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Abstract—Link-state routing protocols, such as OSPF and IS-IS, are widely used in the Internet today. In link-state routing protocols,

global network topology information is first collected at each node. A shortest path tree (SPT) is then constructed by applying Dijkstra’s

shortest path algorithm at each node. Link-state protocols usually require the flooding of new information to the entire (sub)network

after changes in any link state (including link faults). Narvaez et al. proposed a fault-tolerant link-state routing protocol without flooding.

The idea is to construct a shortest restoration path for each unidirectional link fault. Faulty link information is distributed only to the

nodes in the restoration path and only one restoration path is constructed. It is shown that this approach is loop-free. However, the

Narvaez et al. approach is inefficient when a link failure is bidirectional because a restoration path is unidirectional and routing tables of

nodes in the path are partially updated. In addition, two restoration paths may be generated for each bidirectional link fault. In this

paper, we extend the Narvaez et al. protocol to efficiently handle a bidirectional link fault by making the restoration path bidirectional.

Several desirable properties of the proposed extended routing protocol are also explored. A simulation study is conducted to compare

the traditional link-state protocol, the source-tree protocol, the Narvaez et al. unidirectional restoration path protocol, and the proposed

bidirectional restoration path protocol.

Index Terms—Fault tolerance, link-state, Internet, loop-free, routing.
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1 INTRODUCTION

LINK-STATE routing protocols, such as OSPF [7], [8], [10],
[13] and IS-IS [1], [12], are the dominant routing

protocols in the Internet [2]. There are two major phases
in such protocols: 1) Each IP router first collects the
complete topological information of the underlying (sub)-
network; 2) each router then computes the routes according
to the collected topological information. The first phase is
performed distributively by all the routers in the network
through exchanging link state information with its neigh-
boring routers. In the second phase, each router can
construct a routing table based on the shortest path tree
(SPT) built using the topological information. Any SPT
algorithm such as Dijkstra’s shortest path algorithm [3] can
be used in building the SPT.

Compared to other routing protocols such as distance-
vector protocols, one of the major advantages of link-state
protocols is that each router computes the routes indepen-
dently using the same link-state information; it does not
depend on the computation done in other routers in the
network. When link states are changed in the network, new

information need only be sent once to each router for
updating the routing table. Huitema [7] listed four good
reasons why most network specialists favor link state
protocols over the distance vector approach:

1. fast, loopless convergency;
2. support of precise metrics and, if needed, multiple

metrics;
3. support of multiple paths to a destination; and
4. separate representation of external routes.

However, link-state protocols usually require flooding the
network when any change occurs in the link states in the
network. Flooding may be prohibitively expensive, espe-
cially when the link states change too frequently or when
the number of links in the network is too large. Limiting the
frequency of such updates can partially solve the problem
when the effect of the change of the cost metric is minor in
terms of transmission delay. However, this approach is
inefficient in covering a link fault—because certain paths
may be disconnected as a result of the link fault, delay in
information update will lead to undeliverable packets.

In [11], Narvaez et al. presented a routing algorithm
based on the link state method to limit routing information
that needs to be delivered in a link-state protocol when a
single link fails. Instead of using the flooding method, the
proposed scheme restores all the paths traversing the failed
link by performing only local updates on the affected
routers. Specifically, a shortest restoration path is constructed
that connects u to v for a faulty link uv (see Fig. 1). (Note
that a shortest restoration path does not guarantee a
shortest path from source to destination.) Their method
can restore loop-free routing after a link fault while
propagating information about that failure to as few routers
as possible and only to the ones along the shortest
restoration path. This approach is also useful to divert
traffic from a congested link. However, the Narvaez et al.
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approach is inefficient when a link fault is bidirectional
because a restoration path is unidirectional and routing
tables of nodes in the path are partially updated. In
addition, two restoration paths may be generated for each
bidirectional link fault.

In this paper, we modify the Narvaez et al. protocol to
efficiently handle the link fault by making the shortest
restoration path bidirectional so that nodes on the restora-
tion path are completely updated and the construction of
the restoration path is initiated at both end nodes of the
faulty link. Only one shortest restoration path is constructed
if the shortest restoration path is unique. When the shortest
restoration path is not unique, one path is still constructed
by either restricting the initiation process to only one end
node or extending Dijkstra’s algorithm. Our model is based
on the bidirectional faulty model, which is commonly used
in most routing protocols, including OSPF [7]. In the
subsequent discussion, all link faults are assumed to be
bidirectional. Note that, without specific hardware support,
the detection of a unidirectional link fault is harder than a
bidirectional one since each end node has to distinguish a
fault that appears in the incoming link from the one in the
outcoming link. We also point out a flaw in the Narvaez
et al. protocol that may cause a routing loop. Several
desirable properties of the proposed extended routing
protocol are also explored. A performance study through
simulation is conducted to compare the traditional link-
state protocol, the source-tree protocol, the Narvaez et al.
unidirectional restoration path protocol, and the proposed
bidirectional restoration path protocol. In the subsequent
discussion, we use nodes and routers interchangeably.

The rest of the paper is organized as follows: Section 2
reviews the basic ideas used in link-state routing protocols
and some related works and briefly describes the Narvaez
et al. fault-tolerant link-state routing protocol without flood-
ing. Section 3 proposes an extension of the Narvaez et al.
protocol for handling a bidirectional link fault. An example is
given in Section 4. Section 5 discusses properties of the
proposed extended routing protocol. Section 6 presents
simulation results. Section 7 is the discussion and Section 8
concludes the paper and discusses possible future work.

2 PRELIMINARIES

2.1 Related Works

Most Internet routing protocols fall in two categories:
distance-vector and link-state. The distance-vector protocol
is based on an iterative message exchanging process among
neighbors to construct routing tables. The protocol often
takes too long to converge because of the count-to-infinity
problem. This problem exists even with the help of the split
horizon mechanism. Distance-vector routing was used in
the ARPANET until 1979, when it was replaced by link-
state routing. Link-state protocols are free of routing loops,
but the overhead is high because the link-state information
is flooded all over the network. The details of the link-state
protocol will be discussed in the next section.

A hybrid approach of distance-vector and link-state was
proposed by Garcia-Luna-Aceves et al. [5], [6] to achieve both
communication efficiency and loop freedom. In this ap-
proach, each node maintains a source tree which is an SPT,
instead of global link-state in link-state protocols or routing
tables in distance-vector protocols. In the source-tree ap-
proach, each node has only partial link-state information,
including its adjacent links, links in its source tree, and links in
its neighbors’ source trees. When a link in the source tree of a
node fails, the node recomputes its source tree using
Dijkstra’s algorithm. Note that the resultant source tree may
not be optimal after the reconstruction process since it is
based on partial link-state information. To ensure loop
freedom and optimality, any changes in the source tree of a
node are further propagated to its neighbors, which in turn
recompute their source trees and feed back shorter paths
(embedded in the SPTs) if any. After this process converges,
each node has the optimal paths to all destinations in its
source tree.

Information propagation of the source-tree protocol is
similar to the one used in the distance-vector protocol and
may take more steps to converge than the link-state
protocol. However, the source-tree protocol avoids the
count-to-infinity problem by using link-state information
instead of distance information to compute shortest paths.
Compared with the link-state protocol, the source-tree
protocol has less storage overhead and fewer link-state
update messages because each node only propagates link
changes in its source tree. Two Internet protocols have been
proposed using the source-tree model: the link-vector
algorithm (LVA) [5] and the adaptive link-state protocol
(ALP) [6]. ALP has lower message overhead than LVA
when the cost of a link decreases and both ALP and LVA
have similar overhead when a link fails.

2.2 Link-State Protocols

A typical link-state protocol uses the following steps:

1. Topological information of the network (link state) is
first collected at each node by exchanging and
accumulating adjacent link information among
neighbors.

2. A shortest path tree (SPT) is constructed at each
node by applying an SPT algorithm, such as
Dijkstra’s shortest path algorithm, on the graph
representing the network topology.

3. For any routing with a given destination, a shortest
path is selected from the SPT at the source node if
the source routing approach is used; otherwise, a
routing table is constructed from the SPT if the
distributed routing approach is applied. The routing
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Fig. 1. A restoration path initiated from u.



table includes next hop information for each
destination.

Note that, in source routing, the source node decides the
complete path, while, in distributed routing, only the next
hop is decided at each node along the routing path. In this
paper, we use the distributed routing approach where a
routing table is constructed directly at each node based on
the associated SPT. A (sub)network that uses link-state
routing protocols can be viewed as an undirected graph
G ¼ ðV ;EÞ, where V is a vertex (node) set and E is an edge
(link) set. ðu; vÞ 2 E is a bidirectional link where u and v are
two vertices in V . uv represents a directed link from u to v.
Each ðu; vÞ is associated with a cost (a positive number)
representing the cost of traveling from u to v (and from v to
u). Clearly, ðu; vÞ can be viewed as two directed links, uv
and vu, and nodes u and v keep the link state of uv and vu,
respectively. Both end nodes u and v of a faulty link ðu; vÞ
can detect the fault. Let uð¼ w0Þ ÿ w1 ÿ w2 ÿ . . .ÿ vð¼ wnÞ
denote a path which is a sequence of directed links from u
to v, where vertices wi are distinct. uÿ v represents a
directed link among two neighbors while uÿ� v represents
a path connecting u to v through a sequence of directed
links. P ðu;w1; w2; . . . ; vÞ represents a path consisting of
undirected links.

The tunneling scheme [14] is a possible solution to handle
link faults. Basically, a new path from u to v is constructed
when link uv is broken (link vu is also broken). Any path
containing uv will be replaced by a new path from u to v.
Once a packet arrives at u, it will be encapsulated in another
packet with destination v and forwarded along the new
path until reaching v. Then, the packet is decapsulated. The
remaining routing process follows a regular link-state
routing protocol. However, encapsulation/decapsulation
limits the efficiency of high-speed routers since every single
routing packet that goes through the new path has to be
encapsulated at node u. This method is not suitable to be
used in high-speed networks.

Narvaez et al. [11] proposed a fault-tolerant link-state
routing in the Internet without flooding. This approach can
handle one unidirectional link fault at a time. The basic idea
is to restore all the paths traversing the faulty link by
performing updates only in the neighborhood. First, a
shortest restoration path (a path with the minimum cost) is
constructed that connects u to v (assuming uv fails, as in
Fig. 1). Then, only nodes along the shortest restoration path
need to update their routing tables. Specifically, we only need
to update next-hop information for those destinations that are
descendants of the faulty link in the SPT of each node in the
restoration path.

The way these routing tables should be updated remains

a challenge. Suppose a restoration path has been con-

structed, a simple update that recomputes routing tables of

nodes based on new link-state information along the

restoration path does not work because packets might leave

the restoration path too soon. For the example illustrated in

Fig. 2, suppose that only the routing tables associated with

nodes u and x are updated and uÿ xÿ v forms a shortest

restoration path initiated from u for faulty link ðu; vÞ. A

packet from u to y will exit at x to z. Because the routing

table associated with z is not updated, path zÿ xÿ uÿ vÿ
y is still considered the shortest. Therefore, x is selected as

the next hop and, consequently, a routing loop between x

and z is formed. Forcing all the packets that would have

had to traverse the faulty link to travel through the entire

restoration path would not work either. For the example of

Fig. 3, assuming that a packet needs to be forwarded from u

to z, once the packet reaches v via uÿ xÿ v, the next hop

will be x since vÿ xÿ z is the shortest path to z. Again a

routing loop occurs between v and x. In this situation, a

packet exits the restoration path too late.

2.3 Branch Update Algorithm

The branch update algorithm proposed by Narvaez et al. was

designed in such a way that a packet exits a restoration path

at a right time. This protocol constructs a shortest

restoration path uð¼ w0Þ ÿ w1 ÿ w2 ÿ . . .ÿ vð¼ wnÞ initiated

from u for faulty link uv.

Branch Update Algorithm
At node u ¼ w0 upon detecting a faulty link uv or at node wi
(where i 6¼ 0 6¼ n) upon receiving a special packet indicating

the failure of uv.

1. The set Di is defined as all the nodes that are
descendants of uv in the shortest path tree SPT
rooted at wi (see Fig. 5).

2. The link-state database (that includes global network
topology) is modified to incorporate the change of
state of link uv (the link is down).

3. Dijkstra’s shortest path algorithm is applied to
recompute the next hop for reaching node v only.
The new next hop for v is now some other node wiþ1.

4. The next hop for all the destination nodes in Di is set
to wiþ1.

5. If wiþ1 is not equal to v, send a special packet to wiþ1

indicating the failure of uv.
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Note that any path connecting u to v, not necessarily the

shortest one, can be used as a restoration path. The Narvaez

et al. protocol has two desirable properties:

. It guarantees loop-free routing after the link fault.

. If a minimal restoration path (in terms of hop count),
rather than a shortest restoration path (in terms of
cost), is used, it guarantees the minimum number of
nodes that need to be informed of the link fault.

However, the branch update algorithm is proposed to

handle a unidirectional link fault. Using the algorithm, two

restoration paths are needed for each link fault that is

bidirectional. For the example of Fig. 1, an outdated SPT

rooted at w can reach a destination via either wÿ� uÿ v or

wÿ� vÿ u (other destinations whose shortest paths do not

include uv or vu are of no interest here). In the branch

update algorithm where u is the initiator, it only updates

the path of type wÿ� uÿ v to a destination and the

successor of w in the restoration path is selected as the

next hop to reach the destination. When the path is of type

wÿ� vÿ u, it is taken care of by another restoration path

initiated from v. When these two paths share the same node

set, each node in the set is visited twice, one for each packet

initiated from each end node of the faulty link.
When two restoration paths do not share the same node

set, the situation is more complex. Considering the example

of Fig. 4 where link ðu; vÞ fails, the restoration path initiated

from u is uÿ� xÿ� wÿ� v and the one initiated from v is

vÿ� yÿ� wÿ� u. (The case for vu can be treated in a similar

way.) Suppose x does not appear in vÿ� yÿ� wÿ� u, then

the routing table of x is partially updated, i.e., x knows the

failure of uv but not that of vu. In fact, any shortest path of

type xÿ� vÿ u to a destination is not updated at x, thus

routing proceeds based on the outdated routing table

without new information about the faulty link ðu; vÞ until

the packet reaches a node on the restoration path vÿ� yÿ�
wÿ� u (initiated from v). Then, node u is reached by

following the restoration path vÿ� yÿ� wÿ� u.

3 EXTENDED BRANCH UPDATE ALGORITHM

In the extended routing protocol proposed in this paper,

only one restoration path needs to be constructed for a

bidirectional link fault as long as the shortest path is unique.

This is done by making the path bidirectional. Initially, two

restoration paths are still initiated, one from each end node

of a faulty link. When two restoration paths for the same

link fault meet at an intermediate node, both processes stop.

In the examples of Figs. 1 and 4, when two restoration paths

meet at node w, both processes stop. A bidirectional

restoration path P ðu;w; vÞ is constructed for Fig. 1 and

P ðu; x; w; y; vÞ for Fig. 4. To make the restoration path

bidirectional, we distinguish the orientation of the path to a

destination that goes through the faulty link ðu; vÞ. Suppose

w is a node in the restoration path initiated from u, if a path

derived from the SPT that is initiated from w to a

destination contains link uv (i.e., the path is of type

wÿ� uÿ v), the corresponding destination is kept in set D.

If the path is of type wÿ� vÿ u, the corresponding

destination is kept in D0. The next hop of a destination in

D (D0) is the successor (predecessor) of w in the restoration

path. To relate two restoration paths that are intended for

the same link fault, a special marker is used for each faulty

link. A node in the restoration path is marked once visited.

Note that the shortest path tree (SPT) property implies that

at least one of D and D0 is empty.

Extended Branch Update Algorithm
At node u ¼ w0, upon detecting a faulty link ðu; vÞ, or at

node wi (where i 6¼ 0 6¼ n), upon receiving a special packet

indicating the failure of ðu; vð¼ wnÞÞ:

1. The set Di (and D0i) is defined as all the nodes that
are descendants of uv (and vu) in the shortest path
tree (SPT) rooted at wi.

2. If wi has been marked for ðu; vÞ, exit; otherwise, wi is
marked.

3. The link-state database is modified to incorporate
the change of state of link ðu; vÞ (the link is down).

4. The next hop for all the destination nodes in D0i is set
to wiÿ1.

5. If wi is v, exit; otherwise, Dijkstra’s shortest path
algorithm is applied to recompute the next-hop for
node v only. The new next hop for v is now some
other node wiþ1.

6. The next hop for all the destination nodes in Di is set
to wiþ1.
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Fig. 5. An SPT rooted at wi: Triangle Di contains descendants of uv

which belong to a branch of wi and triangle “other branches” contains

other branches of wi.



7. Send a special packet to wiþ1 indicating the failure of
ðu; vÞ.

The extended branch update algorithm is also applied to
the other end node v of the faulty link ðu; vÞ by exchanging the
role of u and v. The extended routing protocol guarantees a
shortest restoration path (see Theorem 3). In addition, it
guarantees that only a minimal number of nodes need to be
informed when the proposed routing protocol tries to search
for a minimal restoration path (see Theorem 4).

Note that the restoration path initiated from u may or
may not be the reverse of the one initiated from v because
several shortest paths may exist in a given network. Two
bidirectional restoration paths will be constructed for a
bidirectional link fault ðu; vÞ.

The situation where a marked node is encountered
deserves more discussion. Suppose the restoration path
initiated from u encounters a marked node, say wi, as shown
in Fig. 6a. That means the restoration path initiated from vhas
selected wi in its restoration path, that is, the restoration path
initiated from v has passed through node wi and a signal has
been sent to either wiÿ1 or a node other than wiÿ1, say w. In
either case, the process initiated from u simply stops at wi, as
shown in Fig. 6a. Eventually, the path initiated from v will
reach a marked node wj (wj could be u). Again, the process
simply stops at wj. The restoration paths constructed in the
above situation are called overlapped paths. In the special case
where wj ¼ u and wi ¼ v, the resultant paths are called node-
disjoint paths. Two restoration paths exist for each direction,
one complete (that connects u and v) and one incomplete. In
Fig. 6a, uÿ� wj ÿ wjþ1 ÿ� wi ÿ� v and w0 ÿ� wÿ wi ÿ� v are
for D while vÿ� wi ÿ wÿ� w0 ÿ wj ÿ� u and wiÿ1 ÿ� wjþ1 ÿ
wj ÿ� u are for D0. Although two restoration paths are
constructed for each bidirectional link fault, each node in a
restoration path is completely updated rather than partially

updated (see Fig. 6b) as in the original branch update
algorithm. That is, with the same number of informed
nodes, the extended routing protocol provides routing
information more accurately than that of the branch update
algorithm. The net effect is that the proposed routing
protocol provides shorter routes for some destinations.

Considering again the example of Fig. 2, suppose that
node z intends to forward a packet to y. The packet is
forwarded to x because z does not have new information
about the link fault ðu; vÞ and zÿ xÿ uÿ vÿ y is still
considered the shortest path from z to y. If x belongs to a
restoration path vÿ xÿ u initiated from v, the packet is
forwarded to v based on the extended routing protocol (the
predecessor of x in the restoration path). Using the original
branch update algorithm, we assume that two separate
restoration paths are constructed: uÿ wÿ v (initiated from
u) and vÿ xÿ u (initiated from v). Because path xÿ uÿ
vÿ y is still considered the shortest to y at x, the packet will
be sent to u and then forwarded to v along the restoration
path uÿ wÿ v. Finally, the packet is sent to y via v. The
resultant routing path is zÿ xÿ uÿ wÿ vÿ y. Note that the
path vÿ xÿ u is just the optimal replacement for faulty link
ðu; vÞ, thus the resultant routing path zÿ xÿ vÿ y gener-
ated from the extended routing protocol is not the shortest.
In fact, the shortest path from z to y is path zÿ y with a cost
of 10. However, if the shortest path does not contain the
faulty link, it will remain the shortest.

If the requirement is to generate a single restoration path
for each link fault, the extended routing protocol can be
easily modified to ensure that one and only one end node of
each link fault initiates the construction of a restoration
path. This can be accomplished by comparing the IDs of
two end nodes and letting the one with the larger ID initiate
the process. Still another approach exists which initiates the
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construction from both end nodes, but guarantees a single
restoration path. It is based on a simple modification of
Dijkstra’s algorithm which allows us to detect all the “equal
length” paths [7]. Here, we further modify the extended
Dijkstra algorithm by keeping the ID of the last hop of each path
during the formation of SPT. During the formation of SPT,
when two equal length paths are detected, the one with a
larger ID of the last hop survives. In addition, both u and v
try to find a restoration path from u to v and the restoration
path from v is just the reverse of the one from u. This
approach is called asymmetric simple restoration path
construction.

It should be stressed that the above extended Dijkstra
algorithm should be used at each node to construct its SPT.
Otherwise, a routing loop may occur during a restoration
process (a flaw in the original Narvaez et al. protocol). For
example, in Fig. 7a, there are two shortest paths between
nodes u and t. However, only one path is used in node u’s
shortest path tree (SPT). If there is no consistent rule for
each node to select a shortest path, node u may select the
path uÿ vÿ t. Similarly, there are three shortest paths
between nodes s and t and node s may select the path
sÿ uÿmÿ t. After link ðu; vÞ fails, a restoration path uÿ
sÿ nÿ v is constructed at u to bypass the faulty link. Node u
changes its next hop for v to the next node in the restoration
path, which is node s. On the other hand, since the SPT
rooted at node s does not use link ðu; vÞ in its shortest path
to t, its next hop for t remains the same, which is u. When a
routing packet sent to t reaches node u, it will be circulated
between nodes u and s and can never reach its destination.
Using the extended Dijkstra algorithm, the following
property is ensured: If uÿ� vÿ� t is a path in the SPT rooted
at node u, then the same subpath vÿ� t appears in the SPT rooted
at node v. In this case, node s should have selected path
sÿ uÿ vÿ t, as shown in Fig. 7d (since u has a larger id
than n and v has a larger id than m).

Like any link-state-based protocols (including the Nar-
vaez et al. protocol), the extended routing protocol may
generate short-term loops because of the delay in link-state
propagation along the restoration path. Referring to Fig. 1,
consider a shortest path from s to t (not shown in the figure)
that goes through link ðu; vÞ. Suppose the routing packet
reaches node w before the restoration process starts. If the
restoration path that includes node w is constructed when
the packet reaches node u, clearly node w will be visited
again since it is along the restoration path for ðu; vÞ.

However, short-term is temporary and will not cause
serious problems.

4 EXAMPLE

In this section, we illustrate the proposed scheme using an
example. Fig. 8 shows a sample network with eight nodes.
Table 1 shows routing tables for all nodes in Fig. 8, where
“Dest.” stands for destination and “NH(id)” represents the
next hop information in the routing table associated with
node id. Distance information is not included in Table 1.

Suppose link ðu; vÞ fails, we can easily determine the
corresponding shortest restoration path as uÿ xÿ yÿ v,
that is, w0 ¼ u, w1 ¼ x, w2 ¼ y, and w3 ¼ v. Fig. 9 shows the
SPT (before link ðu; vÞ fails) rooted at each wi for i ¼ 0, 1, 2,
and 3. Note that, in Fig. 9a, there are two shortest paths
from u to y: uÿ xÿ y and uÿ vÿ y. Path uÿ xÿ y is
selected because x has a larger id than v. Di and D0i can be
easily derived from the corresponding SPT:

. At node u: D0 ¼ fv; wg and D00 ¼ �.

. At node x: D1 ¼ fv; wg and D01 ¼ �.

. At node y: D2 ¼ � and D02 ¼ �.

. At node v: D3 ¼ � and D03 ¼ ft; u; x; zg.
There are two views of the network: Nodes s, t, w, and z

have the old view (link states before the link fault), while
nodesu, v,x, and yhave the new view (link states after the link
fault). Based on the proposed scheme, only the routing tables
of nodes u, v, x, and y that are along the shortest restoration
path are affected by the link fault (as shown in Table 2). In
Table 2, id! id0 in the next hop column represents the
following: id is the next hop before link ðu; vÞ fails and id0 is the
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Fig. 7. In network (a), multiple shortest paths exist from u and s to t. In node u’s view (b), its shortest path to t is affected by the faulty link and should

be adjusted; while, from s’s view (c), its shortest path is not affected. (d) The SPT rooted at s generated from the extended Dijsktra algorithm.

Fig. 8. A sample network with eight nodes. The dotted line corresponds

to the restoration path for faulty link ðu; vÞ.



next hop after link ðu; vÞ fails. All other entries in the next hop

columns in Table 2 remain unchanged, that is, the same as

ones in Table 1. Again, after the faulty link is replaced by a

restoration path, a shortest path that includes the faulty link

may or may not be the shortest path after the replacement. In

the example of Fig. 8, any shortest path using the restoration

path is still the shortest. In the example of Fig. 7, the shortest

path uÿ vÿ t is replaced by uÿ sÿ nÿ vÿ t after the failure

of link ðu; vÞ and it is no longer the shortest one fromu to t. The

shortest one is uÿmÿ t.

5 PROPERTIES

In this section, we study several desirable properties of the

extended branch update algorithm. Let G and G0 be graphs

(representing network topology) before and after link fault

ðu; vÞ. dGðu; vÞ and dG0 ðu; vÞ are the distances between u and

v in G and G0, respectively. Since u and v are directly

connected in G, dGðu; vÞ is the cost of link ðu; vÞ in G. Unless

otherwise specified, the restoration path here refers to either

a single restoration path or overlapped restoration paths

(including node-disjoint restoration paths). Also, it is

assumed that a restoration path is constructed when a

routing process starts.
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TABLE 1
Routing Tables of Fig. 8 before Link ðu; vÞ Fails

Fig. 9. SPT rooted at (a) node u, (b) node x, (c) node y, and (d) node v.



The following result shows that shortest paths in G
remain the shortest in G0 if they are not affected by the
faulty link; otherwise, the lengths of these paths increase by
a predictable value.

Theorem 1. The extended branch update algorithm ensures
routing optimality as long as the path constructed before the
link fault does not contain the faulty link; otherwise, the
increase in the length of the path is upper bounded by dG0 ðu; vÞ
- dGðu; vÞ.

Proof. It is clear that a link fault ðu; vÞ will not decrease the
distance between two nodes. Therefore, a shortest path
in G remains the shortest in G0 if the path does not
contain the faulty link. On the other hand, if a shortest
path in G contains ðu; vÞ, the faulty link will be replaced
by a shortest restoration path between u and v in G0.
Consider a destination which is a descendant of uv in the
SPT. Suppose the packet to be routed reaches node u
without reaching any node along the restoration path,
then link uv is replaced by the restoration path and the
length of the path increases by dG0 ðu; vÞ - dGðu; vÞ. Note
that the packet may exit the restoration path because a
shorter path is found to the destination. In this case, the
increase in the length of the path will be less than
dG0 ðu; vÞ - dGðu; vÞ. Suppose the packet reaches node w,
which is along the restoration path, before it reaches
node u. In this case, the restoration path can be simply
expressed as uÿ� wÿ� v. The packet directly follows the
restoration path at node w to reach node v. Following a
similar argument as in the first case, the increase in the
length of the path will be upper bounded by dG0 ðu; vÞ -
dGðu; vÞ - dG0 ðu;wÞ < dG0 ðu; vÞ - dGðu; vÞ. tu

Because information about the faulty link is distributed
to nodes along the restoration path, link state information
associated with different nodes is different, i.e., link state
information is either updated including the location of the
faulty link or outdated without including the location of the
faulty link. The following result shows that the routing
process is still loop-free even with inconsistent views of link
states among nodes in a network. Again, we assume that
routing tables are stable during the routing process, that is,
each table of a node along the restoration path has a new
view (knowing the link fault) and each table of a node
outside has the old view.

Theorem 2. The extended routing protocol ensures that loop-free

routing will continue after the link fault.1

Proof. We first review a concept used in [11]. A packet at

node s is affected by a faulty link if its intended

destination d is a descendent of the faulty link in the

SPT rooted at s; otherwise, it is unaffected. If there is only

one restoration path for faulty link ðu; vÞ, without loss of

generality, we assume that a packet is affected because of

uv (not vu), as shown in Fig. 5. The following three cases

are considered (see Fig. 10):

1. If a packet at node s is unaffected, it will remain
unaffected and reach the destination d based on the
outdated SPT that is loop-free. Suppose node u on
the path sÿ� d is affected, then the path uÿ� d in
the SPT rooted at u is different from the path uÿ� d
in the SPT rooted at s. This is a contradiction to the
property of the extended Dijkstra algorithm.

2. If a packet at node s is affected and s is on the
restoration path, then, as long as the packet is
affected, the packet will stay on the restoration
path until it becomes unaffected at wj (wj could be
node v). Path sÿ� wj is loop-free. Since the packet
is unaffected at wj, it remains unaffected and
eventually reaches its intended destination d.
Again, wj ÿ� d is loop-free. In addition, paths sÿ�
wj and wj ÿ� d do not share any intermediate
node. Therefore, path sÿ� wj ÿ� d is loop-free.

3. If a packet at node s is affected but s is not on the
restoration path, then the packet is routed based
on the outdated SPT until reaching node wi
(including node u) which is on the restoration
path for ðu; vÞ. Path sÿ� wi is clearly loop-free. As
long as the packet is affected, the packet will stay
along the restoration path until it becomes un-
affected at wj (i < j and wj could be node v). Path
wi ÿ� wj is loop-free. Since the packet is unaffected
atwj, it remains unaffected and eventually reaches
its intended destination d. Again, path wj ÿ� d is
loop-free. It is obvious that wi ÿ� wj does not share
any intermediate node with either sÿ� wi or wj ÿ�
d since intermediate nodes inwi ÿ� wj belong to the
restoration path. We use proof by contradiction to
show that sÿ� wi and wj ÿ� d do not share any
intermediate node. Assume that these two paths
share node w which has an outdated SPT (see
Fig. 10). Node w in sÿ� wi is affected by the faulty
link while node w in wj ÿ� d is unaffected. This is
a contradiction. Therefore, sÿ� wi ÿ� wj ÿ� d is
loop-free.

Two overlapped or node-disjoint restoration paths
may be constructed for a link fault ðu; vÞ. This occurs in
the extended branch update algorithm when bidirec-
tional restoration paths initiated from u and v do not
select the same set of intermediate nodes. After over-
lapped or node-disjoint restoration paths are con-
structed, there are two restoration paths for each
direction. Since each packet will use at most one
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TABLE 2
Routing Tables of Nodes along the Restoration Path

after Link ðu; vÞ Fails

1. A similar result is given in [11]; however, the proof in [11] is flawed.



restoration path, the same argument used for the single
restoration path case still applies. tu

The next two theorems show properties related to
restoration path(s) constructed from the extended routing
protocol.

Theorem 3. The extended routing protocol ensures shortest
restoration path(s) from u to v (from v to u).

Proof. The result applies to complete restoration paths
(which connect u and v). Based on the extended branch
update algorithm, each node wi has updated link state
information when it selects node wiþ1 on the restoration
path. When two restoration paths are constructed, they
are done independently from two end nodes of the faulty
link. Therefore, each path is a shortest one. If one
restoration path from u to v is constructed from
combining two (sub)paths, one from each end node of
the faulty link ðu; vÞ, without loss of generality, we
assume that these two paths are merged at node w.
Clearly uÿ� w and wÿ� v are the shortest paths between
u and w and between w and v, respectively. uÿ� wÿ� v is
the bidirectional path formed by combining uÿ� w and
wÿ� v and it is a shortest restoration path between u and
v with w being an intermediate node. In addition, there
will be no shorter restoration path between u and v
without using w as an intermediate node; otherwise, w
will not be selected during the construction of uÿ� w.
The case for the restoration path from v to u can be
proven in a similar way. tu

Theorem 4. If a minimal restoration path is used and a single
restoration path is constructed, the extended routing protocol
guarantees such a minimal path and the number of nodes along
the path corresponds to the minimum number of nodes that
need to be informed of the link fault.

Proof. In [11], it has been proven that the number of nodes
in a minimal restoration path corresponds to the
minimum number of nodes that need to be informed of
the link fault without causing the looping problem, i.e., if
the number of nodes to be informed is less than the
minimum number, there is always a set of metrics for the

links of the network that will cause any scheme to create
routing loops after the link failure. Let P ðu;wÞ and
P ðw; vÞ be the sections of bidirectional paths between u
and w and between w and v, respectively. We only need
to prove that, when the resultant restoration path is
constructed by combining P ðu;wÞ and P ðw; vÞ at node w,
path P ðu;w; vÞ has the minimum number of nodes.
Clearly, both P ðu;wÞ and P ðw; vÞ contain minimum
numbers of nodes between u and w and between w
and v, respectively. P ðu;w; vÞ is the path formed by
combining P ðu;wÞ and P ðw; vÞ and it is a minimum
restoration path between u and v with w being an
intermediate node. In addition, there will be no restora-
tion path between u and v without using w as an
intermediate node that has a fewer number of nodes;
otherwise, w will not be selected during the construction
of P ðu;wÞ. tu

6 PERFORMANCE STUDY

We conducted a performance study through simulation to
compare the overhead and performances of four routing
protocols: the traditional link-state protocol (LS), the source-
tree-based protocol (ST), the traditional link-state protocol
using unidirectional restoration paths (URP), and bidirec-
tional restoration paths (BRP). These protocols are simu-
lated in a custom discrete event simulator based on the
following time-slot model: The simulation time is divided
into unit-length slots (also called steps). During each step,
each node receives control messages (i.e., link-state infor-
mation) that are sent by its neighbors in the previous step,
updates its routing table, and sends messages if necessary.
A simulation starts when a bidirectional link fault is
detected and stops after the simulated protocol converges,
that is, when the fault has been dealt with and no more
control messages need to be sent.

Networks used in the simulation are generated by BRITE
[9], a general-purpose random topology generator. BRITE is
specially designed to generate Internet-like network topol-
ogies that exhibit the power-law [4] for the distribution of
node degrees. That is, the number of nodes with a given
degree d is proportional to d�, where � is a constant. Such a
network can be generated in two steps. First, n nodes are
randomly placed in a rectangular area (this process is called
node placement). Then, bidirectional links are added accord-
ing to the RouterWaxman model, that is, nodes are
incrementally added to the network. For each newly added
node, m existing nodes are selected as its connecting nodes,
where the geographically closer nodes have the higher
probabilities to be selected. Each link is assigned a cost,
which is an integer between 1 and 10 and is proportional to
the geographical distance between the two end nodes.

All four routing protocols are evaluated upon two
categories of random networks: sparse and dense ones. In
relatively sparse networks (m ¼ 2), nodes are randomly
placed in the rectangular area. A faulty link usually affects
many nodes and needs a relatively long restoration path in
such networks. In relatively dense networks (m ¼ 8), the
node placement follows the heavy-tailed distribution to
generate Internet-like network topologies. A variable X
follows a heavy-tailed distribution if P ½X > x� ¼ k�x�LðxÞ,
where k and � are constants and LðxÞ is a slowly varying
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Fig. 10. Loop-free routing.



function. In such networks, a faulty link can usually be

replaced by a relatively short restoration path in the

neighborhood and affect much fewer nodes than in sparse

networks. For each category, we generate random networks

with sizes (n) ranging from 100 to 1,000. For each n, we

generate 200 networks and compute the following three

metrics of each routing protocol:

1. Message overhead: The average number of control
messages per faulty link. Each control message
carries updated link-state information.

2. Converging speed: The average number of steps it
takes to deal with a faulty link.

3. Routing performance: The average length increase of a
routing path compared with the optimal path after a
faulty link.

In LS and ST, a control message is sent to all neighbors.
Each message is counted as multiple messages in a point-to-
point network (such as switch-(router-)based networks) and
as a single message in a shared-medium network (such as
Ethernet). In URP and BRP, a control message is sent only to

its next node in the restoration path and is counted as a single
message. The simulation results are presented in two groups:

1. BRP versus the two nonrestoration path protocols
(i.e., SL and ST).

2. BRP versus URP.

For the first group, only message overhead (as shown in
Fig. 11) and converging speed (as shown in Fig. 12) are
compared. Both nonrestoration path protocols generate
optimal paths. The average path length increase of BRP is
presented in the second group. Fig. 11 shows the magnitude
of difference in message overhead between the restoration
path and the two nonrestoration path protocols. Both SL
and ST generate thousands of control messages, while the
average number of control messages generated by BRP is
less than 10. In BRP, all control messages are sent along
restoration paths and, along the restoration path, each node
forwards a control message at most once. Therefore, the
number of control messages is no more than the number of
nodes in restoration paths. In SL, the control message
containing the updated link-state information is flooded
throughout the network. The number of control messages is
equal to the total degree of nodes in the network (i.e., twice
the number of links in the network) in a point-to-point
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Fig. 11. Communication overhead of different routing protocols in (a) relatively sparse networks and (b) relatively dense networks.

Fig. 12. Converging speed of different routing protocols in (a) relatively sparse networks and (b) relatively dense networks.



network and is equal to the number of nodes in the network
in a shared-medium network (not shown in Fig. 11). In ST,
only affected nodes (i.e., those nodes with their source trees
adjusted) send control messages containing the added or
deleted links in their source trees. The number of control
messages is usually more than the total degree of the
affected nodes because some affected nodes may send
control messages more than once. Fig. 12 shows that the
restoration path protocol also has faster converging speed
than nonrestoration path protocols. In relatively sparse
networks, ST takes more steps than SL because control
messages may propagate back and forth to rebuild an
optimal path in ST. In relatively dense networks, ST and SL
need a similar number of steps. In these networks, ST is
likely to rebuild optimal paths in the neighborhood of the
faulty link and converges more quickly than SL. In both
cases, the number of steps used by BRP is at most half of
those used by SL or ST.

For the second group, all three metrics are compared and
BRP outperforms URP under all these metrics. Note that,
when two restoration paths, unidirectional or bidirectional,
are constructed simultaneously from both ends of the faulty
link, their relationship can be one of the following three
cases: 1) totally distinct (i.e., node-disjoint), 2) totally
overlapped (i.e., single), or 3) partially overlapped. In
case 1), URP requires the same number of steps and control

messages as BRP, but may have a higher average length
increase of affected paths. In case 2), URP has the same
average length increase as BRP, but requires more steps and
control messages to construct the restoration path. In case 3),
URP requires more steps and control messages than BRP, as
in case 2), and has a higher average length increase of
affected paths, as in case 1). Simulation results show that,
on average, the number of control messages generated by
BRP is about 60 percent of that generated by URP (as shown
in Fig. 13) and the number of steps used by BRP is also
about 60 percent of that used by URP (as shown in Fig. 14)
in both relatively dense and relatively sparse networks.

The average length increase is computed as:P
u;v2V ðdðu; vÞ ÿ doptðu; vÞÞ

NPaffected
;

where dðu; vÞ is the traveling distance from node u to node v
in a restoration path protocol, doptðu; vÞ is the length of the
shortest path between node u and node v, and NPaffected is
the number of paths affected by the faulty link. A shortest
path between a pair of source and destination nodes is said
to be affected by a link fault if it contains the faulty link
prior to the link fault. Note that the average length increase
is a measure for affected paths only. The average length
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Fig. 13. Communication overhead of two restoration path protocols in (a) relatively sparse networks and (b) relatively dense networks.

Fig. 14. Converging speed of two restoration path protocols in (a) relatively sparse networks and (b) relatively dense networks.



increase in percentage is defined as the ratio of the average
length increase over all nodes (affected and unaffected) to
the average length of all paths (affected and unaffected).
Note that the quality of routes deteriorates after a sequence
of faults. Average length increase may accumulate for each
route. Therefore, after a predefined period, the network
needs to be “refreshed” by collecting global link-state (see
details in the next section). Here, we simulate only the first
link failure in each network to compute the length increase.
As expected, the average length increase of affected paths is
larger in relatively sparse networks than in relatively dense
networks (as shown in Fig. 15). The average length increase
of BRP is smaller than URP, but the difference is
insignificant. The percentage of affected paths is also higher
in relatively sparse networks (as shown in Fig. 16). In fact,
the percentage of affected paths is very low for both
relatively dense (< 0:3%) and relatively sparse (< 1:6%)
networks. That explains why the average length increase in
percentage is extremely small for very large networks.
When the network size is 1,000, the average length increase
in relatively sparse networks is about 0.04 percent, and, in
relative dense networks, the average length increase is
about 0.005 percent (as shown in Fig. 17).

Overall, compared with SL and ST, BRP has the least
message overhead and fastest converging speed. There is a

performance penalty in the average traveling distance of a
routing packet. However, the average length increase is
relatively small per link fault. Compared with URP, BRP
has significant improvements in message overhead and
converging speed and a slight improvement in routing
performance.

7 DISCUSSION

In Fig. 8, suppose there are two faults f1 : ðu; vÞ and
f2 : ðt; zÞ. The shortest restoration path for f1 is
uÿ xÿ yÿ v, that is, w0 ¼ u, w1 ¼ x, w2 ¼ y, and w3 ¼ v,
as discussed in Section 4. The shortest restoration path for
f2 is zÿ xÿ uÿ t, that is, w0 ¼ z, w1 ¼ x, w2 ¼ u, and
w3 ¼ t. Note that nodes x and u appear in the restoration
paths of both faults. Di and D0i of f1 and f2 can be derived
from the corresponding SPT (see Figs. 9 and 18):

. At node u: D0ðf1Þ ¼ fv; wg and D00ðf1Þ ¼ �.

. At node x: D1ðf1Þ ¼ fv; wg and D01ðf1Þ ¼ �.

. At node y: D2ðf1Þ ¼ � and D02ðf1Þ ¼ �.

. At node v: D3ðf1Þ ¼ � and D03ðf1Þ ¼ ft; u; x; zg.
and

. At node z: D0ðf2Þ ¼ ft; u; v; x; yg and D00ðf2Þ ¼ �.

. At node x: D1ðf2Þ ¼ � and D01ðf2Þ ¼ fs; zg.

. At node u: D2ðf2Þ ¼ � and D02ðf2Þ ¼ fs; zg.

. At node t: D3ðf2Þ ¼ � and D03ðf2Þ ¼ fs; w; zg.
There exist four views: Nodes u and x know the failures

of f1 and f2, nodes t and z know only f2, nodes y and v

know only f1, and the rest do not know the existence of
either f1 or f2. The routing table after the occurrences of f1

and f2 is shown in Table 3. Consider a routing example
from z to v, the message is first routed along the restoration
path of f2 and exits at node x, which is on the restoration
path of f1. The resultant routing path is zÿ xÿ yÿ v. Note
that the shortest path before the occurrences of f1 and f2 is
zÿ tÿ uÿ v.

However, as in the Narvaez et al. protocol, a routing loop
may occur in some extreme cases, even when restoration
paths are disjointed, as shown in Fig. 19. In this example,
there are two faults ðs; tÞ (with restoration path sÿ zÿ yÿ t
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Fig. 15. Average path length increase of two restoration path protocols in (a) relatively sparse networks and (b) relatively dense networks.

Fig. 16. Average percentage of paths affected by a link fault.



initiated from s) and ðu; vÞ (with restoration path vÿ wÿ
xÿ u initiated from v). Consider a routing from s to d, the

message is routed around fault ðs; tÞ through its restoration

path and exits the path at node y to enter the restoration

path of ðu; vÞ at w. The message is then routed around the

restoration path of ðu; vÞ and exits the path at node x and

enters the restoration path of ðs; tÞ again at node z. In this

case, a routing loop is formed among nodes z; y; w, and x.

One way to handle such a routing loop is to keep a
routing history of restoration paths visited to detect a routing
loop. Suppose each restoration path has a distinct label (say,
the corresponding faulty link), whenever the routing
message uses a new restoration path (i.e., using at least
one link of the restoration path), it is recorded in its routing
history. A repeat appearance of a restoration path corre-
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Fig. 17. Average length increase in percentage of two restoration path protocols in (a) relatively sparse networks and (b) relatively dense networks.

Fig. 18. SPT rooted at (a) node z and (b) node t.

TABLE 3
Routing Tables of Nodes along the Restoration Path

after Links ðu; vÞ and ðt; zÞ Fail

Fig. 19. A routing loop between two disjointed restoration paths for

routing from s to d.



sponds to an unsafe state (that might lead to a deadlock
situation). In this case, a global flooding is initiated. Note
that the length of routing history is bounded by the number
of faults in the network. Therefore, routing history will not
incur significant overhead. Also, the length of routing
history can be used as a lower bound for the number of
faults in the network. Another option is to predefine a
threshold. Once the length of the routing history exceeds
the threshold, a global flooding starts.

8 CONCLUSIONS

In this paper, we have extended a fault-tolerant link-state
routing protocol in the Internet. This approach trades
optimality for low overhead. A shortest path is maintained
as long as it does not contain a faulty link; otherwise, the
faulty link is replaced by a shortest restoration path and the
cost increase of the resultant path is upper bounded by the
cost difference between the shortest restoration path and
the faulty link. Our approach is based on the premise that
link faults are bidirectional. Therefore, instead of construct-
ing two unidirectional restoration paths (one from each end
node of a faulty link), one bidirectional restoration path is
constructed. The simulation results show that the proposed
approach has much less message overhead and faster
converging speed compared with the existing ones, includ-
ing the Narvaez et al. unidirectional restoration path
protocol, the Garcia-Luna-Aceves and Behrens source-tree
protocol, and the traditional link-state protocol.

Our future work includes investigating other possible
trade offs between optimality and low overhead. We also
plan to develop efficient and fast algorithms (especially
symmetric algorithms) for constructing a single restoration
path from both end nodes of a faulty link. The efficient way
of handling multiple faults, especially the prevention
method that avoids routing loop among restoration paths,
still remains an open problem.
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