
1

Optimal Filter Assignment Policy Against
Distributed Denial-of-Service Attack

Rajorshi Biswas and Jie Wu
Department of Computer and Information Sciences

Temple University, Philadelphia, PA, USA
{rajorshi, jiewu}@temple.edu

Abstract—A distributed denial-of-service (DDoS) attack is a cyber-attack in which attackers from different locations send out many
requests to exhaust the capacity of a server. Current DDoS attack protection services filter out the DDoS attack packets in the middle
of the path from the attacker to the servers. Some of the DDoS protection systems filter them out at the victim server. As a result,
unnecessary attack traffic congests the network and wastes bandwidth. This can be minimized if we block them as early as possible. In
this paper, we propose a DDoS attack protection system by using the filter router. The victim needs to wisely select and send filters to a
subset of filter routers to minimize attack traffic and blockage of legitimate users (LUs). Many filters can easily minimize the attack
traffic and blockage of LUs, but it is costly to the victim. So, we formulate two problems with different settings for selecting filter routers
given a constraint on the number of filters. We propose dynamic programming solutions for both problems. Both problems consider the
blockage of all attack traffic before it reaches the victim. We conduct extensive simulation to support our solutions.

Index Terms—botnet, DDoS defense, DDoS, flooding attack, filter router, network security, filter assignment

F

1 INTRODUCTION

A denial-of-service attack (DoS attack) is a cyber-attack in
which the attacker seeks to make a machine (e.g., web
server) or network resource temporarily unavailable to its
users. DoS attacks are considered a federal crime under
the Computer Fraud and Abuse Act with penalties that
include years of imprisonment [1]. The Computer Crime
and Intellectual Property Section of the US Department of
Justice handles cases of DoS attacks. Therefore, detecting
DoS attacks and identifying attackers have been important
issues in Network Forensics. Moreover, DoS attacks are
increasing day by day in both number and size; CloudFlare
[2] recently reported a 400 Gbps massive DoS attack that
took place in their servers.

There are several types of DoS attacks such as SYN
Floods, Malformed Packets, UDP Floods, Amplification At-
tacks, and Distributed Attacks [3]. In a SYN Flood attack,
the perpetrator sends many SYN messages to set up TCP
connection. The server replies ACK and waits for the client’s
ACK, but the attacker does not reply ACK and the connec-
tion remains half-open till timeout. The objective of a SYN
flood is to simply fill up the limited slots that the target
system has available for half-open connections. In some
cases, it’s easy to detect a SYN Flood attack if a lot of SYN
requests come from an address in short interval. Detection is
harder, however, when the attacker spoofs IP address, SYNs
come from multiple addresses, and arrival time varies. In a
UDP Flood attack, the purpose would likely be to consume
all available network bandwidth. Attackers send a large
amount of spoofed requests with large useless payloads.
The application wastes CPU cycles trying to determine the
meaning of the garbage.

The objective of the DDoS attack is to generate a lot
of packets from different locations to exhaust the incom-

NAT NAT NAT

Internet

Web Server
(Victim)

Coordinator
FR1 FR2 FR3

FR5

FR4

(a) DDoS attack by bots.

FR1

FR4

v

1 1

FR3

FR5

FR2

1

Victim

12

Internet

(b) Topology.

Fig. 1: DDoS attack and traffic topology.

ing/outgoing bandwidth of the victim (e.g., web server).
A coordinator would send commands to workers, who
continue to send requests to the target. The workers are
known as bots and the network of workers is known as
botnet. As users also send requests through the NAT, it
is difficult for the victim to differentiate between the bot
requests and user requests. Fig. 1(a) shows the DDoS attack
model by a botnet.

The existing works which are based on DDoS detection
at the router level increase router computation overhead.
The works which are based on filtering at the victim increase
the network overhead. The routers that detect DDoS traffic
based on some generalized characteristics cannot detect
DDoS traffic better than the victim. Besides, the character-
istics of DDoS traffic are different for different victims. An
effective method of preventing DDoS attacks is to use filter
routers (FRs) in the network infrastructure. FRs are special
types of routers that are capable of packet marking and
receiving filter tasks. Marking a packet means appending
the FR’s IP address to the packets it forwards. A FR does
not mark all the packet it forwards, rather it probabilistically
selects some packets to mark. The task of receiving filter
refers to receiving a filter from a web server. A web server
can block all or part of the traffic destined to it. The FR-based
system does not increase the router computation overhead



2

and network overhead. The victim can accurately differ-
entiate between the attack and legitimate traffic because it
knows the characteristics of the user traffic very well.

The complete method of using FRs is a four-phase
process. In the first phase, the FRs probabilistically mark
forwarded packets by appending their own IP addresses.
In the second phase, the victim discovers the traffic topol-
ogy from the marking of the packets. The marked packet
contains the FR’s IP addresses and the sequence of the IP
addresses implies their relative positions. After collecting a
sufficient number of marked packets the victim discovers
the traffic topology. Fig. 1(b) shows the traffic topology
which is discovered by the victim v. In the third phase, the
victim constructs filters, then finds and selects some FRs to
assign the filters. In the last phase, the FRs evict unused
filters from their storage.

Packet marking is used by the victim to find the traffic
topology. There is a tradeoff between topology construc-
tion time and router overhead. When the probability of
marking is low, the router overhead is low and it takes
a long time to construct the topology. When it is high,
the router overhead is high and the topology construction
is quick. After topology construction, the victim generates
filters and selects a subset of the FRs to assign them. There
are two types of filters: source-based and destination-based.
Using a source-based filter, a FR can allow/block traffic
from specific sources that are destined for the victim. This
type of filter is vulnerable to IP spoofing attacks. Although
destination-based filters can prevent IP spoofing, they are
more restrictive. Using a destination-based filter, a FR can
block all traffic, including LU traffic destined to the victim.
A good filter assignment can stop the attack traffic close
to its source, which reduces network overhead for attack
traffic. A bad filter assignment can let the attack traffic travel
a longer way and produce unnecessary network overhead.
It is challenging to find an optimal filter assignment when
the victim has a limited number of FRs that can be selected.
A FR may get filters from multiple victims. It has limitations
on storage and computation power. Therefore, it evicts
filters which are no longer used.

In this paper, we focus on finding the optimal filter
assignment considering that the victim has already con-
structed the traffic topology. We formulate two problems
and propose solutions for them. In the first problem, a
limited number of source-based filters are assigned to the
FRs. For example, if the victim can assign 2 filters, it can
select {FR1, FR2}, {FR1, FR5}, {FR2, FR4} or another
pair of FRs (see Fig. 1). If the victim selects the first pair
of FRs, then no attack traffic can get into the network,
which is highly expected. If the second pair is selected, then
the attack traffic will travel through the (FR2, FR4) and
(FR4, FR5) links. The amount of attack traffic in each link
is not the same. It is challenging to find a filter assignment
for which the total amount of attack traffic is the minimum.
We propose an optimal solution for this problem by using
dynamic programming. In the second problem, a limited
number of destination-based filters are assigned to the FRs.
A destination-based filter blocks every packet at the FR that
is destined to the victim. If the victim selects the third pair,
then all the legitimate users (LUs) will be blocked and the
attack traffic will travel through the (FR1, FR4) link. It is

also challenging to find a filter assignment so that the total
attack traffic and the number of blocked LUs are both mini-
mized. We propose another dynamic programming solution
for this problem. Our main contributions are the following:

1) We formulate two problems for finding filter assign-
ments with a limited number of filters and provide
optimal solutions using dynamic programming.

2) We conduct extensive simulations with synthetic and
real topology datasets and present simulation results to
support our model.

The remainder of this paper is arranged as follows:
In Section 2, we discuss some related works and their
limitations. In Section 3, we present the system model for
preventing DDoS attacks. In Section 4, we define the first
problem and propose a dynamic programming solutions.
In Section 5, we define the second problem and propose
another dynamic programming solution. In Section 6, we
present some simulation results that strengthen our pro-
posed solutions. Finally, Section 7 concludes our paper.

2 RELATED WORKS

There exist many statistical methods, including correlation,
entropy, covariance, divergence, cross-correlation, and in-
formation gain to detect anomalous DDoS requests [4].
A rank correlation-based method, Rank Correlation-based
Detection (RCD), is proposed in [5]. An information the-
oretical approach using Kolmogorov complexity is used
for the detection of DDoS attacks in [6]. A novel DDoS
detection mechanism is proposed based on Artificial Neural
Networks in [7]. A spiking neural network-based intrusion
detection system is proposed in [8]. The neural network
evolves over time to adopt with the behavior of the inputs.
The spiking neural network cube learns to activate the neu-
ron based on input data using unsupervised learning. The
spiking neurons are trained to generate the output module
using supervised learning. In [9], the authors present sev-
eral DDoS mitigation approaches including prevention of
JavaScript bot code injection and PHP-sensor-based scheme
to identify cross-site-scripting attacks. In [10], the authors
propose a novel flow-table sharing approach to protect
against the table overloading DDoS attacks in SDN-based
networks. There are other methods of detecting DDoS at-
tacks, including [11–17].

The authors in [18] introduced a model of random-
ized DDoS attacks with an increasing emulation dictionary
where the attackers use the attack definition from the dic-
tionary that contains request patterns similar to those of the
LUs. They proposed an inference algorithm for identifying
the botnets executing such DDoS attacks. Nowadays, static
path identifiers are used for inter-domain routing objects,
which helps the attackers to launch DDoS flooding attacks.
In [19], the authors present a design dynamic path iden-
tification framework that uses path identifier negotiated
between the neighboring domains as inter-domain routing
objects.

In [20], the authors propose a method, RADAR, to de-
tect and throttle DDoS attacks using adaptive correlation
analysis on SDN switches. The system can defend against
a wide range of flooding-based DDoS attacks including
link flooding, SYN flooding, and UDP-based amplification



3

TABLE 1: Table of notations

N Number of nodes
v Victim
B Total attack traffic
K Number of filters
A1 Contains contamination for Problem 1
A Contains cost for Problem 2
Cδ(i) δ th child of node i
∆ Maximum node degree of the topology
AL[i] Contains attack traffic in subtree rooted by i
L[i] Contains LU traffic in subtree rooted by i
R1 Contains filter assignment for Problem 1
R2 Contains blocked traffic for Problem 1
R Contains filter assignment for Problem 2
G Graph containing black and gray nodes
g Assignment set
U Set of LUs
Ub Set of blocked LUs
Wc(g) Contamination after applying g filters
C(g) Cost after applying g filters in Problem 2
ω Weight of contamination in Problem 2

attacks. In [21], the authors propose a new approach which
minimizes the resource utilization factor for quick absorp-
tion of the attack. In [22], a DDoS protection mechanism
called SkyShield, is proposed by taking advantage of the
sketch techniques. To identify malicious hosts efficiently,
they used the abnormal sketch obtained from the last
detection cycle. SkyShield can leverage other techniques
including Bloom filters and CAPTCHA. In [23], the authors
propose a collaborative DDoS mitigation network system
in which one domain helps another domain. A domain can
direct excessive traffic to other trusted external domains for
DDoS filtering. The filtered clean traffic is then forwarded
back to the targeted domain. A three-tier datacenter design
is proposed in [24]. In this design, the first two tier of private
datacenters filter out the attack traffics and forward the
legitimate traffic to the third tier datacenter. Therefore, the
attack traffic are being filtered at the destination datacenter
which is usually far from the attackers’ locations.

Most existing works are mainly concerned about the
availability of the server. In fact, the attack traffic may
cause huge network congestion and DoS. Therefore, these
techniques cannot protect the network from being contam-
inated by attack traffic. A victim and network component
collaboration based system can help in this case. A four-
phase DDoS protection system is proposed in [25]. The
victim generates filters and sends them to the upstream FRs.
FRs send the filters to their upstream FRs and thus the filters
propagate to the effective FRs. An adaptive version of PFS
is proposed in [26]. The system directly sends filters to the
highly capable FRs first, then the filters propagate to the
effective FRs. However, these two systems cannot optimally
select the FRs when there is a limitation on selecting FRs.

3 SYSTEM MODEL

Our system is composed of legacy routers (LRs), network
address translators (NATs), filter routers (FRs), attackers,
legitimate users (LUs), and a victim (v). Fig. 2 shows the
complete system model. In reality, there are multiple victims
in a network but for simplicity of explanation, we are
considering a single victim. The end users are connected
to a FR or a LR through NAT. Nowadays, because of the
limited number of public IP addresses, the internet service

LR2

V

NAT

NAT

NAT

NAT

FR3 FR4

LR1

FR2

FR1

(a) Actual network.

FR1

FR3

v

2

3
FR2

2

FR4

(b) v’s view.

Fig. 2: System model.

providers usually assign private IP addresses to their cus-
tomers. Therefore, most of the users are connected to the in-
ternet through NATs. A FR is a special kind of router which
is capable of two functionalities. Firstly, it can do packet
marking, which is used to construct traffic topology at the
victim. Secondly, it can receive filters from the victim and
apply the filters to block the attack traffic according to the
filter definitions. There are two types of filters: source-based
and destination-based. The source-based filter specifies the
blocking of traffic based on the source address. For example,
a source-based filter can be understood with: if source address
is X , then discard the packet. If we use a source-based filter
at FR3 (assume X and Y are the IP addresses of the NATs
connected to FR1 and FR2, respectively), then FR3 will
discard packets coming from NAT-X, but forward packets
from NAT-Y.

The advantage of using source-based filters is that a
FR can block the attack traffic by its source IP address
and forward legitimate traffic. If the LU and attacker both
remain behind the same NAT, then it is impossible to block
only attack traffic. The limitation of the source-based filter
is that it cannot protect if an attacker spoofs the IP address
of a LU. If an attacker creates a packet with Y as the source
address, then the packet will not be blocked at FR3. To
protect against DDoS attacks with IP spoofing, we can use
destination-based filters. A destination-based filter is: if the
destination address is X , then discard the packet. For example,
if we use a destination-based filter at FR3 (assume that
X is the IP address of v), then all the packets, including
legitimate and spoofed attack packets, will be blocked by
FR3. The destination-based filter is more restrictive. When
a FR uses it, it blocks all the attack and legitimate traffic
destined for the victim. Therefore, spoofed attack traffic
cannot penetrate.

In this model, the LRs and the FRs can co-exist without
any problem. For example, in Fig. 2(a), there are some LR
between the FRs. In the victim’s view 2(b) there are no
LRs. This is because the LRs do not mark the forwarding
packets and their existence is not identified by the victim.
The implementation of the FRs can also be done with
small changes. The firmware of the routers can be updated
to adopt the packet filtering and marking functionalities.
Nowadays, many routers and software defined networking
switches run on Linux systems. These routers and switches
have support for custom developed plugins (for example,
Pica8 p-3922). A plugin can be developed to implement
the filtering and marking functionalities which will turn a
regular a software-defined-networking switch into a FR.

The attackers are usually user devices with compro-
mised programs that can generate traffic destined for a
target. The programs are controlled by a master. The master
can send attack commands to the programs. This type of



4

v

S1 S2 S3

v

S1

S2 S3

S1

S2

S3

4

5 3

7 3

S1

S2

S3
FR4

FR5 FR7

FR3

S1

S2

S3

1 4

3 4

2 7

S1

S2

S3

FR1

FR5 FR7

FR3

FR2

v

FR4

S1 S2

S3

6 4

4

3

S1

S2

S3

FR1

FR5 FR7

FR3

FR2

v

FR4

FR6

time=0 time=1 time=2 time=3

Fig. 3: Formation of topology.

program is called bot, and a network of bots is called a
botnet. Although it is hard to differentiate the DDoS traffic
from legitimate traffic, there exist several methods based on
arrival time, packet size, and packet content for detecting
attack packets [4]. In this paper, we are not focusing on
the detection of attack packet. The victim finds the source
address of attackers using these methods. The victim also
knows the packet rate of each attacker. For example, if there
are 100 attackers (or LUs) each with 1 Mbps attack traffic (or
legitimate traffic) behind a NAT-X (having IP X), then the
victim will identify X as an attacker (or LU) with 100 Mbps
attack traffic (or legitimate traffic).

The complete protection process consists of four phases.
1) Packet marking by FRs: The process of probabilistically

appending the FR’s own IP address in a special field of
packet header.

2) Construct traffic topology: The process of a victim con-
structing the topology from the appended IP addresses
of packets it receives.

3) Construct filter and assign to FRs: After analyzing the
received packets over a period, the victim can identify
the IP addresses of the attacker. Then, it needs to find
some FRs and send some filters to block the attack
traffic.

4) Evict unused filter from FR: A FR has limited storage.
When a filter is not used for a period of time, that FR
evicts the filter from its storage.

In phase 1, the FR probabilistically marks the packets
it forwards by appending its own IP address. The algo-
rithm is simple; the router picks a random number and
if the number is less than the marking probability, then
it decides to mark the packet. Marking a packet means
appending the FR’s IP address to the header of it. The
marking probability is the probability of a packet being
appended by the FR’s IP address. For example, if the
marking probability of a FR is 0.5, then on average 50%
of the packets forwarded by that FR contain the IP address
of the router in its header. Let the marking probability be
0.5. Then, the victim v may get packets with {FR1, FR3},
{FR3, FR4}, or {FR1, FR4}. The victim may also get pack-
ets with {FR2, FR3}, {FR3, FR4}, or {FR2, FR4}. The
{FR1, FR3}marking indicates that FR1 remains before the
FR3 along the path from the user.

In phase 2, the victim constructs paths from all
the sources after gathering enough information from the
marked packets.The victim can easily form a directly acyclic
graph (DAG) combining all the paths. Fig. 3 shows an
example of topology formation technique. In the beginning
(time=0), there is no knowledge about topology. The vic-

tim assumes that all users are directly connected with it
because none of the packets are marked by any FRs. At
time 1, the victim gets some packets from S1, S2, and S3.
These packets are marked by FRs {FR4}, {FR5, FR3}, and
{FR7, FR3}, respectively. The packet from S1 indicates that
FR4 remains between S1 and v (S1 → FR4 → v). Similarly,
the packets from S2 indicate that FR3 remains before v
and FR5 remains before FR3 (S2 → FR5 → FR3 → v).
The packet from S3 indicates that FR3 remains before v
and FR7 remains before FR3 (S3 → FR7 → FR3 → v).
Combining all these information we can infer that FR3

might be a parent of both FR5 and FR7. The victim might
be connected with FR3 and FR4. We can also infer that
S1, S2, and S3 might be connected to the FR4, FR5, and
FR7. At time 3, more packets arrive at v and the topology
changed a little bit. FR3 is found to be a child of FR4. A
new FR1 is discovered at this time. At time 4, the topology
changed with an addition of FR. We can see that the more
v observes, the more knowledge it gathers about topology,
and the closer it gets to the actual topology. Thus the victim
can formulate a DAG of the traffic topology.

For simplicity, we will consider a tree instead of a DAG.
We consider that bots and LUs are behind the NAT of the
internet service provider. We color the bots/attackers as
black and LUs as white. The FRs which forward the end
users’ traffic first are called entry nodes. {FR1, FR2} are the
entry nodes in Fig. 2. The FRs are colored as black, white, or
gray. A black (or white) FR means it only forwards messages
from attackers/bots (or LUs). A gray FR forwards packets
from both LUs and attackers.

In phase 3, some of the FRs in the traffic topology are
selected to assign filters. The traffic topology is simplified
by removing nodes with no forks. A node with at least
two children is called a fork node. Non-fork nodes are not
efficient for assigning filters. Instead, selecting the child
node reduces attack traffic in the network. Therefore, an
optimal filter assignment policy should select a set of FRs
(g) from the set of gray and black nodes (G) with minimal
blockage of legitimate traffic and contamination by attack
traffic, while ensuring that no attack traffic can reach the
victim. We define contamination as the total attack traffic in
the network. For example, if the attack traffic is blocked at
FR3, then the total contamination is 2 (all attackers’ packet
rates are 1). We denote the contamination in a network for
the g filter assignment set by Wc.

Wc(g) =
A∑
a=1

αa × da, da = min
∀n∈PRED(n)∩g

dist(a, n). (1)

Here, PRED(n) is the set of predecessors of n, αa is



5

5

1

7

2

1 2

v

4
15

19

3
0

4 15 3

4

User
Attacker
Router

3

6

6

3

Remove 6
10

No Fork

5

1

7

2

1 2

v

4
15

19

6

0

4 15 3

43

6

10

B=2

(a) Topology for Problem 1.

7

7

5

4

3

2

1

0

1

2

2

2

2

dist

i
j

(b) dist.

Fig. 4: Topologies for problems 1 and 2.

the traffic load of attacker a, dist(a, n) is the number of
hops between a and n. A is the total number of attackers.
Therefore, Wc is the total attack traffic load for selecting |g|
FRs out of |G| FRs. If U is the set of LUs, then the number of
blocked LUs for the filter assignment g is denoted by Ub(g).

Ub(g) = {u : u ∈ U and PRED(u) ∩ g 6= ∅}. (2)

The best way to minimize blockage of LU and contam-
ination is to block immediately after the attacker. In reality,
there are a huge number of attackers and the victim needs
to select a huge number of FRs to block them, which is not
possible. So, a victim has budget K for selecting a number
of FRs. Therefore, |g| should be less than or equal to K .

In phase 4, unused filters are removed from the FRs. As
the FRs have limited capacity and computation power, it
is necessary to reduce the workload by removing the filters.
Otherwise, the attacker can flood the FRs by sending useless
filters. This types of filters are evicted soon because they are
most likely not being used.

The filter sent by a user (or victim) is only applicable
to the packets which are destined for that user (or victim).
However, an attacker can spoof the IP of the victim and
send wrong filters to FRs. This spoofed filter can be detected
using a simple handshake protocol. The spoofing attacker
will not be able to handshake with the spoofed IP address.
However, we are focusing on finding an optimal filter as-
signment policy, which is discussed in the next section.

4 SOURCE-BASED FILTER ASSIGNMENT

In this section, we formulate the problem of assigning the
source-based filters to the FRs so that the contamination is
the minimum.

4.1 Problem Definition

Problem 1. Find a filter assignment so that the contamination
is the minimum by ensuring that all the attack traffic is blocked
before reaching the victim.

In this problem, source-based filters are used. The con-
tamination is defined by the total amount of attack traffic in
the network. The problem can be expressed as the following:

minimize Wc(g)

subject to |g| ≤ K, ∀g ⊂ G, v /∈ G.
(3)

The victim v will be white (v /∈ G) if all attacker traffic is
blocked before reaching it. We propose an optimal solution
using dynamic programming.

0 4

0 0 ∞ 

1 ∞ 0

2 ∞ 0

bj

3 ∞ 0

A1[1]

0 4

0 0, 0, 0 -

1 - 0, 0, 1

2 - 0, 0, 2

bj

3 - 0, 0, 3

R1[1]

0 4

0 0, 0 -

1 - 0, 0

2 - 0, 0

bj

3 - 0, 0

R2[1]

0 15

0 0 ∞ 

1 ∞ 0

2 ∞ 0

bj

3 ∞ 0

A1[2]

0 15

0 0, 0 -

1 - 0, 0

2 - 0, 0

bj

3 - 0, 0

R2[2]

0 3

0 0 ∞ 

1 ∞ 0

2 ∞ 0

bj

3 ∞ 0

A1[4]

0 3

0 0, 0, 0 -

1 - 0, 0, 1

2 - 0, 0, 2

bj

3 - 0, 0, 3

R1[4]

0 3

0 0, 0 -

1 - 0, 0

2 - 0, 0

bj

3 - 0, 0

R2[4]

R1[2]

0 15

0 0, 0, 0 -

1 - 0, 0, 1

2 - 0, 0, 2

bj

3 - 0, 0, 3

Fig. 5: Tables A1, R1, and R2 for leaf nodes.

4.2 An Optimal Solution

To solve the problem, we define the following two problems.
1) P1(i, j, b) : Find and return optimal contamination in

the tree rooted by i for j number of filters by blocking b
attack traffic. The optimal contaminations, filter assign-
ments, and blocked attack traffics are stored in A1[i, j],
R1[i, j], and R2[i, j] to reuse in dynamic programming.

2) P2(i, j) : Find and return optimal contamination in the
tree rooted by i for j number of filters by ensuring
blockage of all attack traffic. This is the problem defined
in Problem 1. P2(i, j) = P1(i, j, B) where B is the total
attack traffic in the subtree rooted by node i.

There are two options to assign filters. P1(i, j, b) is the
minimum of the following two options:
Option I: The minimum total contamination, if we assign
1 filter to node i, divide the rest of the j − 1 filters
into j1, j2, ..., j∆ parts, assign the parts to the subtrees
c1(i), c2(i), ..., c∆(i), and block b1, b2, ..., b∆ attack traffic,
respectively. Therefore, the cost will be the sum of the min-
imum contaminations and the contamination for unblocked
attack traffic in c1(i), c2(i), ..., c∆(i). In this case, the filter
assigned to i blocks all the attack traffic. Therefore, the
unblocked attack traffic load is 0 for this option.

P1(i, j, b) = min
∀jδ,bδ

∆∑
δ=1

P1(cδ(i), jδ, bδ)

+ dist[cδ(i), i]× (AL[cδ(i)]− bδ).
(4)

Here, ∀δ bδ ≤ b and
∑∆
δ=1 jδ = j − 1.

Option II: The minimum total contamination, if we divide
the number of filters into j1, j2, ..., j∆ parts, assign them
to the subtrees c1(i), c2(i), ..., c∆(i), and block b1, b2, ..., b∆
attack traffic, respectively. Therefore, the contamination for
this option will be:

P1(i, j, b) = min
∀jδ,bδ

∆∑
δ=1

P1(cδ(i), jδ, bδ)

+ dist[cδ(i), i]× (AL[cδ(i)]− bδ).
(5)

Here,
∑∆
δ=1 bδ = b and

∑∆
δ=1 jδ = j. We take the mini-

mum quantity from the above two options. Fig. 6(b) shows
the high level recursion model of the problem.

Let us consider an N node tree with maximum node
degree ∆. The nodes are labeled in bottom-up and left-
right order. We define A1 as a N × K × B array which
contains optimal contamination and unblocked attack loads
for every node, budget, and blocked attack traffic. For



6

0 4

0 19   

1   15

2   15

bj

3   15

A1[5]

15 19

    

4 19

4 0

4 0

0 4

0 0, 0, 0 -

1 - 1, 0, 0

2 - 2, 0, 0

bj

3 - 3, 0, 0

R1[5]

15 19

- -

0, 1, 0 0, 0, 1

0, 2, 0 1, 1, 0

0, 3, 0 1, 2, 0

0 4

0 0, 0 -

1 - 4, 0

2 - 4, 0

bj

3 - 4, 0

R2[5]

15 19

- -

0, 15 0, 0

0, 15 4, 15

0, 15 4, 15

(a) Tables A1, R1, and R2 for node 5.

N

L R

N

L R

Option I Option II

1

j1 j1

P1(L, j1, b1)

j2=j-1-j1

P1(R, j2, b2)

P1(N, j, b) P1(N, j, b)

P1(L, j1, b1) P1(R, j2, b2)

j2=j-j1

(b) Recursion model for Problem 1.

0 3

0 43   

1   38

2   38

bj

3   38

A1[7]

4 7

    

36   

36 30

36 30

15 18

    

14   

14 30

14 30

19 22

    

25 43

6 14

6 0

0 3

0 0, 0, 0 -

1 - 0, 1, 0

2 - 0, 2, 0

bj

3 - 0, 3, 0

4 7

- -

1, 0, 0 -

2, 0, 0 1, 1, 0

3, 0, 0 2, 1, 0

15 18

- -

1, 0, 0 -

2, 0, 0 1, 1, 0

3, 0, 0 2, 1, 0

R1[7]

19 22

- -

1, 0, 0 0, 0, 1

2, 0, 0 1, 0, 1

3, 0, 0 2, 1, 0

0 3

0 0, 0 -

1 - 0, 3

2 - 0, 3

bj

3 - 0, 3

4 7

- -

4, 0 -

4, 0 4, 3

4, 0 4, 3

15 18

- -

15, 0 -

15, 0 15, 3

15, 0 15, 3

R1[7]

19 22

- -

19,0 0, 0

19,0 15, 0

19,0 19, 3

(c) Tables A1, R1, and R2 for node 7.

Fig. 6: Recursion model and complete values of A1, R1, and R2

example, A1[i, j, b] contains optimal contamination in the
subtree rooted by i of budget j by blocking b attack traffic.

We define AL as a 1×N array which contains the traffic
loads of attackers in subtree rooted by every node. AL[i]
is the attack traffic load of the attacker in subtree rooted by
node i. We define R1 as an N×K×B×(∆+1) array which
contains the number of filters assigned to node i and its
subtrees for every node, budget, and blocked attack traffic.
For example, R1[i, j, b, 1], R1[i, j, b, 2], and R1[i, j, b,∆ + 1]
are the number of filters to the first subtree, the second
subtree, and node i of subtree rooted by i for budget j
by blocking b attack traffic. R1 is the assignment according
to P1. We define R2 as an N × K × B × ∆ array which
contains the blocked attack traffic at optimal contamination
to its subtrees for every node, budget, and blocked attack
traffic. We use a double linked tree data structure. Each
node contains a pointers to its parent, an array of pointer
to children with distance, and the color of the node. The
complete algorithm is shown in Alg. 1.

4.3 An Example

Let us consider the tree in Fig. 4(a). Firstly, we need to
simplify the tree. There is only one node (node 6) without a
fork. We remove node 6 and make 4 the child of its parent
7. The new distance to 4 from 7 increases by the distance
of the deleted link. The deletion of a node can be done in
constant time. Finding out all non-forked nodes takes O(N)
time. Therefore, the simplification can be done in O(N)
time. Next, we calculate the distance (dist) of every node
from the root. This calculation takes O(N) as it needs to
traverse the whole tree once again. A part of the dist[i, j] is
shown in Fig. 4(b). Next, we compute A1[i, j] and R1[i, j]
for i = 1, ..., 7 and j = 0, 1, ..., 3.

Calculation for Leaf Nodes (Nodes 1, 2, and 4): A1[1, 0, 0]
is 0 because if no filter is assigned to node 1, then no attack
traffic is blocked, and there is no contamination in subtree
rooted by 1. The attack traffic in subtree rooted by 1 does not
travel through any links (there is no link). Therefore, there
is no contamination in the subtree. R1[1, 0, 0] = [0, 0, 0],
which means no filter is assigned to the left subtree, the right

subtree, or itself. The blocked attack traffic load R2[1, 0, 0] is
[0, 0], as no traffic is blocked from the left and right subtrees.
A1[1, 0, 4] is∞ because if no filter is assigned to node 1, then
we cannot block 4 attack traffic. Therefore, this assignment
is not possible. R1[1, 0, 4] = [−] and R2[1, 0, 4] = [−], which
means this option is not possible. Similarly, we can calculate
the A1[1, j, 0], R1[1, j, 0], and R2[1, j, 0] where the j ranges
between 1 and 3 are∞, [−], and [−]. A1[1, 1, 4] is 0 because,
if a filter is assigned to node 1, then 4 attack traffic is
blocked, and there is no contamination in the subtree rooted
by 1.R1[1, 1, 4] = [0, 0, 1], which means a filter is assigned to
node 1 and no filter is assigned to the left or right subtrees.
The blocked attack traffic load R2[1, 1, 4] is [0, 0] as no traffic
is blocked from the left and right subtrees. Similarly, we can
calculate the A1[1, j, 4], R1[1, j, 4], and R2[1, j, 4] where the
j ranges between 1 and 3 are 0, [0, 0, j] and [0, 0].

Calculations of A1[i], R1[i], and R2[i] for any leaf node
i are trivial. Figure 5 shows the values of A1[i], R1[i], and
R2[i] for the leaf nodes.

Calculation for Node 5 (0 Filters to Block Attack Traffic):
For i = 5, different filter assignments can block 0, 4, 15, or
19 attack traffic. For j = 0, we have one option.

Option II: 0 filters for nodes 5, 1, and 2 (j1 = 0, j2 = 0).
The total contamination in this option is 4 + 15 = 19. The
total blocked attack load is 0+0 = 0. Total unblocked attack
traffic from node 1 is 4, which produces contamination of
4. Optimal contamination at the subtree rooted by 1 is 0
for j = 0 and b = 0. Total unblocked attack traffic from
node 2 is 15, which produces contamination of 15. Optimal
contamination at the subtree rooted by 2 is also 0 for j = 0
and b = 0. Therefore, the minimum contamination for j = 0
and b = 0 is A1[5, 0, 0] = 19. The assignment R1[5, 0, 0] =
[0, 0, 0] and blocked traffic at the optimal contamination is
R2[5, 0, 0] = [0, 0].

We cannot block 4, 15, or 19 attack traffic with 0 filter.
Therefore, A1[5, 0, 4] = A1[5, 0, 15] = A1[5, 0, 19] = ∞.
R1[5, 0, b] and R2[5, 0, b] is [−] for any b in {4, 15, 19}.
Calculation for Node 5 (1 Filter to Block 0 Attack Traffic):
For j = 1, if we want to block 0 (b = 0) attack traffic, then
we have two options:



7

Option I: We have one choice in this option.
• Choice (1): Blocking 0 attack traffic using 0 filter at node

1, blocking 0 attack traffic using 0 filter at 2, and assign-
ing a filter to node 5. (j1 = 0, j2 = 0, b1 = 0, b2 = 0).
This choice is invalid because if we assign a filter to
node 5, then 19 attack traffic will be blocked.

Option II: We have two choices in this option.
• Choice (1): Blocking 0 attack traffic using 0 filter at

node 1 and blocking 0 attack traffic using 1 filter at 2
(j1 = 0, j2 = 1, b1 = 0, b2 = 0). Contamination for this
choice isA1[1, 0, 0]+dist[5, 1](AL[1]−b1)+A1[2, 1, 0]+
dist[5, 2](AL[2]− b2) = 0 + 4 +∞+ 15 =∞.

• Choice (2): Blocking 0 attack traffic using 1 filter at
node 1 and blocking 0 attack traffic using 0 filter at 2
(j1 = 1, j2 = 0, b1 = 0, b2 = 0). Contamination for this
choice isA1[1, 1, 0]+dist[5, 1](AL[1]−b1)+A1[2, 0, 0]+
dist[5, 1](AL[2]− b2) =∞+ 4 + 0 + 15 =∞.

The minimum contamination in option II is ∞. Therefore,
the minimum contamination for j = 1 and b = 0 is ∞. So,
R1[5, 1, 0] and R2[5, 1, 0] are invalid ([−]).

Calculation for Node 5 (1 Filter to Block 4 Attack Traffic):
For j = 1, if we want to block 4 (b = 4) attack traffic, then
we have two options:

Option I: We have few choices in this option. Any choice
will assign a filter to node 5, which will block 19 attack
traffic. For b = 4, this option is invalid.

Option II: We have four choices in this option.
• Choice (1): Blocking 0 attack traffic using 0 filter at

node 1 and blocking 4 attack traffic using 1 filter at 2
(j1 = 0, b1 = 0, j2 = 1, b2 = 4). Contamination for this
choice is A1[1, 0, 0]+dist[5, 1](AL[1]−0)+A1[2, 1, 0]+
dist[5, 2](AL[2]− 4) =∞+ 4 +∞+ 11 =∞.

• Choice (2): Blocking 0 attack traffic using 1 filter at
node 1 and blocking 0 attack traffic using 0 filter at 2
(j1 = 1, b1 = 0, j2 = 0, b2 = 4). Contamination for this
choice is A1[1, 1, 0]+dist[5, 1](AL[1]−0)+A1[2, 0, 0]+
dist[5, 1](AL[2]− 4) =∞+ 4 +∞+ 11 =∞.

• Choice (3): Blocking 4 attack traffic using 0 filter at
node 1 and blocking 0 attack traffic using 1 filter at 2
(j1 = 0, b1 = 4, j2 = 1, b2 = 0). Contamination for this
choice is A1[1, 0, 0]+dist[5, 1](AL[1]−4)+A1[2, 1, 0]+
dist[5, 2](AL[2]− 0) =∞+ 0 +∞+ 15 =∞.

• Choice (4): Blocking 4 attack traffic using 1 filter at
node 1 and blocking 0 attack traffic using 0 filter at 2
(j1 = 1, , b1 = 4, j2 = 0, b2 = 0). Contamination for this
choice isA1[1, 1, 0]+dist[5, 1](AL[1]−b1)+A1[2, 0, 0]+
dist[5, 1](AL[2]− b2) = 0 + 0 + 0 + 15 = 15.

The minimum contamination in option II is 15. Therefore,
the minimum contamination for j = 1 and b = 4 is A[5, 1, 4]
is 15. So, R1[5, 1, 4] and R2[5, 1, 4] are [1, 0, 0] and [4, 0],
respectively.

Calculation for Node 5 (1 Filter to Block 15 Attack Traffic):
For j = 1, if we want to block 15 (b = 15) attack traffic, then
we also have two options:

Option I: Although we have few choices in this option,
but every choice will assign a filter to node 5 which will
block 19 attack traffic. For b = 15, this option is invalid.

Option II: We have four choices in this option.
• Choice (1): Blocking 0 attack traffic using 0 filter at

node 1 and blocking 15 attack traffic using 1 filter at

2 (j1 = 0, b1 = 0, j2 = 1, b2 = 15). Contamination
for this choice is A1[1, 0, 0] + dist[5, 1](AL[1] − 0) +
A1[2, 1, 15] +dist[5, 2](AL[2]−15) = 0 + 4 + 0 + 0 = 4.

• Choice (2): Blocking 0 attack traffic using 1 filter at
node 1 and blocking 15 attack traffic using 0 filter at 2
(j1 = 1, b1 = 0, j2 = 0, b2 = 15). Contamination for this
choice isA1[1, 1, 0]+dist[5, 1](AL[1]−0)+A1[2, 0, 15]+
dist[5, 1](AL[2]− 15) =∞+ 4 +∞+ 0 =∞.

• Choice (3): Blocking 15 attack traffic using 0 filter at
node 1 and blocking 0 attack traffic using 1 filter at
2 (j1 = 0, b1 = 15, j2 = 1, b2 = 0). Contamination
for this choice is A1[1, 0, 15] + dist[5, 1](AL[1] − 15) +
A1[2, 1, 0]+dist[5, 2](AL[2]−0) =∞+0+∞+15 =∞.

• Choice (4): Blocking 15 attack traffic using 1 filter at
node 1 and blocking 0 attack traffic using 0 filter at
2 (j1 = 1, , b1 = 15, j2 = 0, b2 = 0). Contamination
for this choice is A1[1, 1, 15] + dist[5, 1](AL[1] − 15) +
A1[2, 0, 0]+dist[5, 1](AL[2]−0) =∞+0+0+15 =∞.

The minimum contamination in option II is 4. Therefore,
the minimum contamination (A1[5, 1, 15]) for j = 1 and
b = 15 is 15. So, R1[5, 1, 15] and R2[5, 1, 15] are [0, 1, 0] and
[0, 15], respectively.

Similarly, we calculate the rest of the values in A1 and
R1. Figs. 6(a) and 6(c) show the complete value of A1, R1,
and R2. A1[7, 3] contains the optimal contaminations for 3
filters for different amount of blocked attack traffic in the
topology in Fig. 4(a).

4.4 Assignment Set Formulation

We generate the filter assignment set using R1 and
R2. The total amount of attack traffic is 22. Therefore,
R1[7, 3, 22] contains the assignment at node 7 for budget
3. R1[7, 3, 22] = [2, 1, 0] means the left subtree is assigned
2 filters and the right subtree is assigned 1 filter. Then, we
look up R2[7, 3, 22] = [19, 3] which means 2 and 1 filters are
used to block 19 and 3 attack traffic at node 5 and 4, respec-
tively. Next, we need to look up R1[5, 2, 19] and R1[4, 1, 3].
R2[5, 2, 19] is [1, 1, 0], which means left and right subtrees
both are assigned 1 filter. We look up R2[5, 2, 19] = [4, 15]
which means 1 and 1 filters are used to block 4 and 15 attack
traffic at node 1 and 2, respectively. So, we need to look
up R1[1, 1, 4] and R1[2, 1, 15]. R1[1, 1, 4] and R1[2, 1, 15] are
both [0, 0, 1] which means a filter is assigned to both nodes
1 and 2. Now our assignment set is {1, 2}. Next, we look
up R1[4, 1, 3]. R1[4, 1, 3] is [0, 0, 1], which means a filter is
assigned to node 4. Therefore, the final assignment set is
{1, 2, 4}.

Next, we see another example where we find assign-
ment of budget 2. According to the definition, R1[7, 2, 22]
contains the assignment at node 7 for a budget of 2 filters.
R1[7, 2, 22] = [1, 0, 1] means the left subtree is assigned 1
filter and the right subtree is assigned 0 filters. Node 7
itself is assigned 1 filter. Now, our assignment set is {7}.
Next we need to look up R1[5, 1, 15] (R2[7, 2, 22] = [15, 0]).
R1[5, 1, 15] is [0, 1, 0], which means right subtree is assigned
1 filter. So, we need to look up R1[2, 1, 15] (R2[5, 1, 15] =
[0, 15]). R1[2, 1, 15] is [0, 0, 1], which means a filter is as-
signed to both nodes 2. Therefore, the final assignment set
for budget of 2 filters is {7, 2}. The algorithm is shown in
Alg. 3.



8

Algorithm 1 DP Blocking Strategy for Problem 1

Input: The number of filters K, total attack traffic B, and topology tree
T .

Output: A set of nodes in T .
1: Procedure: BLOCK-DP1(K,B, T )
2: N ← number of nodes in T
3: for every entry node i do
4: Initialize AL[i].
5: for j = 0 to K do
6: for b = 0 to B do
7: Initialize A1[i, j, b], R1[i, j], and R2[i, j]

8: CALC-P1(N,K,B)
9: return ASSIGNMENT(R1, R2, N,K,B)

Algorithm 2 Calculate A1 and R1

1: Procedure: CALC-P1(N,K,B)
2: for i = 1 to N do
3: for j = 0 to K do
4: for b = 0 to B do
5: min←=∞, map← ∅
6: for ∀jδ, bδ :

∑∆
δ=1 jδ = j

∑∆
δ=1 bδ = b do

7:
p←

∆∑
δ=1

{A1[cδ(i), jδ, bδ]

+dist(cδ(i), i)(AL[cδ(i)]− bδ)}
8: key ← [j1, j2, ..., j∆, 0, b1, b2, ..., b∆]
9: PUT(map, key, p)

10: for ∀jδ, bδ :
∑∆
δ=1 jδ = j − 1 do

11:
p←

∆∑
δ=1

{A1[cδ(i), jδ, bδ]

+dist(cδ(i), i)(AL[cδ(i)]− bδ)}
12: key ← [j1, j2, ..., j∆, 1, b1, b2, ..., b∆]
13: PUT(map, key, p)
14: A1[i, j, b]← MIN(map)
15: R1[i, j, b], R2[i, j, b]← ARGMIN(map)

Theorem 1. Complexity and space needed of Alg. 1 are
O(N(KB)(∆)) and O(NKB∆).

Proof. Let us consider that the topology is an N node tree
with maximum node degree ∆ and the victim has budget of
K . To find the partitions j1, j2, ..., j∆ we need O(K(∆−1))
time if we use the naive nested iteration approach. Similarly,
to find the partitions b1, b2, ..., b∆ we need O(B(∆−1)) time.
Therefore, the complexity of Alg. 1 is O(N(KB)(∆)).

For A1, R1, and R2 we need NBK , NBK(∆ + 1),
and NKB(∆) space. For AL and dist we need 2N space.
Therefore, in total we need O(NKB∆) space. For a binary
tree topology the complexity is O(N(KB)2) and the space
complexity is O(NKB).

Theorem 2. Alg. 1 provides optimal solution.

Proof. Alg. 1 uses a dynamic programming bottom-up strat-
egy to search the optimal assignment. For a one-node tree,
if the node color is not “white”, then there is no solution
for K = 0. This is because without any filter, the attack
traffic will be forwarded to the downstream routers and
finally reach v. For K ≥ 1 there is only one choice for
selecting FR, which is that node. If that node is selected, the
optimal contamination is 0. In each step, the Alg. 4 chooses
the allocation of filters to itself, the left subtree, or the
right subtree which produces the minimum contamination.
Therefore, the Alg. 1 provides an optimal filter assignment
to the FRs through an exhaustive search.

Algorithm 3 Find Assignment

1: Procedure: ASSIGNMENT(R1, R2, N,K,B)
2: if B = 0 then
3: return ∅
4: x.i← N, x.j ← K,x.b← B, g ← ∅, and Q← ∅.
5: ENQUEUE(Q,X).
6: while Q 6= ∅ do
7: x← DEQUEUE(Q)
8: if R1[x.i, x.j, x.b,∆ + 1] 6= 0 then
9: K′ ← R1[x.i, x.j, x.b, i]

10: B′ ← R2[x.i, x.j, x.b, i]
11: g′ ←

⋃∆
δ=1 ASSIGNMENT(R1, R2, cδ(x.i),K

′, B′)
12: g ← g ∪ g′ ∪ {x.i}
13: else
14: for δ = 1 to ∆ do
15: x′.i← cδ(x.i)
16: x′.j ← R1[x.i, x.j, x.b, i]
17: x′.b← R2[x.i, x.j, x.b, i]
18: ENQUEUE(Q, x′)
19: return g

5 DESTINATION-BASED FILTER ASSIGNMENT

As we are using destination-based filters for protection
against spoofed DDoS attack, we are blocking some LUs.
In this section, we formulate another problem of assigning
destination-based filters to the FRs so that a weighted sum
of the contamination and blocked LUs is the minimum.

5.1 Problem Definition
Problem 2. Find a filter assignment so that the LU blockage and
contamination are the minimum.

It is always better if the victim can select some FRs within
its budget which minimize both the number of blocked LUs
and contamination. To formulate the problem we first define
the cost (C(g)) of filter assignment (g) as the following:

C(g) = ωWc(g) + (1− ω)|Ub(g)|. (6)

Here, ω = [0, 1] is considered a system parameter which
determines the priority of contamination and LU blockage.
If the LUs of the victim is more important to it than reducing
contamination in the network, then it sets a low value of
ω. For example, if the victim wants to block the minimum
number of LUs neglecting the contamination, then it sets
ω = 0. If ω = 0, then the contamination in the network does
not have any effect on the cost and filter assignment.

As discussed in Section 3, the source-based filter cannot
ensure protection against IP spoofing DDoS attacks. For
example, if the attacker attached to node 1 uses the IP
address of the users attached to node 3 (see Fig. 4(a)). The
filter used at node 1 or 5 would forward the packet. But
if the FRs use destination-based filters, then no spoofed
attack packet can penetrate. Therefore, the victim would use
destination-based filters. The problem can be expressed as
the following optimization problem:

minimize C(g)

subject to |g| ≤ K, ∀g ⊂ G, v /∈ G.
(7)

5.2 An Optimal Solution
To solve the problem, we define the following problem.

1) P3(i, j) : Find and return the optimal cost in the subtree
rooted by i by ensuring blockage of all attack traffics
before reaching v. The number of LUs, optimal cost,



9

6

1

8

2

1 2

v

4 15

3

10 7

4 5

1 23 2

7

6

Fig. 7: Topology for Problem 2.

1.5 0,0,0,1 1,1,0,0

0 1 2

1   0.5 0.5

2   1 1

3   0 0

4   1 1

5   2 2

6   14 6.5

j
i

A

0 1 2

1 0,0,0,0 0,0,0,1 0,0,0,2

2 0,0,0,0 0,0,0,1 0,0,0,2

3 0,0,0,0 0,0,0,1 0,0,0,2

4 0,0,0,0 0,0,0,1 0,0,0,2

5 0,0,0,0 0,0,0,1 0,0,0,2

6 0,0,0,0 0,0,0,1 0,0,0,2

j
i

R

i

1 1

2 2

3 0

4 1

5 2

6 3

L

7   7.5 1.5 7 0,0,0,0 7 10

8   36.5 21.5 8 0,0,0,0 0,0,0,1 1,1,0,0 8 23

3

0,0,0,3

0,0,0,3

0,0,0,3

0,0,0,3

0,0,0,3

1,1,1,0

2,1,0,0

2,1,0,0

3

0.5

2

0

1

2

1.5

14

Fig. 8: A, R, and L.

and filter assignments are stored in L,A, andR to reuse
in dynamic programming.

The optimal cost of using j destination-based block-
ing/filter in the subtree rooted by i is the minimum of the
following quantity:

Option I: The minimum total weighted cost, if we assign
1 filter to node i and the rest of the filters to some nodes
of the subtree rooted by i. Therefore, the cost will be a
weighted sum of the minimum contamination and LU in
the subtree rooted by i. When we assign a filter to i, then the
number of blocked LUs remains constant regardless of other
filter assignments. The problem becomes similar to Problem
1. We can apply Alg. 1 to find an optimal assignment in the
subtree rooted by i. First, we assume an attacker is attached
to i. This assumption confines a filter to i. Then we find an
assignment of budget j using Alg. 1. As i will be assigned
a filter, the other j − 1 filters will be assigned to the subtree
rooted by i. Then the cost for this option will be:

P3(i, j) = ωP2(i, j) + (1− ω)L[i]. (8)

Option II: The minimum total weighted cost, if we
divide the number of filters into j1, j2, ..., j∆ parts and as-
sign them to the subtrees c1(i), c2(i), ..., c∆(i), respectively.
Therefore, the cost for this option will be:

P3(i, j) =
∆∑
δ=1

P3(cδ(i), jδ). (9)

We take the minimum quantity between the above two
options. If there are some attackers attached to node i, we
do not consider option II. This is because, if we assign all
the j filters to its subtree, then the attack traffic from i will
reach the victim v, which is not allowed by the constraint of
the problem definition.

Let us consider an N node tree with maximum node
degree ∆. The nodes are labeled in a bottom-up and left-
right order. We define A as an N ×K array which contains
the optimal cost for every node and budget. For example,
A[i, j] is the optimal cost of budget j on the subtree rooted
by node i. We define L as a 1 × N array which contains

N

L R

N

L R

Option I Option II

1

j-1
j1 j2=j-j1

P1(L, j-1, b)
P3(N, j) P3(N, j)

P3(L, j1) P3(R, j2)

Fig. 9: Recursion model for Problem 2.

the number of LUs in the subtree rooted by every node. L[i]
is the number of LUs in the subtree rooted by node i. We
also define R as an N ×K × (∆ + 1) array which contains
the number of filters assigned to node i and its subtrees for
every node and budget. For example,R[i, j, 1],R[i, j, 2], and
R[i, j,∆+1] are the number of filters to the first subtree, the
second subtree, and node i of subtree rooted by i for budget
j. The complete algorithm is shown in Alg. 4.

5.3 An Example
Let us consider the traffic topology in Fig. 7 and ω = 0.5. We
compute the values of A[i, j], R[i, j] and L[i] for i = 1, ..., 7
and j = 0, 1, ..., 3. We can calculate the values of L[i] by
traversing the tree once in a bottom up order.

Calculation for Leaf Nodes (Nodes 1, 2, 3, 4 and 5): The
leaf entry nodes are 1, 2, 3, 4, and 5. The calculations of A
and R are straightforward. For example A[1, 0] =∞. This is
because without any filter we cannot block all attack traffic.
If we assign 1 filter to node 1, then we are blocking one LU,
then A[1, 1] = 0.5 × 0 + 0.5 × 1 = 0.5. Similarly, A[1, 2] =
0.5×0+0.5×1 = 0.5.R[i, 1] = [0, 0, 0, 1],R[i, 2] = [0, 0, 0, 2],
and R[i, 3] = [0, 0, 0, 3] for i ∈ {1, 2, 3, 4, 5}.
Calculation for Node 6 Using 0 Filters: For node 6 and
j = 0, we have one option which is option II.

Option II: We assign 0 filters to node 6. Then, we assign
0 filters to subtrees rooted by node 1, 2, and 3 (j1 = 0, j2 =
0, j3 = 0). Therefore,A[6, 0] = A[1, 0]+A[2, 0]+A[3, 0] =∞
and R[6, 0] = [0, 0, 0, 0].

Calculation for Node 6 Using 1 Filter: For j = 1, we have
two options for assigning the filter.

Option I: 1 filter for node 6 and no filters for its subtrees
(j1 = 0, j2 = 0, j3 = 0). If we assign 1 filter to node 6, the
number of block LUs is 3 (L[6] = 3). The contamination in
this option is 25 (A1[6, 0, 0] = 25) which is calculated using
Alg.1. Therefore, for this option, A[6, 1] = 0.5×A1[6, 0, 0] +
0.5× L[6] = 0.5× 25 + 0.5× 3 = 14.

Option II: We assign 0 filters to node 6 and rest of the
filters to its subtrees. We have three choices to assign filters
to its subtrees.
• Choice (1): Assign 1, 0, 0 filters to subtrees rooted by

node 1, 2, and 3, respectively (j1 = 1, j2 = 0, j3 = 0).
Therefore, A[6, 1] = A[1, 1] +A[2, 0] +A[3, 0] =∞.

• Choice (2): Assign 0, 1, 0 filters to subtrees rooted by
node 1, 2, and 3, respectively (j1 = 0, j2 = 1, j3 = 0).
Therefore, A[6, 1] = A[1, 0] +A[2, 1] +A[3, 0] =∞.

• Choice (3): Assign 0, 0, 1 filters to subtrees rooted by
node 1, 2, and 3, respectively (j1 = 0, j2 = 0, j3 = 1).
Therefore, A[6, 1] = A[1, 0] +A[2, 0] +A[3, 1] =∞.

For option II, the minimum cost is∞. Therefore, option I is
the minimum (A[6, 1] = 14) and R[6, 1] = [0, 0, 0, 1].



10

Algorithm 4 DP Blocking Strategy for Problem 2

Input: The number of filters K, total attack traffic B, and topology tree
T .

Output: A set of nodes in T .
1: Procedure: BLOCK-DP2(K,B, T )
2: N ← number of nodes in T
3: for every entry node i do
4: Initialize AL[i] and L[i].
5: for j = 0 to K do
6: Initialize A1[i, j], A[i, j], R1[i, j], R2[i, j], and R[i, j]

7: CALC-P1(N,K,B)
8: CALC-P3(N,K,B)
9: return ASSIGNMENT-2(R,R1, R2, N,K,B)

Algorithm 5 Compute A and R

1: Procedure: CALC-P3(N,K,B)
2: for i = 1 to N do
3: for j = 0 to K do
4: L[i]←

∑∆
δ=1 L[cδ(i)]

5: min←=∞
6: if i is attached with attacker then
7: p← ωA1[i, j, AL[i]] + (1− ω)L[i]
8: PUT(map,R1[i, j], p)
9: else

10: for ∀jδ :
∑∆
δ=0 jδ = j do

11: p←
∑∆
δ=1 A[cδ(i), jδ]

12: PUT(map, [j1, j2, ..., j∆, 0], p)
13: A[i, j]← MIN(map)
14: R[i, j]← ARGMIN(map)

Similarly, we calculate the rest of the entries in A and R.
The complete A, L, and R are shown in Fig. 8. According to
the definition, A[8, 3] contains the cost for budget K = 3,
which is 14.

5.4 Assignment Set Formulation

From R, we can find out which FRs need to be blocked.
R[8, 3, 0] = 2 and R[8, 3, 1] = 1 means 2 and 1 filters
are assigned to the first and second subtrees of node 8,
respectively. Then, we need to look up R[6, 2] and R[7, 1].
R[6, 2, 0] = 0, R[6, 2, 1] = 0, R[6, 2, 2] = 0, and R[6, 2, 3] =
2, means no filter is assigned to its subtrees and two fil-
ters are assigned to itself. Therefore, we need to find the
assignment using Alg. 3. According to Alg. 3, {6, 2} is the
assignment. Similarly, we can find that a filter is assigned
to node 7. So, the filter assignment is {2, 6, 7} for budget
K = 3. The complete algorithm is shown in Alg. 6.

Theorem 3. Complexity and space needed of the DP Blocking
Strategy for Problem 2 are O(N(KB)(∆−1)) and O(NKB∆).

Proof. Let us consider the topology is a N node tree with
a maximum node degree ∆ and the victim has a budget of
K . To find the partitions j1, j2, ..., j∆, we need O(K(∆−1))
time if we use the naive nested iteration approach. The
algorithm uses Alg. 1. Therefore, the complexity of Alg. 4
is O(N(KB)(∆−1)).

The additional space needed for A and R are NK and
(∆ + 1)NK , respectively. The total space needed including
space needed for Alg. 1 is an order of O(NKB∆).

Theorem 4. Alg. 4 provides an optimal solution.

Proof. Alg. 4 uses a dynamic programming bottom-up strat-
egy to search the optimal assignment. For a one-node tree, if

Algorithm 6 Find Assignment 2

1: Procedure: ASSIGNMENT-2(R,R1, R2, N,K,B)
2: x.i← N, x.j ← K, g ← ∅, and Q← ∅.
3: ENQUEUE(Q,X).
4: while Q 6= ∅ do
5: x← DEQUEUE(Q)
6: if R[x.i, x.j,∆ + 1] 6= 0 then
7: g ← g ∪ ASSIGNMENT(R1, R2, N,K,B)
8: else
9: for k = 1 to ∆ do

10: x′.i← ck(x.i), x′.j ← R[x.i, x.j, k]
11: ENQUEUE(Q, xc)
12: return g

(a) Topology I. (b) Topology II.

Fig. 10: Randomly generated topologies.
the node color is “black” or “gray”, then there is no solution
for K = 0. This is because without any filter, the attack
traffic will be forwarded to the downstream routers. For
K ≥ 1 there is only one choice for selecting FRs, which
is that node. If that node is selected, the optimal number
of blocked LUs is the number of LUs attached to it. In
each step, Alg. 4 chooses the best allocation of filters to
itself, the left subtree, or the right subtree. Therefore, Alg.
4 provides an optimal filter assignment to the FRs through
an exhaustive search.

6 EXPERIMENTAL RESULTS

In this section, we present our experimental settings and
simulation results.

6.1 Experimental Setting
We conduct the experiments with a custom build Java sim-
ulator. The main reason for using a custom built simulator
is its scalability. We do not need to analyze transmission
time, bandwidth, or packet drop issues. We only need to
count the number of legitimate (or attack) received (or
blocked) packets. The network topologies we considered
contain about 100− 500 routers. Using NS3 or other similar
simulators for this kind of simulation would take several
days. That is why we built our own Java multi-threaded
simulator to get the results quickly. The simulation result
might be slightly different than the real scenario because
of the natural packet drops, failure of the FRs, the vari-
able data rate of LUs/attackers, and change in the routing
paths. Therefore, in the real scenario, the victim needs to
periodically change the filter assignment. The contamina-
tion, blocked/received attack packet, and blocked/received
legitimate packets might not be significantly different than
the victim’s calculation.

We conduct simulations for randomly generated tree
topologies and a subset from a real network topology.
To generate a random tree, we first generate the desired



11

TABLE 2: Topology Parameters

Topology I Topology II
Number of nodes 66 403
Internal user probability 0.1 0.1
Attacker ratio 0.4 0.4
Max Node Degree 4 20
Data Rate(pack/ms) [0.1-0.4] [0.1-0.4]

number of nodes. Then, we randomly pick a root among
the nodes. After that a random node from the generated
nodes is picked up and added as a child to a random node
in the tree. The process continues until all of the generated
nodes are added to the tree. We use a randomly generated
topology having node degree between [0− 4], internal node
user probability between [0.1 − 0.25], and maximum depth
of 6. Each entry node color and the number of users or
attackers are selected randomly from a uniform distribution.
Topology I is a randomly generated tree of 66 nodes and
max node degree of 4. Topology II is taken from a subset
of the Stanford University AS-733 dataset [27]. The dataset
contains 6, 474 nodes and we took a subset (which is a tree)
containing 403 nodes. Then we randomly assigned users to
the tree with an internal user probability of 0.1. The details
are shown in Table 2 and Fig. 10.

We measure the performances of our proposed solutions
in terms of contamination (C), Cost (according to Equation
6), blocked LU traffic, the number of blocked attack packets
(AB), the number of received attack packets (AR), number of
blocked legitimate packets (LB), and the number of received
legitimate packets (LR) for the two topologies.

6.2 Simulation Results

We first conduct a simulation with a three level complete
binary tree to see the number of packets needed to find
the topology. Each node is considered as a FR. Each leaf
node is attached with a LU. The root is connected with the
victim. Each LU sends packets to the victim with a constant
rate. Then we assign the same marking probability to all
FRs. Each time when the victim receives a marked packet, it
tries to construct the topology form the marking information
it got so far. If the constructed topology is correct up-
to one level (from the root) then we record the number
of total packets (both marked and unmarked) received by
the victim. The process continues and we record the total
number of packets received by the victim when it succeeds
in constructing the topology up to two levels and three
levels. We repeat the process by assigning different marking
probability. Fig. 11 shows the number of packets by the
marking probability. We run the simulation 50 times and
take the average. The marking probability ranges between
0.2 and 1. A huge number of packets is needed to construct
the complete topology when marking probability is below
0.2. We can observe that the number of packets needed
reduces exponentially with the marking probability.

For the following experiments, we use Topology II to
observe the performances of both approaches for different
budgets. We change the attacker ratio and repeat the exper-
iments. We plot the average and standard deviation of 100
random attacker and LU distributions.

Fig. 12(a) shows the contamination by the number of
source-based filters. We vary the number of filters from

Fig. 11: Formation of topology.

1 to 40. The highest contamination is with 75% attackers,
the lowest is 25%, and 50% is in between for all budgets.
The contaminations of all attacker distributions decrease by
the number of filters. The higher the number of filters, the
closer the filters are deployed to the attackers. As a result,
a higher number of filters produces a lower contamination.
For 75% attackers, the contaminations with 1 and 40 filters
are 7, 681 and 2, 424. Therefore, the contamination is 68%
reduced. For 25% attackers, the contaminations with 1 and
40 filters are 2, 503 and 426. Therefore, the contamination is
82% reduced.

Figs. 12(b), 12(c), and 12(d) show the contamination,
blocked LU traffic, and cost for destination-based filters. We
keep the ω as 0.5. We observe that the contamination of
source-based filter and destination-based filters are similar.
This is because, we give equal priority to the contamination
and blocked LU traffic. The amount of blocked LU traffic
is also decreasing by the number of filters. As a result, the
cost is decreased by the number of filters. For 75% attackers
the blocked LU traffic with 1 and 40 filters are 446 and 402.
Therefore, the blocked LU traffic is reduced by 10%. For 25%
attackers, the blocked LU traffic with 1 and 40 filters are
1, 360 and 427. Therefore, the blocked LU traffic is reduced
by 69%.

Fig. 12(e) shows the contamination by the number of
nodes. We vary the number of nodes from 10 to 210. We
keep the number of filters as 20. Similar to the above ex-
periment, the highest contamination is with 75% attackers,
the lowest is 25%, and 50% is in between for all numbers
of nodes. The contaminations of all attacker distributions
increase by the number of nodes. The higher the number
of nodes, the higher the number of attackers and the height
of the tree. As a result, a higher number of nodes produces
higher contamination. For 75% attackers, the contamination
with 10 and 210 nodded trees are 0 and 438. For 25%
attackers, the contamination with 10 and 210 nodded trees
are 0 and 117. In 10 nodded trees, we observe a contamina-
tion of 0, because 20 filters are more than enough to block
every attacker at the closest router. Therefore, no attack
traffic enters into the network and contamination is 0. Figs.
12(f), 12(g), and 12(h) show the contamination, blocked LU
traffic, and cost for destination-based filters. We keep the ω
as 0.5. We observe that the contamination of source-based
and destination-based filters are also similar. The amount
of blocked LU traffic is also increasing by the number of
nodes. As a result, the cost is increasing by the number of
nodes. For 75% attackers the blocked LU traffic in 10 and
210 nodded trees are 1 and 63. For 25% attackers the blocked
LU traffic in 10 and 210 nodded trees are 2 and 147. The
contamination, blocked LU traffic, and cost increase almost



(a) Contamination (source-based). (b) Contamination (dest-based). (c) Blocked LU traffic (dest-based). (d) Cost (dest-based).

50 100 150 200

number of nodes

0

100

200

300

400

500

co
nt

am
in

at
io

n

75% Attacker
50% Attacker
25% Attacker

(e) Contamination (source-based).

50 100 150 200

number of nodes

0

100

200

300

400

500

co
nt

am
in

at
io

n

75% Attacker
50% Attacker
25% Attacker

(f) Contamination (dest-based).

50 100 150 200

number of nodes

0

100

200

300

400

500

bl
oc

ke
d 

LU

75% Attacker
50% Attacker
25% Attacker

(g) Blocked LU traffic (dest-based).

50 100 150 200

number of nodes

0

100

200

300

400

500

co
st

75% Attacker
50% Attacker
25% Attacker

(h) Cost (dest-based).

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

co
nt

am
in

at
io

n

75% Attacker
50% Attacker
25% Attacker

(i) Contamination (dest-based).

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

bl
oc

ke
d 

LU

75% Attacker
50% Attacker
25% Attacker

(j) Blocked LU traffic (dest-based).

0 0.5 1 1.5 2 2.5 3

time 105

0

1

2

3

4

5

co
nt

am
in

at
io

n,
 #

 o
f p

ac
ke

ts

104

AR
AB
LR
LB
C

(k) Timeline (source-based).

0 0.5 1 1.5 2 2.5 3

time 105

0

1

2

3

4

5

co
nt

am
in

at
io

n,
 #

 o
f p

ac
ke

ts

104

AR
AB
LR
LB
C

(l) Timeline (dest-based).

Fig. 12: Simulation results.

linearly by the number of nodes.

Figs. 12(i) and 12(j) show the contamination, blocked LU
traffic, and cost for destination-based filters. We vary the
value of ω from 0 to 1. We keep the number of filters as
30. The contamination and amount of blocked LU traffic
decrease and increase by ω, respectively. For 75% attackers,
when ω = 0, the contamination and blocked LU traffic are
4, 141 and 327. When ω = 1, the contamination and blocked
LU traffic are 2, 848 and 431. When ω is lower, the blocked
LU traffics are prioritized over contamination. Therefore,
when ω = 0 the contamination is higher than when ω = 1.
Similarly, when ω = 0, the blocked LU traffic is lower than
when ω = 1.

Figs. 12(k) and 12(l) show contamination (C), the number
of blocked attack packets (AB), the number of received
attack packets (AR), the number of blocked legitimate pack-
ets (LB), and the number of received legitimate packets
(LR) using source-based and destination-based filters over
time. The time for this simulation is the system time of the
machine we used for simulation. This time does not reflect
the actual time but it shows the changes of the C, AB, AR,
LB, and LR over time. Topology I is used in this experiment
because it is smaller than Topology II. For this reason, we
can observe the effect of topology construction better in
Topology I than in Topology II. Here, the contamination
is the total number of attack-packet forwarding events. We
can see that, at the beginning (ignoring the warm-up period
from time 0 to 0.025), the C in every approach is higher. The
C reduces over time and becomes gradually more stable.
This is because at the beginning, the victim knows a small

subset of the topology. Over time, the victim gets more and
more information from the marked packet and constructs
the traffic topology. Finally, the victim’s knowledge about
the topology becomes stable. That is why the AR is high at
the beginning, decreases over time, and finally converges to
0. The AB shows the opposite behavior for the same reason.
We also observe that the LB is 0 in source-based filter. The
AB is initially 0 when no filter is deployed. Gradually, the
AB increases and becomes stable after some time.

7 CONCLUSION

The DDoS attack is the most powerful attack that makes
a service unavailable to users. It is not possible to protect
any server from DDoS attacks without the help of the
network equipment. As the most important component in
a network, routers can be upgraded to filter routers easily.
Besides, the filter router can work in a network with legacy
routers. In the four-phase DDoS protection system, the filter
routers block the attack traffic according to the victim’s
instruction. Although the blocking control of an Internet
service provider (ISP) is at the victim’s hand, who may
not belong to the ISP but it will help the ISP minimize
traffic congestion. Therefore, both parties are benefited. In
this work, we present three filter assignment policies for
two different settings. We observe the performances of the
proposed policies in synthetic and real topologies. Both
the source-based and destination-based filters have some
advantages and limitations. In the future, we may formulate
another problem for finding an optimal assignment using
the filter type most fitted to a filter router.



13

ACKNOWLEDGMENTS

This research was supported in part by NSF grants CNS
1824440, CNS 1828363, CNS 1757533, CNS 1629746, CNS-
1651947, CNS 1564128.

REFERENCES
[1] United States Code: Title 18,1030, “Fraud and related activity in

connection with computers — Government Printing Office,” http:
//www.gpo.gov, 2014.

[2] “CloudFlare,” https://blog.cloudflare.com/.
[3] B. B. Gupta and O. P. Badve, “Taxonomy of DoS and DDoS

attacks and desirable defense mechanism in a Cloud computing
environment,” Neural Computing and Applications, vol. 28, no. 12,
Dec 2017.

[4] J. Wang and I. C. Paschalidis, “Statistical Traffic Anomaly Detec-
tion in Time-Varying Communication Networks,” IEEE Transac-
tions on Control of Network Systems, vol. 2, no. 2, Jun 2015.

[5] W. Wei, F. Chen, Y. Xia, and G. Jin, “A Rank Correlation Based
Detection against Distributed Reflection DoS Attacks,” IEEE Com-
munications Letters, vol. 17, no. 1, Jan 2013.

[6] A. Kulkarni and S. Bush, “Detecting Distributed Denial-of-Service
Attacks Using Kolmogorov Complexity Metrics,” J. Netw. Syst.
Manage., vol. 14, no. 1, Mar. 2006.

[7] T. A. Ahanger, “An effective approach of detecting DDoS using
Artificial Neural Networks,” in 2017 International Conference on
Wireless Communications, Signal Processing and Networking, Mar
2017.

[8] D. Almomani, M. Alauthman, F. Albalas, O. Dorgham, and
A. Obeidat, “An Online Intrusion Detection System to Cloud
Computing Based on Neucube Algorithms,” International Journal
of Cloud Applications and Computing, vol. 8, 04 2018.

[9] B. B. Gupta, Computer and cyber security: principles, algorithm, appli-
cations, and perspectives. CRC Press, 2018.

[10] K. Bhushan and B. B. Gupta, “Distributed denial of service (DDoS)
attack mitigation in software defined network (SDN)-based cloud
computing environment,” Journal of Ambient Intelligence and Hu-
manized Computing, vol. 10, Apr 2018.

[11] X. Ma and Y. Chen, “DDoS Detection Method Based on Chaos
Analysis of Network Traffic Entropy,” IEEE Communications Let-
ters, vol. 18, no. 1, Jan 2014.

[12] Z. Tan, A. Jamdagni, X. He, P. Nanda, and R. P. Liu, “A System for
Denial-of-Service Attack Detection Based on Multivariate Correla-
tion Analysis,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 2, Feb 2014.

[13] P. Ning and S. Jajodia, “Intrusion Detection Techniques,” 2004.
[14] N. Ye, S. Emran, Q. Chen, and S. Vilbert, “Multivariate statistical

analysis of audit trails for host-based intrusion detection,” IEEE
Transactions on Computers, vol. 51, no. 7, Jul 2002.

[15] M. Zareapoor, P. Shamsolmoali, and M. A. Alam, “Advance DDOS
detection and mitigation technique for securing cloud,” Interna-
tional Journal of Computational Science and Engineering, vol. 16, no. 3,
2018.

[16] B. K. Joshi, N. Joshi, and M. C. Joshi, “Early Detection of Dis-
tributed Denial of Service Attack in Era of Software-Defined
Network,” in 2018 Eleventh International Conference on Contemporary
Computing, Aug 2018.

[17] A. Procopiou, N. Komninos, and C. Douligeris, “ForChaos: Real
Time Application DDoS Detection Using Forecasting and Chaos
Theory in Smart Home IoT Network,” Wireless Communications and
Mobile Computing, vol. 2019, 2019.

[18] V. Matta, M. D. Mauro, and M. Longo, “DDoS Attacks With Ran-
domized Traffic Innovation: Botnet Identification Challenges and
Strategies,” IEEE Transactions on Information Forensics and Security,
vol. 12, no. 8, Aug 2017.

[19] H. Luo, Z. Chen, J. Li, and A. V. Vasilakos, “Preventing Dis-
tributed Denial-of-Service Flooding Attacks With Dynamic Path
Identifiers,” IEEE Transactions on Information Forensics and Security,
vol. 12, no. 8, Aug 2017.

[20] J. Zheng, Q. Li, G. Gu, J. Cao, D. K. Y. Yau, and J. Wu, “Re-
altime DDoS Defense Using COTS SDN Switches via Adaptive
Correlation Analysis,” IEEE Transactions on Information Forensics
and Security, vol. 13, no. 7, Jul 2018.

[21] G. Somani, M. S. Gaur, D. Sanghi, M. Conti, and M. Rajarajan,
“Scale Inside-out: Rapid Mitigation of Cloud DDoS Attacks,” IEEE
Transactions on Dependable and Secure Computing, 2017.

[22] C. Wang, T. T. N. Miu, X. Luo, and J. Wang, “SkyShield: A Sketch-
Based Defense System Against Application Layer DDoS Attacks,”
IEEE Transactions on Information Forensics and Security, vol. 13, no. 3,
pp. 559–573, Mar 2018.

[23] B. Rashidi, C. Fung, and E. Bertino, “A Collaborative DDoS De-
fence Framework Using Network Function Virtualization,” IEEE
Transactions on Information Forensics and Security, vol. 12, no. 10,
Oct 2017.

[24] A. Bhardwaj and S. Goundar, “Comparing Single Tier and Three
Tier Infrastructure Designs against DDoS Attacks,” Int. J. Cloud
Appl. Comput., vol. 7, no. 3, Jul 2017.

[25] D. Seo, H. Lee, and A. Perrig, “PFS: Probabilistic filter scheduling
against distributed denial-of-service attacks,” in 2011 IEEE 36th
Conference on Local Computer Networks, Oct 2011.

[26] ——, “APFS: Adaptive Probabilistic Filter Scheduling against dis-
tributed denial-of-service attacks,” Computers Security, vol. 39,
Nov 2013.

[27] “Autonomous systems AS-733,” https://snap.stanford.edu/data/
as-733.html.

Rajorshi Biswas is a PhD student of
Computer and Information Sciences at
Temple University, Philadelphia. He
achieved his bachelor’s degree from
Bangladesh University of Engineering
and Technology, Bangladesh. He is cur-
rently doing research at the Center for

Networked Computing (CNC) which is focused on network
technology and its applications. His research areas include
Wireless Networks, Wireless Sensor Networks, Wireless Se-
curity, Cryptography, Cognitive Radio Networks etc. He
published his research in many conferences and journals
including IEEE ICPADS 2018, IEEE GLOBECOM 2019, IEEE
ICC 2019, IEEE Sarnoff 2019, and Resilience Week 2019.

Jie Wu is the Director of the Center for
Networked Computing and Laura H.
Carnell professor at Temple University.
He also serves as the Director of Inter-
national Affairs at College of Science
and Technology. He served as Chair of
Department of Computer and Informa-
tion Sciences from the summer of 2009

to the summer of 2016 and Associate Vice Provost for Inter-
national Affairs from the fall of 2015 to the summer of 2017.
Prior to joining Temple University, he was a program di-
rector at the National Science Foundation and was a distin-
guished professor at Florida Atlantic University. His current
research interests include mobile computing and wireless
networks, cloud and green computing, network trust and
security, and social network applications. Dr. Wu regularly
publishes in scholarly journals, conference proceedings, and
books. He serves on several editorial boards, including IEEE
Transactions on Mobile Computing, IEEE Transactions on
Service Computing, and Journal of Computer Science and
Technology. Dr. Wu was general co-chair for IEEE MASS
2006, IEEE IPDPS 2008, IEEE ICDCS 2013, ACM MobiHoc
2014, ICPP 2016, and IEEE CNS 2016, as well as program
cochair for IEEE INFOCOM 2011 and CCF CNCC 2013. He
was an IEEE Computer Society Distinguished Visitor, ACM
Distinguished Speaker, and chair for the IEEE Technical
Committee on Distributed Processing (TCDP). Dr. Wu is
a Fellow of the AAAS and a Fellow of the IEEE. He is
the recipient of the 2011 China Computer Federation (CCF)
Overseas Outstanding Achievement Award.


