
Android-Stego: A Novel Service Provider Imperceptible
MMS Steganography Technique Robust to Message Loss

Avinash Srinivasan, Jie Wu, and Justin Shi
∗

Computer and Information Sciences
Temple University
Philadelphia, PA

U.S.A.
[avinash, jiewu, shi]@temple.edu

ABSTRACT
Information hiding techniques, specifically steganography,
have been extensively researched for over two decades. How-
ever, steganography on smartphones over cellular carrier
networks is yet to be fully explored. Today, smartphones
which are at the epitome of ubiquitous and pervasive com-
puting, make steganography an easily accessible covert com-
munication channel. In this paper, we propose Android-
Stego – a framework for steganography employing smart-
phones. Android-Stego has been evaluated and confirmed
to achieve covert communication over real world cellular ser-
vice providers’ communication networks such as Verizon and
Sprint. A key contribution of our research presented in this
paper is the benchmark results we have provided by analyz-
ing real world cellular carriers’ network restrictions on MMS
message size. We have also analyzed the actions the carriers
take – such as compression and/or format conversion – on
MMS messages that fall outside the established MMS com-
munication norm, which varies for each service provider. Fi-
nally, we have used these benchmark results in implementing
Android-Stego such that it is sensitive to carrier restrictions
and robust to message loss.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Information hiding; D.4.6
[Security and Protection]; E.3 [General]: Security and
protection

General Terms
Algorithms, Design, Security, Steganography.

∗Srinivasan, Wu, and Shi are also affiliated with the Cen-
tre for Security and Forensics Education & Research (C-
SaFER), CIS, Temple University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Keywords
Android, Information hiding, Multimedia Messaging Service
(MMS), Security, Steganography.

1. INTRODUCTION
Steganography, the art and science of hiding communica-

tion [12], and other forms of information hiding have been
extensively researched over the last two decades. Although
steganography has been known for centuries, only recently
has it proliferated new grounds with the all-pervasive and
ubiquitous telecommunications services as the most lucra-
tive. The methods for embedding secret data have con-
stantly evolved, and are more sophisticated today than ever
before. Nonetheless, the basic principles of hiding informa-
tion using steganography techniques remain unchanged with
a limited number of possibilities and corresponding algo-
rithms. Over the years, one very popular type of steganog-
raphy has been the digital image steganography. Digital
image steganography is a method of concealing data within
a digital image.

Within digital image steganography, numerous algorithms
have been proposed to embed the secret data using vari-
ous image formats as cover files. Through all the advances
that steganography has witnessed, the Least Significant Bit
(LSB) [19] method of embedding secret messages remains to
be the most popular and the simplest of all to implement. In
this technique, the LSB of some random bytes or perhaps all
of the bytes of the cover (aka carrier) image file are changed
appropriately to encode the secret message.

Steganographic data are often hidden through the use
of mathematical techniques that add information content
to digital objects such as images, video files, and audio
files, including various other digital objects such as exe-
cutable code [3]. However, when sophisticated embedding
techniques are used, the degradation in quality or increase
in payload is perceptible. Additionally, a steganography
message can be encrypted prior to hiding, making it sub-
stantially harder to detect, extract, and finally recover the
message. In particular, encryption makes it harder to use
statistical analysis, particularly entropy-based techniques,
since encrypted data has very high entropy – between 7.5-
8.0 bits-per-byte.

Furthermore, there is no universally applicable methodol-
ogy for detecting steganographic embeddings, and the few
general principles that exist tend to be rather ad-hoc. To-
day, steganography has slowly gained momentum and be-

come very popular within the underground hackers’ commu-
nity. This should cause serious concerns, as steganography
is now a new weapon in the already-sophisticated arsenal of
the Black-Hat hackers. It has, over the years, become the ad-
versary’s preferred mode for delivering malware and exploit
payloads. Underground hacking communities are quickly
embracing steganography techniques for data exfiltration.

1.1 Assumptions and Threat Model
In our discussions of the proposed Android-Stego frame-

work, we assume that Alice (sender) and Bob (receiver) are
the end users, and they use a PKI-based digital certificate
for mutual authentication. Also, with the digital certificate,
Alice and Bob are equipped to negotiate a shared session
key spontaneously on an unsecured communication channel.
In our scenario, an unsecured channel is one that the service
provider can monitor for the presence of cover channels.

1.2 Android-Stego – Our Contributions
We acknowledge that there are numerous existing works

that are similar to our proposed Android-Stego – in their
approach as well as capabilities [7]. However, we do believe
our work has novelty and some very unique and important
contributions. Android-Stego, in its implementation and ap-
plication, it markedly differs from being a mere LSB tech-
nique. It independently segments the secret message file into
chunks, encodes them, and finally embeds them in a series
of PNG images - all of which is done with minimum user in-
teraction. Most importantly, the prototype implementation
relies on native image and MMS functionality common to
most Android devices, and does not necessarily depend on
direct Internet connectivity or carrier limitations.

Android-Stego is a segmented distributed multipart MMS
Steganography with detailed cryptographic processes to pro-
vide core security requirements - confidentiality, integrity,
and source authentication, which has been discussed in de-
tail in section 4. Our paper presents the first and perhaps
the only work to study and analyze the restriction on MMS
message sizes and its impact on MMS-based Steganogra-
phy over four real world cellular service providers – Verizon,
T-Mobile, Sprint, and ATT. Furthermore, our paper also
presents results summarizing the actions that each of the
aforementioned carrier perform on MMS messages whose
size exceeds the carrier-permissible maximum size.

We have custom-implemented a real world working pro-
totype due to the lack of libraries for the Android platform.
This was also one of the reasons we deviated from the popu-
lar F5 algorithm. In section 5, we have presented the bench-
mark results for carrier-imposed size restriction and the cor-
responding actions on oversized MMS messages. Most im-
portantly, the proposed framework and its prototype im-
plementation relies on native image and MMS functionality
common to most Android devices, and does not necessarily
depend on direct Internet connectivity or carrier limitations.

1.3 Road Map
The rest of the paper is organized as follows. In sec-

tion 2, we present some of the more relevant mobile device
steganography related works followed by a quick overview of
the Android mobile platform in section 3. Later, in section 4,
we discuss the Android-Stego architecture highlighting de-
tails of the covert channel communication accomplished with
MMS steganography. The section also provides details on

the embedding process, sender side operations, as well as the
receiver side operations, with relevant cryptographic opera-
tions. Section 5 presents discussions on security properties
of the proposed framework, carrier restrictions on MMS size
and the actions carriers take when MMS size exceeds the im-
posed limit, and some of the unique features of the proposed
framework. Finally, we conclude the paper with directions
for future research in section 6.

2. RELATED WORK
“Operation Twins,” culminated in 2002 with the capture

of criminals associated with the “Shadowz Brotherhood,” a
pedophile organization responsible for the distribution of
child pornography with the aid of steganography. Stegano-
graphic methods have also proven to be useful tools for data
exfiltration, which was evidenced in the 2008 incident in
which someone at the U.S. Department of Justice smug-
gled sensitive financial data out of the agency by embedding
it in several image files. In 2010, the FBI arrested mem-
bers of a Russian spy ring called “illegals”. These members
were allegedly sending classified US government documents
through clandestine messages to Moscow through digital im-
age steganography over publicly-available websites [9, 15].

A new worm called Duqu was discovered sometime dur-
ing September 2011 with glaring similarities to Stuxnet [17].
Both Stuxnet and Duqu had similar general malware struc-
tures and characteristics. However, upon closer examina-
tion, Duqu revealed a marked difference in comparison to
Stuxnet - Duqu was written to gather information on the
infected system and transferred the gathered information
back to the command and control center (C&C) using a
backdoor. The information transmitted via the backdoor to
the C&C was hidden in seemingly innocent pictures, with-
out raising any suspicion. A similar functioning mechanism
was coincidentally discovered in a new variant of the Alureon
malware [1] and around the same time as Duqu.

Rosziati Ibrahim et al. [11] proposed a steganography al-
gorithm for hiding secret messages inside a bitmap (BMP)
image. Although the paper does not fully disclose the algo-
rithm utilized, it is suspected that an approach similar to
LSB is used for hiding the message in a carrier BMP image.
In this algorithm, a secret message is first encrypted with a
key. The encrypted secret message is then compressed into a
zip file. Subsequently, the encrypted and compressed secret
message is then converted into a binary file. The encryp-
tion key is also zipped and converted to binary. To hide
the message and key into the cover BMP file, binary codes
from the series are encoded two bits at a time into an image
pixel, until all the binary codes have been exhausted. The
process is then reversed at the receiver’s end to retrieve the
secret message from the BMP carrier image. Rather than
using a single bit per byte to hide a message, as in a tradi-
tional LSB substitution approach, their algorithm uses two
bits per byte to maximize the amount of secret data that
can be embedded in the cover image and transmitted.

Based on this algorithm, Rosziati Ibrahim et al. [11] fur-
ther developed a Google Android-based application called
MoBiSiS (Mobile Steganography Imaging System) to send
steganographic images through MMS or email. They ex-
tend an algorithm to support additional image formats such
as JPEG, GIF, and PNG, in addition to merely BMP in
their original algorithm. Finally, in [6], authors have con-
sidered speech signal as the cover media to hide secret data.

This work steeped away from the conventional image-based
steganography venturing into audio files as a potential car-
rier medium. Similar message condensing approaches have
been proposed that have adaptively segmented the cover im-
age based on the key, have selectively chosen pixels based
on certain characteristics, and that have used left nibble
changes (4 bits from the left end of a byte) in a byte [8].
These changes have minimally and imperceptibly changed
the cover images, and have made them less susceptible to
steganalysis.

Mazurczyk et al. proposed SkyDe that utilizes encrypted
Skype voice packets as a hidden data carrier. Their pro-
posed SkyDe achieves a steganographic bandwidth of about
2 Kbit/s. Mazurczyk et al. also proposed StegTorrent [13],
which is a network steganographic method for BitTorrent
- the popular P2P file transfer service. StegTorrent takes
advantage of the many-to-one transmissions in BitTorrent
with the µTP protocol header providing a mechanism for
numbering packets and retrieving their original sequence.
This facilitates clandestine data transfer at a rate of about
270 b/s. Motivated readers are encouraged to read the pa-
per by Zielnska et. al. [21], which is literature review of the
state-of-the-art in steganography. There have been other
works that also address steganography and other informa-
tion hiding techniques in smartphones. In [14], authors have
provided a summary of such efforts, along with mitigation
techniques. Additionally, in [16], authors have presented a
very detailed survey of information hiding techniques.

3. BACKGROUND
In this section, we will provide some basic discussions nec-

essary for the reader, who is not a smartphone enthusiast,
to appreciate the work.

3.1 Cryptography vs Steganography
While cryptography and steganography have a lot of simi-

larities as well as differences, a key difference lies in their fun-
damental objective. Cryptography operates with the funda-
mental objective of securing the communication from eaves-
droppers; it does not hide the fact that a secret message
exists. This is because, the encrypted information can be
seen by anyone. Hence, cryptographic communications fall
well within the bounds of overt communication channels.

Steganography, on the other hand, operates with the fun-
damental objective of concealing the very fact that a se-
cret message is hidden. It hides information by concealing
it within another innocuous-looking medium, and no third-
person will ever know that a secret message exists. There-
fore, steganography communications constitute a covert com-
munication channel. In particular, due to the vastness of
cyberspace, steganography provides an unprecedented capa-
bility for true adversaries to transmit information that can
easily evade detection mechanisms.

3.2 Smartphones & Steganography
The information technology industry has undergone un-

precedented advances in the last few years, particularly in
the realm of mobile devices and their Operating Systems
(OSs). Contemporary mobile devices, in particular smart-
phones, have become extremely integrative in nature, com-
bining all computing features and functionalities that a user
needs, into a single portable device. Today, smartphones
have risen to the epitome of ubiquitous and pervasive com-

puting, and on such powerful devices that are true minia-
tures of personal computers, steganography is an easily-
accessible covert communication channel. With the grow-
ing size of mobile networks, even in developing countries,
and the growing ubiquity of camera-equipped smartphones,
it may be important to revisit image steganography as a
powerful and potent covert communication channel between
mobile devices.

In this paper, we propose and discuss Android-Stego - a
novel, robust steganography framework for Android-based
smartphones. Android-Stego is an extension of image-based
steganography into an MMS-based steganography for An-
droid smartphones. It is aware of cellular carriers’ restric-
tions on MMS message sizes and can traverse the network
from sender to receiver surviving compressions and format
conversions. We demonstrate our framework through the
implementation of a real world working prototype. The
prototype implementation relies on native image and MMS
functionality common to most Android devices, and does not
necessarily depend on direct Internet connectivity or carrier
limitations.

Our prototype is a segmented and distributed multipart
implementation that support MMS-based steganography on
both sender and receiver devices with the following capabil-
ities:

1. Splitting and encoding a secret message (can be multi-
part depending on message size and service provider
restrictions) on the sender side.

2. Encoded secret message successfully traverses the cel-
lular networks, transparent to service provider restric-
tions.

3. Decoding the received secret message, and reassem-
bling if it is a multi-part message, on the receiver side.

The two key features expected from steganography carri-
ers, as noted in [21] and listed below are both satisfied by
the cover file in our proposed Android Stego:

1. The cover file should be popular such that its usage
should not in itself be considered an anomaly. Our
proposed Android-Stego technique meets this require-
ment since MMS messages, which serve as the cover
file, are very popular, and do not account for anoma-
lies.

2. Modifications to the cover file resulting from insertion
of the secret message should be imperceptible to a
third-party, who is not aware of the covert commu-
nication channel. So, insertion of a secret message
into a single instance of the carrier should be upper
bound by the imperceptibility threshold to modifica-
tions. Consequently, additional instances of the cover
file should be used to accommodate the leftover part of
the secret message. Our proposed Android-Stego tech-
nique meets this requirement by incorporating multi-
part, segmented, and distributed capabilities into the
LSB encoding algorithm.

3.3 Android Mobile Platform Overview
Android is Google’s Linux-based open source mobile plat-

form and has evolved into a dominant and popular smart-
phone OS. It has a rich application programming interface

Figure 1: Generating an MMS Stego message using
our Android-Stego Framework

for software developers, and Android applications are writ-
ten in Java using the Software Development Kit (SDK).
While robust steganography libraries do exist, few have been
ported to support the Android OS. All Android applications
are comprised of the following: Component Activities, Ser-
vices, Content Providers, and Broadcast Receivers.

4. ANDROID-STEGO FRAMEWORK
In this section, with the help of schematic diagram, we

describe the operations of various subsystems within our
Android-Stego application framework. Recall that Android-
Stego operates on both sides of the communication chan-
nel enabling the end users - the sender and the receiver in
exchanging MMS-based steganography messages. For our
discussion here, we assume that Alice (sender) and Bob (re-
ceiver) have established a covert channel, using the support-
ing PKI infrastructure, which they will use during MMS
message exchanges.

In our discussions, we make generic references to PKI in-
frastructure, digital certificates, and asymmetric algorithms.
However, the Elliptic Cuver Cryptography (ECC) encryption
and digital certificate scheme is the most ideal for mobile de-
vices [18], since it is computationally cheap and yet secure.
ECC is a public key encryption technique that is based on el-
liptic curve theory and can be used to create faster, smaller,
and more efficient cryptographic keys. A 160-bit ECC en-
cryption key provides the same security as a 1024-bit RSA
encryption key [5]. Additionally, it can be up to 15 times
faster, depending on the specific platform on which it is im-
plemented.

Secnario: In our discussion, we assume that Alice and
Bob are friends communicating over an insecure channel. In
reality, however, they could be total strangers and equally
easily establish mutual authentication using the PKI infras-
tructure. We will not discuss further details about the PKI
infrastructure and the process of key negotiation due to page
length restrictions.

4.1 Process Overview
In this section, we discuss the details of the process of

MMS-based secret message exchange between Alice and Bob
under the proposed Android-Stego framework. With re-
gards to key management, Alice and Bob make use of a
secure shared key that they can either be negotiated offline,
or can make use of asymmetric algorithms to negotiate the

Image Type Size Pixel Value (x, y)

Cover Image C MxM (0, M-1)

Steganized Image S NxN (0, N-1)

Table 1: Summary of size and pixel range for the
cover image and the steganographic image.

key online and in realtime. Below are the steps involved
in the encrypted and authenticated steganographic message
exchange, assuming a shared key has been established pre-
viously.

Stage-1: Alice selects a secret file Msec that she wants
to send to Bob using the user interface on the prototype
application. Subsequently, she also selects the cover image
files she wants to use, through the user interface. Alice then
invokes the encoding process that will embed a secret file into
the cover image bitmap files. The secret file is serialized by
the Android-Stego prototype application and is broken into
segments that are combined with the bitmap carrier images.

Stage-2: The prototype application uses the PngStegoIm-
age class to combine the bitmap files and the serialized secret
file segments, and then converts them into steganographic
bitmap PNG images as shown in Figure 1. For each pixel
holding some part of the secret data, the integers represent-
ing red, green, and blue are evaluated and modified, when
necessary, such that even and odd values represent the zeros
and ones of the binary encoded data. The secret file im-
ages are then shepherded to the MMS (or Email service) of
the Android application, which then uses the cellular carrier
services to send the images to Bob, the recipient.

On the security and integrity of the secret message itself,
the framework uses a hybrid cryptographic system, a combi-
nation of asymmetric and symmetric encryption algorithms
as delineated below.

Operations on Alice’s (sender’s) side:

Step-1: Alice is in possession of Msec, the secret message that
she wishes to share with Bob.

Step-2: Alice generates a random sessions key: KAlice
rand . The

session key is unique for every secret message.

Step-3: Alice computes a hash of the secret message: h([Msec]).

Step-4: If the size of Msec is ≥ a predetermined permissible
message size, Alice splits the message into multiple
parts. This permissible size varies from carrier to car-
rier, a summary of which is presented in Table 2 for
four major carriers in the USA.

Step-5: Alice encrypts the secret message (or a chunk of the
message split into multiple parts) with the session key:

[Msec]KAlice
rand

Note: Each chunk of a multi-part secret message is
encrypted with the same session key KAlice

rand .

Figure 2: The process of embedding the secret message in a Steganographic MMS message.

Step-6: Alice computes a hash of the encrypted message from

Step-5: h
[
[Msec]KAlice

rand

]
Step-7: Alice encrypts the session key with her private key:

[KAlice
rand]KAlice

prv

Step-8: Alice appends the output from Steps-5, 6, and 7:

[[
Msec

]
KAlice

rand
||
[
KAlice

rand

]
KAlice

prv
||h
[
[Msec]KAlice

rand

]]

This message provides the following security require-
ments: confidentiality, message integrity, and source
authentication.

Step-9: Alice encrypts the output from Step-8 with Bob’s pub-
lic key:[

[Msec]KAlice
rand
||[KAlice

rand]KAlice
prv
||h(Msec]KAlice

rand
)

]
KBob

pub

For a multipart message, Alice includes KAlice
rand only

if she had to change the session key for any security
reasons. Otherwise, only the very first message trans-
mitted will include [KAlice

rand]

Step-10: Alice repeats Steps-5 to 9, until all pieces of the secret
message are transmitted.

Step-11: Finally, Alice transmits the hash of the original unen-
crypted message that she computed in Step-3.

Stage-3: On the receiver side, the Android platform’s na-
tive SMS/MMS content provider handles the receipt of mes-
sages, as shown in Figure 4.1. On Bob’s device, the proto-
type application service watches for changes upon a receipt
of a message (MMS/Email). On change, the steganography
application service dispatches a worker to execute the steps
required to load and decode the images.

Operations on Bob’s (receiver’s) side:

Step-1: Bob decrypts the received message with his private key
and extracts the following:

[Msec]KAlice
rand

, [KAlice
rand]KAlice

prv
, and h([Msec]KAlice

rand
)

Step-2: Bob verifies the integrity of the received secret message
by computing the hash of the session key encrypted
message [Msec]KAlice

rand
and verifies integrity by compar-

ing it to the hash received h([Msec]KAlice
rand

). If the two

match, then he continues to step-3; otherwise, he stops
processing.

Step-3: Bob extracts the sessions keyKAlice
rand from [KAlice

rand]KAlice
prv

using Alice’s public key KAlice
pub

Figure 3: The process of extracting the secret message from a Steganographic MMS message.

Step-4: Bob decrypts the secret message using the session key
extracted in step-4 above.

Step-5: Bob repeats the above steps (steps-1 to 4) until all
pieces of the secret message are received, verified and
decrypted.

Step-6: Bob, in the case of a multi-part secret message, recon-
structs the original secret message from the pieces. He
then computes the hash of this reconstructed original
message and compares it to the hash of the original
unencrypted message received from Alice in Step-11.

The prototype implementation and the framework are, in
general, designed to be modular, so that additional features
can be easily incorporated into the framework. This even
facilitates using encryption schemes of the user’s choice.

4.2 Implementation Challenges
Implementing an MMS-based steganography system on

the Android platform presents certain very unique challenges.
Any such implementation is dependent on systems both within
the Android environment, as well as carrier-specific systems
external to and outside the control of the Android environ-
ment. Several of these systems’ requirements and specifica-
tions are neither very consistent nor well documented. So,
it is imperative that we test these external systems, in order
to understand and predict their behavior.

Furthermore, while some free and open source steganog-
raphy libraries do exist for the Java platform, they rely on

existing graphics and GUI libraries - such as Oracle’s Ab-
stract Window Toolkit - that are not implemented for the
Android platform [2, 4, 20]. Therefore, we found it nec-
essary to specify, design, and implement a custom applica-
tion under our proposed framework using the Android SDK,
which provides API libraries and developer tools necessary
to build, test, and debug applications for Android devices.

The proposed Android-Stego framework encodes binary
data into a bitmap image using the very popular LSB tech-
nique by making slight modifications to the pixel data if and
only if, and where necessary. Specifically, the encoded bi-
nary data will be represented by the parity of the red, green,
and blue values in a group of pixels. This will allow us to en-
code three bits of secret data per pixel, or equivalently one
byte of secret message per 2.66 pixels while making only
slight changes to those which are imperceptible to the orig-
inal image data.

Because our algorithm relies on bitmap data, which are
lossy-compressed image formats, such as GIF or JPEG are
not very suitable as cover images. However, compression is
beneficial to data throughput. Therefore, we chose to use
the Portable Network Graphic (PNG) image format. PNG
image format employs a lossless-compression technique that
preserves pixel fidelity.

Part of any good digital steganographic method is the
ability to validate and measure the quality of the algorithm
in obfuscating the message in the carrier image. Changes
in the carrier images must not only be imperceptible to the
casual observer, but the image must also be able to with-

Receiving Carrier Receive Status File Integrity

Verizon True Partial. All images of size ≥ 1MB were compressed
(and converted to JPEG) by the native MMS application.
Smaller images remained intact.

T-Mobile True No. All images of size ≥ 1MB were compressed
(and converted to JPEG)
by the native MMS application.
Files of size 500KB and 750KB were compressed
(as PNGs) by the carrier.

Sprint True Partial. All images of size ≥ 1MB were compressed
(and converted to JPEG) by the native MMS application.
Smaller images remained intact.

AT& T True Partial. All images of size ≥ 1MB were compressed
(and converted to JPEG) by the native MMS application.
Smaller images remained intact.

Table 2: Summary of carrier restriction on in-coming MMS message size for the big-four cellular service
providers in North America.

stand statistical and steganalytical scrutiny. A standard
measurement used in steganography, to test the quality of
the steganographic images, is called Peak Signal-to-Noise
Ratio [11]. The higher the value of PSNR, the higher the
quality of the steganographic image will be.

PSNR = 10log10
∑M−1

x=0

∑N−1
y=0 [C(x, y)− S(x, y)]2

As noted in [11], if the cover image C has a size (MM) and
the steganographic image S has a size (NN), then each C
and S will have pixel value (x, y) ranging from [0 to (M−1)]
and [0 to (N − 1)] respectively. The MAX value is the
maximum number of pixels for the image. This information
has been summarized in Table 1.

5. DISCUSSIONS

5.1 Security Properties of Android-Stego
In this section, we discuss the security requirements sat-

isfied by our proposed Android-Stego framework.

• Confidentiality of the secret message: Since the
secret message Msec is encrypted with a session key
KAlice

rand , which is generated by Alice, no one will be
able to discern the message without the key. Further
more, the session key is encrypted with Bob’s public
key when it is transmitted. Consequently, an attacker
will not be able to decipher the message without Bob’s
private key.

• Integrity of the secret message: The secret mes-
sage is first encrypted with the session key and then is
hashed. The resultant hash is included along with the
encrypted message. The receiver computes the hash

of the received encrypted message (or that particu-
lar chunk of a larger message) and compares it to the
hash included with the message. If the two hash values
match, message integrity is verified and the receiver
proceeds to decrypt the message. Else, the receiver
discards the message (or that chunk).

• Sender authentication: A sender is authenticated
in our proposed framework by having the sender en-
crypt the session key with the sender’s private key. On
the receiver side, the session key is extracted using the
sender’s public key. Hence, the session key could not
have been generated by anyone else.

5.2 Carrier Restrictions on MMS Size
Network operators play an active role in MMS commu-

nication, when compared to standard voice, data or SMS
communication. Carriers store uploaded MMS data on their
own servers, and then forward the data to capable handsets,
or grant access to subscribers to access the uploaded data on
their server. This implementation, while primitive, is nec-
essary to ensure backward compatibility so that subscribers
using older mobile devices can still view the MMS content,
or through an alternative medium, like a carrier’s website.
Because of this, it is possible that content sent via MMS
may be rejected outright by the carrier if they sense any
malicious content.

A rejection may occur, for example, if a MIME type is
unknown or if a file is deemed too large. These restrictions
may not be documented or consistent between carriers. Our
implementation relies on PNG-compressed bitmaps, so we
tested the behavior of this kind of data on four major U.S.
carriers. We were interested in data size limits and data

integrity (compression or conversion, for example) measures
employed by these carriers that would prevent MMS-based
steganographic communication.

To test for any such limitations, we attempted transmis-
sion of incrementally larger steganographic PNGs via MMS,
and then verified their integrity on the receiving end by com-
paring the SHA-256 hash value of the message with that on
the sender’s side. With this information in hand, we worked
to develop a working prototype of the framework that would
work within the confines of MMS and any carrier-imposed
limitations. In the prototype, we have established a binary
specification, and an application that can both encode and
decode this data from a bitmap image.

6. CONCLUSIONS
Considering the integrative nature of contemporary smart-

phones, steganography is most definitely an easily accessible
alternative for covert communication. In this paper, we have
proposed Android-Stego, a new framework that implements
of a multipart MMS-based steganography on Android smart-
phones. For implementing a real world working prototype
of Android-Stego, we have written a custom implementa-
tion of the LSB algorithm, which can hide arbitrary binary
data. Our implementation is a segmented and distributed
implementation built on the LSB encoding technique.

We have also analyzed MMS handling behavior by various
cellular service providers to ensure that our implementation
would work on most domestic networks, and it is robust to
message loss resulting from cellular operator manipulations
of steganographic MMS messages. We have presented the
restrictions placed on user MMS message size by four major
carriers and the actions - compression and/or format con-
version - the carriers perform on the MMS messages once
they exceed the imposed limit.

Our prototype implementation is modular, and built with
existing Android APIs. Therefore, new features can be eas-
ily introduced, making it more capable in hiding, as well
as robust to detection. One specific item of inetrest on our
agenda of future research is building fault tolerance to mes-
sage exchanges. If a particular message chunk, in case of a
multi-part message, fails the integrity check, then that chunk
can be discarded without the need for retransmission, and
the original message can still be recovered using techniques
similar to (k, n) thershold secret sharing.

7. ACKNOWLEDGMENTS
The authors would like to thank Chris Brahms, Stephan

Reimers, and Thomas Valadez for their contributions to-
wards the implementation and validation of Android-Stego,
as well as the draft of this paper. This work wold not have
been possible without their contributions.

8. REFERENCES
[1] Alureon trojan uses steganography to receive

commands.

[2] F5- steganography in java.

[3] Federal plan for cyber security and information
assurance research and development.

[4] Openstego: The free steganography solution.

[5] J. W. Bos, M. E. Kaihara, T. Kleinjung, A. K.
Lenstra, and P. L. Montgomery. On the security of
1024-bit rsa and 160-bit elliptic curve cryptography.

[6] S. K. Dastoor and V. Patel. A novel android based
mobile application as a virtue of covert communication
for concealing information in the speech signal. In
Emerging Technology Trends in Electronics,
Communication and Networking (ET2ECN), 2012 1st
International Conference on, pages 1–6. IEEE, 2012.

[7] D. Dhobale Dhanashri, S. Patil Babaso, and
H. Patil Shubhangi. Mms steganography for
smartphone devices. In Computer Engineering and
Technology (ICCET), 2010 2nd International
Conference on, volume 4, pages V4–513. IEEE, 2010.

[8] N. N. EL-Emam. Hiding a large amount of data with
high security using steganography algorithm. Journal
of Computer Science, 3(4):223, 2007.

[9] K. J. Higgins. Busted alleged russian spies used
steganography to conceal communications. Dark
Readings, June 29 2010.

[10] R. Ibrahim and C. K. Law. Mobisis: An android-based
application for sending stego image through mms. In
ICCGI 2012, The Seventh International
Multi-Conference on Computing in the Global
Information Technology, pages 115–120, 2012.

[11] R. Ibrahim and C. K. Law. Mobisis: An android-based
application for sending stego image through mms. In
ICCGI 2012, The Seventh International
Multi-Conference on Computing in the Global
Information Technology, pages 115–120, 2012.

[12] N. F. Johnson and S. Jajodia. Exploring
steganography: Seeing the unseen. Computer,
31(2):26–34, 1998.

[13] P. Kopiczko, W. Mazurczyk, and K. Szczypiorski.
Stegtorrent: a steganographic method for the p2p file
sharing service. In Security and Privacy Workshops
(SPW), 2013 IEEE, pages 151–157. IEEE, 2013.

[14] W. Mazurczyk and L. Caviglione. Steganography in
modern smartphones and mitigation techniques. 2014.

[15] U. D. of Justice. Criminal complaint, united states vs.
christopher r. metsos et al. FBI Documents, 2010.

[16] F. A. Petitcolas, R. J. Anderson, and M. G. Kuhn.
Information hiding-a survey. Proceedings of the IEEE,
87(7):1062–1078, 1999.

[17] Symantec. W32.duqu - the precursor to the next
stuxnet (version 1.4). Symantec Security Response,
Oct. 14 2011.

[18] M. Toorani and A. Beheshti. Lpki-a lightweight public
key infrastructure for the mobile environments. In
Communication Systems, 2008. ICCS 2008. 11th
IEEE Singapore International Conference on, pages
162–166. IEEE, 2008.

[19] R. G. Van Schyndel, A. Z. Tirkel, and C. F. Osborne.
A digital watermark. In Image Processing, 1994.
Proceedings. ICIP-94., IEEE International
Conference, volume 2, pages 86–90. IEEE, 1994.

[20] A. Westfeld. F5 - a steganographic algorithm. In
Information hiding, pages 289–302. Springer, 2001.

[21] E. Zielińska, W. Mazurczyk, and K. Szczypiorski.
Trends in steganography. Communications of the

ACM, 57(3):86–95, 2014.

