on the

network liquidation is still an open research topic.
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