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Abstract—The lightning network (LN) is a special network in
Bitcoin that uses offchain micropayment channels to scale the
blockchain’s capability to perform instant transactions without
a global block confirmation process. However, micropayment
scalability in a large LN and liquidation for small nodes still
remain major challenges for the LN. In this paper, we introduce
the notion of supernodes and the corresponding supernodes-
based pooling to address these challenges. In order to meet
the high adaptivity and low maintenance cost in the dynamic
LN where users join and leave, supernodes are constructed
locally without any global information or label propagation. Each
supernode, together with a subset of (non-supernodes) neighbors,
forms a supernode-based pool. These pools constitute a partition
of the LN. Additionally, supernodes are self-connected. Micro-
payment scalability is supported through node set reduction
as only supernodes are involved in searching and in payment
with other supernodes. Liquidation is enhanced through pooling
to redistribute funds within a pool to external channels of its
supernode. Extensive simulations have been conducted to validate
the improvement in routing scalability and liquidation of the
proposed architecture under different settings.

Index Terms—Bitcoin, blockchain, lightning networks, local-
ized algorithms, pooling, supernodes.

I. INTRODUCTION

Lightning networks (LNs) [1] recently emerged as a promis-
ing approach that addresses the scalability issue of the
blockchain and its applications in Bitcoin [2]. In the original
blockchain, each transaction has to go through a global block
confirmation process. Using smart contracts, trusted neigh-
bors (or simply neighbors) in LNs can set up micropayment
channels (or simply channels) that support instant transactions
without block confirmation. Such a transaction can be done
via neighbors directly or non-neighbors with a path of mi-
crochannels connecting these nodes. In this way, LNs offer
more opportunities for fast transactions between nodes. Each
LN node with a given amount of funds will split funds to
channels to set up bidirectional payment channels with its
neighbors. A node can send a payment to another party in LNs
as long as this payment does not exceed the funds allocated to
this node on the channel. Each channel maintains its balances
on two numbers associated with its two end nodes.

LNs support non-neighbor transactions by supporting trans-
actions between two nodes that are not neighbors (as u and
v in Fig. 1 (a)) or two neighbors with inefficient funds along
connecting channels (as v and v in Fig. 1 (b)). In both cases, a
transaction involving a transfer of $4 from w to v has w as the
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Fig. 1: A fund transfer of $4 from w to v via w without (a) and with (b) the
existence of {u,v}.

third node in the path. When w sends $4 to v, its balance on the
channel {u,w} is changed to $1. The balance of the channel
associated with w is changed to $6. The transaction completes
through transferring $4 from w to v. Various extensions of LNs
have been proposed that address different performance and/or
security aspects since its advent in 2016. For example, we can
use multiple flows to implement a transaction ($2 from u to v
and $2 more from w to v via w in Fig 1 (b)). However, LNs
and their extensions still face two challenges: micropayment
scalability in a large LN and liguidation for small nodes (i.e.,
nodes with a small amount of funds with funds assigned to
different channels). A small node with the lack of liquidation
on one channel will seek help from its other channels through
a path connection process.

In this paper, we introduce an LN pooling method based on
a special clustering approach using the notion of supernodes.
Given a connected graph G = (V, E) with node set ' and
channel (also known as a link) set £/, we assume that £ only
connects trust neighbors who are willing to join for payment
channels. It has been shown in [3] that when the node degree
of a random graph is sufficiently large, the resultant graph is
connected with a high probability.

Supernode-based pooling is constructed by partitioning G
into clusters such that each cluster has one supernode. This
supernode connects to all its members (as shown in Fig. 2).
Additionally, all supernodes are self-connected. In graph ter-
minology, we require that supernode-induced subgraph G[S]
be a connected graph for S C V and V — S C N(S) is in
G, where N(S) in the neighbor set of supernode set S. In
supernode-based pooling, each supernode pools and manages
all funds within the cluster to increase liquidation of the
network. As G[S] is an induced subgraph from G, there is no
extra maintenance cost. To support path searching (or routing)
scalability, we require that a relatively small S is derived to
reduce the routing space. In order to meet the high adaptivity
and low maintenance cost in the dynamic LN where users join
and leave, the selection process for S should be local.

In this paper, we address three challenges: (1) Formation
of connected supernodes in LNs should be local, rather than
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Fig. 2: Supernode-based pooling.

global, to better fit a dynamic environment. (2) Mainte-
nance of supernodes and the corresponding clusters should
be lightweight. (3) Effectiveness of the proposed architecture
in addressing the issues related to microchannel scalability
for simple searching and liquidation for small nodes must
be experimentally validated. The following summarize our
contributions: (1) We apply a localized algorithm to determine
S without any global information or label propagation by
removing nodes and pruning links. (2) We propose how to
further reduce the size of S through a hierarchy of supernodes.
(3) We discuss how S can be maintained and updated in the
dynamic LN. (4) We evaluate the performance in terms of
scalability and liquidation on different network settings.

II. BACKGROUND

Payment channel in LNs: Micropayment channels are the
core element of the LN. A channel can be seen as a smart
contract between two nodes, allowing them to make multiple
payments without the need to commit every payment to the
blockchain. In Fig. 1, v and w jointly create a payment
channel, in which they deposit funds, e.g. u deposits $5 and
w deposits $2. After this transaction is committed to the
blockchain, a channel with a capacity of $7 ($5 + $2) is open
between u and w. Thereafter, u and w are able to perform
payments back and forth freely by issuing transactions. At
any moment, v and w can close the channel and refund the
balance each one has in the channel by committing a closing
transaction with their final balances to the blockchain.

Payment path in LNs: In the lifecycle of a payment chan-
nel, there are two transactions, i.e., a creating transaction
and a closing transaction, that have to be committed to the
blockchain, thereby causing transaction fees and waiting time.
Payment channels are a suitable choice for any two nodes with
long-term and high-frequency mutual transactions. Another
feature of LNs is the ability to perform payments between
nodes not directly connected. Two nodes can make a trans-
action as long as they can find a path consisting of multiple
payment channels between them where the transaction amount
is no larger than the minimum channel balance of the path.
The transaction sender is required to reward each intermediate
node with a small routing fee for routing help.

Pooling via clustering: We assume that each node has
a distinct ID and all nodes are initially colored white in
coloring schemes for pooling. In pseudo local clustering [4],
when a white node has the maximum ID among all its white
neighbors, it becomes a clusterhead and colors itself black.

All white neighbors of a black node join in the cluster and
change their colors to gray. This iterative process continues
until there are no white nodes left. The black nodes form
the set of clusterheads. Each gray node joins one clusterhead.
This process is pseudo local because it may require multiple
rounds as color labels can propagate sequentially. In another
clustering approach [5], a white node selects the node with
the maximum ID within its 1-hop neighborhood (including
itself) as its dominator. After the white node has chosen
its dominator, it colors itself gray if it is not selected as a
dominator by itself or by its neighbors; otherwise, it marks
itself black. The coloring process continues until no white
nodes are left. All the black nodes become clusterheads. This
process is local in one step with no label propagation.

The above approaches are not suitable in LNs as two
adjacent clusters may not be connected by their clusterheads,
making transactions among pools more complex. The third
clustering scheme [6] works as follows: A node marks itself
black (i.e., a clusterhead) only when it has two unconnected
neighbors. We use k-hop neighborhood information (for a
small k&, say k = 2) to determine the connectivity of two
neighbors for each node locally in a decentralized way. Black
nodes form a set of connected clusterheads, also called the
connected dominating set. In this case, a false negative - as
two connected neighbors w and v are falsely identified as
unconnected, may occur if after removing link (u,v), the
shortest path between w and v is longer than k£ hops. There
are several local pruning methods to further reduce the size
of the clusterhead set.

III. SUPERNODE-BASED LOCAL POOLING
A. Local pooling

Given an undirected connected graph G = (V, E), each
node v € V is identified with a long term public key as its
distinct ID. The priority of a node pri(v) is a distinct integer
from each distinct ID based on mapping pri, to be used in the
symmetric breaking process of local pooling. To avoid cheat-
ing at each node, asymmetric and homomophic encryption
are used for secure ID priority comparison without decryption
during local pooling, together with neighbor watchdogs. We
assume that trusted neighbors are willing to exchange their
budget and neighbor sets. Each node v maintains a 2-hop
view, i.e., 2-hop subgraph: its neighbor set N (v) and its 2-hop
neighbor set V(NN (v)), denoted as Na(v), through neighbor
set exchanges with its neighbors. That is, v’s 2-hop subgraph
is (Na(v), Es(v)), where Ea(v) = EU(N7(v) x N2(v)). Note
that in Fig. 2, (3,4) € E5(1), but (4,6) ¢ E»(2), although
both 4 and 6 are in Na(2).

The following are highlights of our 3-step local pooling
scheme for a given graph G = (V, E):

1) Supernode selection. Using 2-hop subgraph to find a set
of supernodes S C V locally at each node, such that the
induced subgroup G[S] is connected and V' — S C N(.5).

2) Fund pooling. Each node in V' — S joins one pool headed
by one of its neighbor supernodes. Each supernode “vir-



tually” pools funds from its members and re-distributes
funds to its external channels in G[S].

3) Routing in the induced subgraph. All fund transfers
among clusters are conducted in G[S].

Supernode set S basically forms a dominating set of G, i.e.,
each node not in .S has a neighbor in S. G[S] is also connected.
In the proposed pooling, funds within a cluster are virtually
pooled and re-assigned to external channels of the supernode.
Note that each supernode and its members still maintain and
manage internal channels so that all members will not be over-
committed in transactions. Although, each member can still
maintain payment channels directly with nodes outside the
pool (like channel {1, 2} in Fig 2). To simplify discussion,
we assume that all members allow the supernode to manage
their funds by using only channels connected to the supernode.
The supernode virtually re-allocates pool funds to its external
channels to boost liquidation. In Fig. 2, funds associated with
nodes 1, 4, and 8 are redistributed to two external channels
{4,6} and {4, 3} in the cluster headed by supernode 4, with
each internal channel to 4 having the initial budget of each
member. Note that each supernode itself is a member so its
channel allocation should be managed accordingly as well.
Searching (via routing) is handled exclusively by supernodes.
As S'is smaller than V, the scalability issue is alleviated. Note
that a supernode may not have any other members — its role
is primarily for connection among supernodes.

B. Supernode selection

We adopt a scheme proposed in [7]:

o Supernode selection. All nodes are initially supernodes.
A supernode v becomes a non-supernode if any two
neighbors of v are connected by (a) a link or (b) a path
(constructed from the local 2-hop view of v) such that
for each node u (excluding two end nodes) on the path,
pri(u) > pri(v).

The formation of supernodes in a given graph depends
on topology, priority distribution, and the amount of local
information. With 2-hop view, node 1 is a non-supernode in
Fig 2, because any pair of node 1’s neighbors are connected
via nodes with a higher priority than node 1. However, if
link {1,4} does not exist, node 1 with 2-hop view will be
labelled a supernode as node 1 does not “see” link {3,4}. In
this case, 3-hop view (k = 3) is needed to label node 1 as a
non-supernode. The supernode selection process is intriguing
as non-supernodes are “removed” asynchronously without any
centralized coordination. The priority is used so that nodes
with the highest priority in the 2-hop view cannot be removed
to ensure both coverage and connectivity.

Local pooling can potentially be extended in a couple of
ways. To further improve searching (i.e., routing) scalability,
we can construct supernodes of supernodes. For example,
in Fig. 2, node 6 is the supernode (double-circled) in the
supernode set {3, 4, 6}. With this new structure, the routing
process becomes multi-level. The benefit of a multi-level
process is the ease of routing discovery, but at the cost of
with more maintenance overhead.

C. Neighbor set reduction

When we conduct routing, it is assumed that all neighbors of
a node in G[S] are involved in the routing process. In reality,
only a subset of neighbors is needed in order to allocate more
funds per channel to improve liquidation. How can we reduce
a node’s neighbor set in G[S] without losing reachability?

Here, we propose a link pruning (i.e., neighbor set re-
duction) process without global connectivity information in
G[S]. This is analogous to the supernode selection process by
replacing nodes with links. We first define the link priority
of {u,v} (like node priority in supernode selection) based on
the reverse lexicographical order of the two end nodes of the
link as pri(max{pri(u),pri(v)}, min{pri(u), pri(v)}), e.g.
pri(3,2) > pri(3,1) > pri(2,1).

o Link pruning. Link {u, v} can be removed if a replace-
ment path (under k-hop view) connecting v and v exists
such that all links along the path have a higher priority
than {u,v}.

To ensure the end nodes of a link make the same decision,
we assume that both nodes of each link exchange its local
view before the decision. In Fig 2, suppose we assume that
link pruning happens before supernode selection, thus link {2,
1} can be removed under the 2-hop view of each node because
it can be replaced by a path ({2, 3}, {3, 4}, {4,1}). Link {3,
4} itself can be replaced by path ({3, 6}, {6, 4}), and link
{4, 1} by path ({4, 8}, {8, 1}).

Given a graph, we can apply local pooling to generate the
supernode set S, and then, apply link pruning on G[S]; we
can also apply the link pruning on G first, followed by local
pooling. Note that in the latter case, link pruning reduces
the average node degree which will make it easier to reduce
the supernode set in the second step. To maintain a certain
node degree for network fault tolerance, link pruning can be
controlled in a probabilistic way, e.g. the actual link removal is
controlled by a pre-defined probability p on each link pruning.

Fig. 3 (a) shows a 25-node LN that follows the power-law
distribution. Figs. 3 (b) and (c) apply supernode set selection
of 10 nodes colored red (node reduction), followed by link
pruning (link reduction). Figs. 3 (d) and (e) adopt link pruning
first, followed by supernode set selection of 7 nodes.

D. Properties

The link pruning process is asynchronous at each node and
without global coordination. To show that the link pruning
is correct, i.e., the resultant graph is still connected, we only
need to show that for a link {u, v} connecting u and v to be
removed, there always exists an “irreplaceable” replacement
path connecting v and v after link pruning. First, we give a
definition of a max-min link {2’,y’} from replacement paths
connecting x and y with link priorities higher than {u,v}. =
and y are node IDs, which are initialized as « and v.

Definition 1. Max-min link for (z,y, {u,v}): A min link in
a path is a link with the lowest priority. Assume {P} is a set
of paths connecting x and y such that all links of each path
in the set have a higher priority than {u,v}. A max-min link
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(a) The original LN topology. (b) Pooling only.

(c) Pooling then pruning.

(d) Pruning only. (e) Pruning then pooling.

Fig. 3: Two different orders of processes using local pooling and neighbor set reduction on a 25-node LN (red nodes: supernodes).

{«',y'} in {P} is a link with the highest priority among all
min links in {P}.

In the following, we define a recursive process called
MAXMIN(u, v, {u,v}) to construct an irreplaceable replace-
ment path for replacing link {u,v}.

MAXMIN(z, y, {u,v}):

1) If x = y then return 0.

2) Determine the max-min link {z’,y'} for (u,v, {u,v}).

3) Return replacement path (MAXMIN(z, ', {u,v}),

{z',y'}, MAXMIN(Y', y, {u,v})), assuming z’ is closer
to x than ¢y’ does in the corresponding replacement path.

To illustrate, for link {2,1} in Fig. 2, the max-min link is
{2,3} among four replacement paths: ({2,3},{3,4}, {4,1}).
({2,3},{3,6},{6,4},{4,1}), ({2,3}, {3,4},{4,8},{8,1}),
and ({2,3}, {3,6}, {6,4}, {4,8}, {8,1}). 3 is closer to |
than 2 is in the replacement path. Then, the max-min link
for a replacement path connecting node 3 and node 1 is
{3, 6}, selected among four min nodes {4,1}, {4,1}, {3,4},
and {3,6} from the same four replacement paths above after
removing link {3,2}, respectively. The max-min link for a
placement path connecting node 6 and node 1 is {6,4}.
Eventually, the irreplaceable replacement path for link {2, 1}

is ({2,3), {36}, {6,4}, {4,8), {8,1}).

Theorem 1. The process MAXMIN(u, v, {u,v}) will complete
in a finite number of steps and generate an irreplaceable
replacement path for {u,v} that cannot be further replaced.

Proof. We show that all links generated are distinct. Suppose
{z',y'} is the max-min link among all links in replacement
paths connecting v and v. Clearly, {z/,y’} will not be se-
lected as the max-min link in MAXMIN(u, z’, {u,v}) or
MAXIMIN(y', v, {u,v}) as any path includes no repeated
nodes/links. Next, we show that MAXMIN(u, 2’, {u,v}) and
MAXIMIN(y', v, {u,v}) have no common links. We assume
that MAXMIN(u, 2', {u, v}) is non-empty: ({u, u1 }, {u1, us},
ooy {Un,2'}) and MAXIMIN(y',v, {u,v}) is non-empty:
({y/ﬂ}m}, veey {’()2,1}1}, {1)1,1)}). Suppose {ui7ui+1} =
{vj+1,v;} (a common link), then {{w,u1}, ..., {u;,v;}, ...,
{v1,v}} is a replacement path for {u, v}. The fact that all links
in this path have a higher priority than {z’,y’'} contradicts
the fact that {2’,y'} is the max-min link. Since the recursive
call selects a distinct link, the process will complete in a
finite number of steps. Based on the max-min link definition,
{z',y'} cannot be further replaced and the path generated from
MAXMIN is irreplaceable. O

Corollary 1. Given a connected graph, the resultant graph
after the link pruning process is still connected.

Proof. This corollary follows Theorem 1 that each link has an
irreplaceable replacement path that cannot be replaced. O

E. Node joining and leaving

When a node v joins or leaves, local pooling can perform
status update of the 2-hop neighborhood of v without propaga-
tion. This is because the status of a node (with label supernode
or non-supernode) depends only on the connections of this
node’s 2-hop neighborhood, not the status (i.e., label) of the
2-hop neighborhood. When a node v joins or leaves, v will first
inform its neighbors N (v). Each node u in N(v) in turn will
inform its neighbors in N (u) through neighbor set exchanges.
Finally, each node in N2 (v) (i.e., nodes within 2-hop view of
v) will update its status. Once updated, node v, together with
the status changes of its 2-hop neighborhood, will be published
in the blockchain. When a channel {u, v} is added or deleted,
the status updates of the two end nodes u and v, together with
all nodes in N(u) and N(v), can be done in a similar way.

Note that adding or deleting a node will cause status
changes in its 2-hop neighborhood, from supernode to non-
supernode or from non-supernode to supernode. For example,
adding a new node 9 connecting nodes 3, 4, 6, and 7 in Fig.
2 will change node 6 to a non-supernode, while node 9 has
a supernode label. Adding a new node 9 connecting node 2
alone will change node 2 to a supernode, while node 9 is
labeled a non-supernode. Similarly, adding or deleting a node
may not cause status changes of any nodes within its 2-hop
neighborhood. For example, removing node 2 from Fig. 2 will
not cause status changes of any node.

IV. RELATED WORK

Routing in LNs: The original routing algorithm described
in the LN white paper [8] applies a BGP-like protocol, where
every node accumulates a global map of the network to
perform routing. To support scalability, Flare [9] reduces the
size of routing tables maintained by nodes, allowing them to
only store neighbors within certain hops. Meanwhile, Flare
introduces beacon nodes with a richer network information
to supplement a node’s local view, while violating the spirit
of decentralization. Both SilentWhispers [10] and Speedy-
Murmurs [11] propose landmark-based routing schemes. The
above routing algorithms fall into static routing, without
capturing the payment channel dynamics. Thus, Revive [12],



(a) The custom network.

(b) Pooling: supernodes marked red.

(c) Supernodes: numbers for pool sizes.

Fig. 4: A custom network of 100 nodes and 340 edges (not shown), where node degrees are represented in colors (yellow: high degree, blue: low degree).

Spider [13], and Flash [14] propose dynamic routing algo-
rithms, leading to a higher throughput and success volume of
an LN. We focus on reducing the routing space itself, and
hence, all of the above extensions can be directly applied.
Supernode selection: Supernode selection usually goes
through a cluster formation, where a distinct IP address is
used to select supernodes. In non-local solutions, an iterative
process is applied to identify supernodes (also called cluster-
heads) such that all other non-clusterhead nodes are directly
connected to at least one supernode. Clusterheads generated
out of the iterative process usually have some desirable proper-
ties such as clusterheads forming a maximal independent set as
in [4] that aims to reduce the number of clusters. However, this
approach is hard to be directly applied to LNs as clusterheads
of adjacent clusters are not necessarily directly connected,
making transactions among clusterheads more complex. To
better handle network dynamics, local solutions are used to
identify self-connected clusterheads using local information
and without label propagation as in [5, 6]. Our approach
adopted from [7] is local and can also ensure that the derived
clusterheads are connected. Additionally, we introduce the
neighbor set reduction process to control network density.

V. PERFORMANCE EVALUATION
A. Setup

In the simulation, we generate LN topologies using the
GraphStream library [15] in Java [16] and implement routing
algorithms using the Graph package in Matlab R2018a [17].

Topology: Based on [18], LNs can be approximated by the
scale-free model where the node degree distribution follows
the power law [3]. The network is comprised of a small central
clique and a loosely connected periphery. Low degree nodes
tend to connect to high degree nodes rather than low degree
ones. Thus, we apply the Barabasi-Albert (BA) model [19]
based on the preferential attachment rule: nodes are generated
one by one by attaching one or more edges to other existing
nodes, using a biased random selection that gives more chance
to a node with a higher node degree.

Channel capacity and balance: Each channel’s capacity
is set randomly from an interval ranging from [1000, 1500)
with probability 50%, [1500, 2000) with probability 35%, and
[2000, 2500) with probability 15%. For the balance of the pair
of nodes of a given channel at the start of an experiment, we

consider two scenarios: (1) randomly balanced, i.e., the two
nodes partition the channel capacity in a stochastic manner,
and (2) perfectly balanced, i.e., the two nodes of a channel
have an identical balance, half of channel capacity.

Transaction parameters: For each transaction, the sender-
receiver pair is randomly selected. For the transaction size,
we use two settings, (1) homogeneous: each transaction has an
identical transfer amount, and (2) heterogeneous: 40% of them
are micro, with the transfer amount from (0,200]; 30% of
them are small from (200, 800]; 20% of them are medium from
(800, 1000]; and 10% of them are large from (1000, 1600]. All
selections are random.

Metric and benchmark: We use two evaluation metrics for
liquidation: (1) single transaction success ratio: the number of
transactions that can find a reachable path over the number of
total transactions, and (2) transaction flow success ratio: after
sequentially executing all of the transactions of random pairs
in the given flow, the number of completed transactions over
the number of total transactions. Scalability is measured by the
node reduction ratio, i.e., the size of the supernode set over
the original set. We only use single path routing under BSF
searching, which favors the shortest path to save routing fees
for the sender. Routing fees are not included in our evaluation,
however, we measure the average path length and node degree.

B. Performance

We generate a custom network based on the BA model with
100 nodes and 340 edges in Fig. 4 (a). Each node is colored
based on its node degree, where yellow is the highest and
the purple the lowest. After pooling, we obtain a set of 42
supernodes, red nodes in Fig. 4 (b), and the size of each pool
is shown in Fig. 4 (c). Since the supernode set size depends
on ID distribution, we perform ID permutation on the network
100 times and obtain the set size varies from 35 to 49 with
43 as the mean. In the following simulation, ID assignment is
fixed so we can focus on other metrics.

Pooling only: We conduct experiments on the custom
network of Fig 4 and the network generated by pooling only.
We specify an identical transfer amount for each transaction
in the homogeneous setting. We generate a flow of 150
transactions with random parings. To see the impact of the
transfer amount, we vary its value and re-run the experiment
under the fixed network setting, including 150 sender-receiver
pairs. Fig. 5 (a) shows the single transaction success ratio
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Fig. 5: Transactions of identical transfer over randomly balanced channels.
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Fig. 6: Transactions of identical transfer over perfectly balanced channels.

under different transfer amounts when all the channels are
randomly balanced initially. Obviously, pooling improves the
success ratio, especially when the transfer amount grows. We
can observe from Fig. 5 (b) that pooling outperforms without
pooling for the transaction flow, although its success ratio
deteriorates quicker than the single transaction results. Figs. 6
(a) and (b) show success ratios for the single transaction and
the transaction flow, respectively, when all of the channels
are balanced initially. The performance without pooling stays
close to the one with pooling for small transaction sizes. Like
in Fig. 5, pooling helps the success ratio as the transaction size
grows, even under an elephant (i.e., large) transaction flow.

Figs. 7 (a) and (b) show the results from the heterogeneous
setting on the custom network, under the two different channel
balance settings: random and perfect. We generate 17 trans-
action flows, each containing 150 transactions. On average,
our pooling strategy could improve network liquidation: for
the single transaction by 66% for random and by 33% for
perfect, and for the transaction flow by 60% for random and
by 34% for perfect, compared to without pooling.

Pooling and pruning: We conduct experiments under three
different topologies generated by pooling only, pooling then
pruning, and pruning then pooling, respectively, on the custom
network. The pooling-only topology contains 255 links con-
necting 42 supernodes. Based on this topology, we remove
some channels through link pruning, and obtain the pooling
then pruning topology with 213 links. The pruning then
pooling is generated by applying the reversing order and
contains 43 supernodes with 226 links. Again, each supernode
re-distributes its fund equally to all its external channels.

The performance comparison starts by specifying an iden-
tical transfer amount for each transaction in the homogeneous
setting. We show the impact caused by the transfer amount in
Fig. 8. As before, we generate a flow of 150 transactions with
random pairs, then gradually increase the transfer amount. In
Figs. 8 (a) and (b), we can observe that the network after
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Fig. 7: Transactions of random transfer amounts.
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Fig. 8: Transactions of identical transfer over randomly balanced channels.

(a) Single transaction success.

pruning has higher success ratios for both cases. This is
intuitive, as fewer links lead to more funds assigned to each
external channel. Because relatively fewer links are pruned
after pooling, the improvement of the success ratio for pruning
is less obvious than pooling for the custom network.

In a separation simulation for the case of Fig. 8 (b), but with
a 20% variation in the identical transfer size of the transaction
flow, the success ratio increases by around 5% compared with
Fig. 8 (b). Hence, we conduct simulation of transaction flow
in the heterogeneous setting with random transfer amounts, a
more realistic setting. We use the same set of flows for Fig. 7
and apply to the following: (1) the custom network, (2) pooling
only, (3) pooling then pruning, (4) pooling then pruning with
p = 0.5, for probabilistic pruning, (5) pruning then pooling,
and (6) pruning with p = 0.5 then pooling. All external
channel capacities are assumed to be randomly balanced after
pooling. The corresponding mean results are shown in Table 1.
STSR, TFSR, PL, ND are short for single transaction success
ratio, transaction flow success ratio, average path length, and
average node degree, respectively.

Based on Table I, success ratios of both single transaction
and transaction flow improve after pooling and pruning. How-
ever, the impact of the ordering between pooling and pruning
is less obvious for the custom network. Probabilistic pruning
offers a desirable trade-off among success ratio, path length,
and node degree. Note that the success ratio increases due
to the pruning efficiency, but will cause a longer path on
average, meaning the sender has to pay more routing fees
since each intermediate node should be rewarded, according
to [20]. The path length (PL) after pooling represents the hop
count between sender and receiver, which includes internal
channels. The node degree (ND) after pooling measures only
supernodes, which includes external channels only. As the
custom network is constructed based on the power-law model,
a supernode tends to have a higher node degree, even after
removing internal channels connecting pool members.



(VI 1El) Operation STSR | TEFSR PL ND Topo(|V|, |E|) Operation STSR | TESR | PL | ND
(100, 340) W/O pooling 0.45 048 | 489 | 6.80 ISP(42, 66) W/O pooling 0.64 0.68 2.8 | 3.14

(42,255) W pooling 0.75 0.77 6.35 | 12.14 ISP(12,18) W pooling 0.85 0.84 32 3
(42,213) Pooling, pruning 0.88 0.83 7.01 | 10.14 ISP(12,15) Pooling, pruning 0.94 0.95 3.8 2.5
(42,241) Pooling, 0.5pruning 0.79 0.79 6.77 | 11.48 ISP(10, 13) Pruning, pooling 0.98 1 34 2.6

(43,226) Pruning, pooling 0.87 086 | 7.12 | 1051 WS(100, 200) W/O pooling 0.52 049 | 42 4
(43,244) 0.5Pruning, pooling 0.81 0.80 6.74 | 11.35 WS(81, 133) W pooling 0.61 0.66 6.7 | 3.28
TABLE I: A comprehensive comparison of methods on the custom network. WS(81,108) Pooling, pruning 0.69 0.76 71 | 267
WS(82,117) Pruning, pooling 0.67 0.74 6.9 | 2.85

We also evaluate the algorithms on two popular topologies:
an ISP topology [21] and a Watts-Strogatz (WS) topology [22].
The same setting used in Table I for channels and transactions
is applied, but generate 1,000 random transactions for ISP and
5,000 for WS. We summarize the performance comparison in
Table II, which shows the same trend as that of Table I, except
for the relatively low ND after pooling. This is because ISP
and WS do not follow the power-law distribution, supernodes
usually do not have high node degrees as in the BA model,
which are further reduced after discounting internal channels.

Summary: Our simulation on the custom network shows
a node reduction between 51% to 65%, which is a desirable
result for searching scalability. Simulations using the hetero-
geneous setting on three networks show promising results on
network liquidation in terms of success ratio improvement, as
is summarized in Table III. The improvement of pooling then
pruning and pruning then pooling varies dependents primarily
on the network topology. Note that link pruning comes at
the cost of a longer routing path, as any two non-supernodes
have to perform transactions through supernodes. Among all
proposed algorithms, we find that pooling then pruning and
pruning then pooling tend to perform better than pooling only
in terms of transaction liquidation, as these two algorithms
enlarge the channel capacity among supernodes.

VI. CONCLUSION

This paper introduces a new notion of local pooling to
address two challenges in lightning networks: scalability and
liquidation. The central idea of local pooling is local clustering
with supernodes as clusterheads such that supernodes are self-
connected. Supernodes pool all funds in the whole network
and they form a smaller network for searching. Local pooling
can also be extended by introducing multi-level clustering. Our
simulation results show the effectiveness of the local pooling
in terms of supporting routing scalability as well as overall
network liquidation, especially for transactions that involves
high transfer amounts. Our future work will focus on the
impact of view (k), pruning probability (p), and routing fees
on performance and cost trade-offs. Finally, the impact of
the diversity of transfer amounts in transaction flows on the
network liquidation is still an open research topic.
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