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Abstract—Industrial Cyber-physical System (ICPS) is utilized
for monitoring critical events such as structural equipment
conditions in industrial environments. Such a system can easily
be a point of attraction for the cyberattackers, in addition to
system faults, severe resource constraints (e.g., bandwidth and
energy), and environmental problems. This makes data collection
in the ICPS untrustworthy, even the data are altered after the
data forwarding. Without validating this before data aggregation,
detection of an event through the aggregation in the ICPS can be
difficult. This paper introduces TrustData, a scheme for high-
quality data collection for event detection in the ICPS referred to
as “Trustworthy and Secured Data Collection” scheme. It alle-
viates authentic data for accumulation at groups of sensor devices
in the ICPS. Based on the application requirements, a reduced
quantity of data is delivered to an upstream node, say, a cluster
head. We consider this data might have sensitive information,
which is vulnerable to being altered before/after transmission.
The contribution of this paper is threefold. First, we provide the
concept of TrustData to verify whether or not the acquired data
is trustworthy (unaltered) before transmission, and whether or
not the transmitted data is secured (data privacy is preserved)
before aggregation. Second, we utilize a general measurement
model that helps to verify acquired signal untrustworthy before
transmitting towards upstream nodes. Finally, we provide an
extensive performance analysis through real-world data set and
our results prove the effectiveness of the TrustData.

Index Terms—Industrial cyber-physical environments, indus-
trial event monitoring, data collection, data trustworthiness, fault
tolerance, privacy, security

I. INTRODUCTION

THE Cyber-physical system (CPS) is ubiquitous today.
The notion of cyber-physical systems (CPS) is to in-

corporate physical and engineering systems to monitor their
operations with both discrete and dynamic behaviors, which
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are coordinated and controlled through the integration between
the computing and communication core. Due to the potentials
of permeative surveillance, CPS-based sensing has appeal-
ing real-world applications in numerous fields, e.g., crowd-
sensing, social sensing, chemical explosions, mobile event
detection, military intrusion tracking, and structural health
monitoring (SHM) [1]–[3].

Particularly, industrial CPS (ICPS) is utilized for monitoring
critical events such as structural equipment condition in indus-
trial environments. These applications fall into the domain of
structural health monitoring (SHM). Among all these afore-
mentioned applications, the quality of the monitoring (QoM)
or the quality of the data (QoD) and timely detection of an
event are the prime concerning issues. In fact, an automated
technique should be able to identify the acquired data faults
through online and do the immediate recovery actions for
avoiding meaningless monitoring operations and catastrophic
situations due to a structural damage or fire.

Particularly in structural damage event detection, reliability
is the most desired feature, since an alert of a structural event
may play an important role in public safety and economic
losses. There are a moderate set of works that suggest different
techniques and protocols on reliable event detection and fusion
[4]–[7]. A work on event-based data collection and fusion
can be found, where heterogeneous sensors exchange data
of events among each other [4], [5], [8], [9]. Though there
are many work found similar to these, they mainly work
data collection techniques, processing, and fusion rather data
reliability.

The reliability of detection in the ICPS fully depends on the
data trustworthiness in terms of QoD and QoM. However, the
ICPS can easily be a point of attraction for the cyberattackers,
in addition to system faults, severe resource constraints (e.g.,
bandwidth and energy), and environmental problems. This
makes data collection in the ICPS untrustworthy. Even the
data are compromised after the collected data forwarding.
Without validating this before aggregation, detection of an
event in the ICPS can be difficult in addition to system faults,
severe resource constraints (e.g., bandwidth and energy), and
environmental problems. This makes data collection in the
ICPS is untrustworthy.

Even, after the collected data forwarding and/or before data
aggregation, the collected data can be compromised, making
detection of an event of interest (such as structural health
event, mobile object) in the ICPS unreliable. Usually, the data
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Fig. 1. Data trustworthiness validation in two levels in the ICPS: before data
transmission and before data aggregation.

which is transmitted by sensors is not reliable because of sev-
eral reasons, e.g., faults of sensor devices, limitation of sensor
calibration, lack of observation, data modification caused by
security attacks and background noise. If the aforesaid reasons
are not being counteracted, the data cannot be considered
as trustworthy while it is forwarded for aggregation to the
upstream sensors, referred to as clusters. The QoM is affected
severely because of such untrustworthy data.

Moreover, the energy of ICPS-based detecting may be
unloosed due to the appropriate aggregation of untrustworthy
information that acquired by different sensors and the sub-
mitted data maybe compromised (modified) before the data
transmission. Whether the transmitted data is trustworthy or
not, they can be further modified at some stage of transmission
from sensor devices to cluster heads by the third party, making
detection of an event of interest (such as structural health
event, mobile object) in the ICPS unreliable. Some sensor
devices uninterruptedly deliver reliable data whereas others
may generate unreliable data, because of security attacks [10]–
[12]. In fact, the cluster head should play a role of assessing
the reliability of the data which is collected from the individual
node. Thus, the collected data should be secured before
aggregation. As a consequence, it is essential to characterize
the reliability of received data before performing aggregation
at a Cluster Head (CH). Overall, without addressing them, data
collection tasks in the ICPS are untrustworthy.

In order to address all the above issues, this paper introduces
‘TrustData, a scheme for high-quality data collection for
event detection in the ICPS referred to as “Trustworthy
and Secured Data Collection” scheme, as shown in Fig. 1.
Based on the application requirements, a reduced quantity of
data is delivered to an upstream node, say, cluster head (CH)
(see Fig. 1). We consider this data might have event-sensitive
information, which is vulnerable to being altered before/after
transmission. The main concept of the TrustData is that
a CH is able to verify two features before aggregating data
in a cluster such as data trustworthiness and protection. The
former one ensures that the data remains unchanged, which
is estimated at the sensor device level. The later ensures that

the data cannot be modified after transmission, which is done
by CH. To ensure the trustworthiness of data, a measurement
model extracted from Mutual

Information Independence (MII) has been utilized between
two signals either from two different sensor nodes or the same
one for evaluating results without considering the ground truth.
The mutual statistical information may be utilized as an index
to verify the trustworthiness of received data for structural
damage event detection. The data is considered as trustworthy
after successfully passing this check and subsequently, it will
forward to the CH. To ensure the data protection, a Truth
Status Value Finding approach has been introduced by having
a goal to derive truthful facts from unreliable sensors. We
have carried out extensive simulation for measuring the per-
formance of TrustData. In the simulation, realistic data set
is utilized, and it proves that the received data in TrustData
is trustworthy and secured, which can make aggregation for
event detection in particular applications trustworthy.

In summary, we make the following major contributions in
this paper:

• We propose TrustData, a trustworthy and secured data
collection scheme for the event detection in the ICPS.
This can verify whether or not the acquired data is
trustworthy (unaltered) and whether or not the transmitted
data is secured (data privacy is preserved).

• We propose to utilize a general measurement model
called MII that helps to verify whether the acquired
signals are untrustworthy before transmitting towards
upstream nodes.

• We present a signal validation algorithm using Truth
Status Value Finding to validate signal trustworthiness
before signal aggregation.

• We have carried an extensive performance analysis of
TrustData exploiting real-world data set and our re-
sults prove the effectiveness of the TrustData.

The rest of the paper is summarized as follows. Section
II shortly describes our scheme. In Section III, we illustrate
the trustworthy data collection approach while Section IV
gives truth status Finding approach. Section V presents the
performance analysis of the proposed TrustData scheme.
Finally, Section VI concludes the paper and recommends
future direction of the work.

II. RELATED WORK

Nowadays the researchers are focusing towards the data
security and privacy research domains as they are attracted
by the businesses, governments, individuals, and industrial
networked environments like ICPS [9], [13], [14]. However,
these existing protocols can be attacked by the attackers while
they are handling data, what needs to be done then? This paper
is a preliminary attempt to work on the data trustworthiness
[9], [15].

ICPS society, healthcare providers and application users,
have been working for offering protection to each device
of the network [16], [17]. Having the data integrity feature,
the device of the IoT/CPS network can be compromised
during the data forwarding among the node. Recently, data
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trustworthiness are taking a point of attraction from research,
particularly, in patient healthcare. Some cloud based scheme
for healthcare e-medical system is [8], [18], [19]. Patra et
al. [8] suggested a cloud-based model that maintains patients
privacy data. This model guarantee cost effectiveness and
it is deployed for remote areas where implementation cost
needs to be taken account. The patients can be served by
the healthcare providers and professionals remotely exploiting
cloud-based model. In [14], the authors propose a scheme,
where data has been processed during collecting and delivering
data. Zhang et al. [15] introduce cloud-enabled patient system,
where three layers have been included, such as data-collection,
data-management and data-service layer. In [20], the authors
introduce blockchain technology with access control manager
for health data in order to improve the interoperability of
this system. In [9], the authors present a trustworthy data
collections scheme for the cloud-enabled sensor systems. They
consider three types of trust, which are described to assess
the sensor and sink devices behaviors. However, it does
not describe practically, how the data trustworthiness can be
maintained either at the time of collection or transmission.

Traditionally, the voting scheme has been utilized to mini-
mize conflicts for making decision analyzing the received data,
i.e., making a trustworthy decision. This method is used for
conducting majority-voting and the information related to the
highest number of occurrences is regarded as the right answer.
It is an assumption for designing a voting system that all
the end device are reliable equally, consequently, the vote for
various end devices weighted uniformly [21]. If one or two
devices of the CPS get cyberattacks, it is tough to identify the
device as the all avg or mean are used for all the devices. The
rustworthiness of the estimation considering on the average
or a maximum number of packets, weights, or votes cannot
ponder the real facts in the CPS. There are various works on
trust models that are used to determine to solve communication
security problems [22].

Most of the work similar to the above considers trusted
computing and trust communication, and so on. However,
data trustworthiness at the time of collection, and before/after
transmissions are not considered, a preliminary step of them
are considered in TrustData.

III. TRUSTDATA : THE TRUSTWORTHY AND SECURED
DATA COLLECTION SCHEME

The overview of the proposed trustworthy and secured data
collection (TrustData) scheme will be exhibited in this
section.

We consider a hierarchical ICPS having a set of sensor
devices, which are deployed for a specific monitoring ap-
plication. We focus on monitoring the health of civil struc-
tures (such as aircraft, building, bridge) as a representative
application. A representative two dimensional (2D) model
of a building is illustrated in Fig. 2a. In the figure, sensor
devices (white circle) are employed in accordance with civil
engineering-driven placement techniques [23]. Moreover, a
distant application monitoring facility or a base station (BS)
(colored circle) is at a distant location. The employed sensor

devices are omnidirectional and self-organized into clusters
utilizing some application-specific clustering algorithm [24].
Every CH collects the data, verifies, and then sends the
ultimate decision or aggregated data towards the BS.

We consider that sensor devices will be assigned to do
various classes of applications in the context related with
SHM, such as temperature, pressure, damping, strain and
sensing the vibration. Subsequently, the sensor devices will
send their acquired information from the different application
towards the intermediate nodes or a CH. For the convenience’s
sake, we take into account the vibration signals in this paper.

We assume a big number of sensor devices are employed
to acquire data from the health monitoring area. To maintain
the data collection security, each sensor device is given an
ID and a paired cryptography key for encryption using some
handshake procedure among nodes. In TrustData, sensor
devices do not have any preshared secrets and they construct
trust by producing numerous shared keys out of a channel.
Particularly, every sensor device performs authentication with
other devices. Furthermore, every sensor keeps a set of neigh-
boring nodes information such as IDs, trust values and so
on. The sensor devises with its CH maintain a relationship:
if device A needs to transmit data to another device B, device
A should have some information about the neighborhood and
know some more information such as distance among them,
trust value of device B and other. When node B is out
of the communication range of A, the data are exchanged
between them through multi-hop communication exploiting
intermediate nodes. Every intermediate device should have its
own decision for forwarding its information and look for the
next hop to transmit the data from device A to device B.

Health event detection in the ICPS can easily be a point of
attraction for the cyberattackers, in addition to system faults,
and severe resource constraints (e.g., bandwidth and energy),
and environmental problems. This makes data collection for
event detection in the ICPS untrustworthy. The trustworthiness
of health event detection depends on this trustworthy data col-
lection. However, the data trustworthy is critically influenced
by cyber threats/attacks in the ICPS. Ransomware, DDoS
attacks, node replication, worm attacks, collusion attack, and
so on are popular attacks in the ICPS [12]. Principally, these
attacks convey new confronts, e.g., data can be compromised
at the time of data collection or the data communication [25].
Even after the collected data forwarding or before aggregation,
the data can be compromised, making detection of an event
of interest (such as structural health event, mobile object) in
the ICPS unreliable.

There are two types of attacks that are considered in this
paper: collusion attacks and trust-spoof attacks. In a trust-spoof
attack, suspicious sensor devices deliberately push deceitful
message to neighboring devices using some trust-value. For
example, they normally offer lower-trust value for messages
for transmission. Thus, the message under trust-spoof attacks
cannot influence the real trustworthy data delivery route.
Likewise, the trust-spoof attack may also deliberately offer
higher-trust values for messages for evil sensor devices and
help them obtain more opportunity to harm the ICPS. Another
type of attacks in the ICPS we assume is the collusion attack. It
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Fig. 2. The ICPS scheme for trustworthy data collection.

is a security attack where a device intentionally forms a hidden
agreement with an evil device. The evil device might try to
inject false or compromised data via one/more compromised
nodes.

As shown in Fig. 2b, we propose trustworthiness valida-
tion in two-level: before data transmission and before data
aggregation. We assume that, given the algorithms of this
work, sensor devices A, B, and all collect data exploiting a
state-space model [23]. The collected data has been examined
locally in order to identify untrustworthy signals, and finally
forward them. For better identifying trustworthy data, we also
focus on a set of sensor faults by taking account of real-
world wireless SHM system, such as sensor debonding fault (a
wireless sensor slightly or completely debonds/detaches from
the host structure), untrustworthy or faulty signals by precision
degradation, etc., especially in vibration signal capturing,
faults in offset, bias, and the amplification gain factor of
signals. Sensor devices may produce ambiguous signals due
to the security attacks.

Mutual Information Independence (MII) is being used in
statistics as an indirect signal quality measurement. It helps
to determine how much mutual information there is between
two random variables. The hypothesis behind the information
independence appears when mutual information is zero.

To achieve that, we consider a correlation model denoted by
C, as discussed in [26]. This model is used to get a reference
dataset. During the initialization of the ICPS, this dataset is
automatically stored in the sensor local memory. To check the
signal abnormality, a MII function of two signals of arbitrary
sensor devices i and j at time t in a cluster is analyzed.

Basically, the security threats in a network (in a practical
ICPS scenario) are coming from the sensor devices that are
deployed in the network. The CH of a cluster might try to
deduct the observation of each device. On the contrary, the
sensor device might also try to derive the information of other
intermediate nodes. Thus, it is of paramount importance to
preserve sensor observation values (without alteration). We

do not assume any modification of the received data at the
CH regarding high-quality event detection. To deal with this,
we propose to utilize a sensor status value truth finding
technique, where providing true information of the sensors
will be considered having truthful facts more often and the
information that is supported by reliable sensor devices will
be regarded as true facts.

IV. ACQUIRED SIGNAL TRUSTWORTHINESS VALIDATION
BEFORE TRANSMISSION

In this section, we describe the trustworthy data collection.
To make reliable event detection in an application of the

ICPS, we need trustworthy data collection in the application.
In this case, we take SHM applications [23]. Data collection
in SHM applications is usually used for structural health
event detection within the structures, namely, damage. SHM
schemes and their associated algorithms usually dominated by
the civil or structural engineering domain execute to measure
structural physical responses, which are due to ambient signals
of vibration, strain, or forced excitation. A variety of ICPS
sensor devices, including accelerometers, strain gauges, or
displacements are integrated to acquire physical structural
vibrations. There are numerous methods for data acquisition
used by civil or structural engineering domains. We apply the
state space model, which is commonly used by the engineering
communities for signal acquisition. This can precisely acquire
the structural physical dynamics [23].

Sensor devices in the ICPS are prone to generating faulty
or untrustworthy signals collected form the physical structures.
The structural signals of a sensor device are acquired by the
vibration, which may be inaccurate compared to the signals
of the neighboring devices, earlier signals, or reference sets
of signals. First, we present data acquisition at each sensor
device in the ICPS. A subset of sensor devices in a clustered
neighborhood, denoted by D that is in a sensor device’s
minimum communication range, share the signals with each
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other, and contribute to the detection of untrustworthy or faulty
sensor device’s signals.

We develop a data collection algorithm that simply shows
the data acquisition techniques in a clustering neighborhood
D. We assume that the clustering neighborhood D has the
highest node degree, at most a constant. Although this process
is comprised of multi-hop transmission theoretically, regarding
the fact that for SHM application, the wireless radio transmis-
sion range of a sensor device surpasses in D where the sensor
devices acquire physical structural signals. We maintain a limit
on the number of sensor devices to transmit signals within
one-hop neighboring sensor devices in D.

The trustworthy data collection algorithm has 3 stages, as
shown in Fig. 3. These are described in the following:

Stage 1. Each sensor device collects signals acquired from
the structural vibration responses (such as aircraft,
nuclear plants), and puts them into buffers temporar-
ily. It then transfers the signals, while it also receives
acquired signals of the neighboring devices in D.

Stage 2. The sensor device verifies the received signals to
identity whether there exist any faulty or untrustwor-
thy signals.

Stage 3. In this stage, each sensor device carries out runs
and computes another algorithm, which is called
“decision-making on the acquired untrustworthy sig-
nals to identify whether acquired sensor device sig-
nals are untrustworthy or compromised.

When an outstanding change spot or signal modification
happens in a sensor device’s signal, there is a likelihood that a
sensor devices signal is untrustworthy or altered, which can be
found through Stage 2. We use the mentioned MII to identify
the trustworthiness of the sensor device signals. We compute
the numerical dependency amongst the acquired signals of
any two sensor devices in D enumerated by the MII. Signal
information of a sensor device is determined, which is denoted
by ω and is distributed by another sensor in a set of acquired
signals in the clustered neighborhood D. It is found that ω
fluctuates once signal fault happens in a sensor device signal.
Because this fluctuation is not found in the neighboring sensor
device and there is no such fluctuation in the reference set of
signals.

A. Identifying Faulty/Untrustworthy Signals

In this subsection, we analyze signals to identify whether
or not the signals are faulty/trustworthy.

In order to identify in the collected signals, we apply a cor-
relation model based on the multivariate Gaussian distribution.
A correlation model is that it indicates the mutual relationship
between two or more signals. This is to say, a correlation
between two or more signals specify the quantity up to which
the specified signals seem like another signals. Multivariate
Gaussian distribution is widely applied to precisely model
the correlation of different types of sensor devices signals
in literature [27]. Each signal is broadcast among the sensor
devices in the clustered neighborhood D. Let the ith sensor
device signal be yti ∈ ytD and jth sensor device signal ytj ∈ ytD,
i, j ∈ D. In order to simplify it, yti as m and ytj as n are
denoted hereafter.

Multivariate Gaussian distribution is widely applied to pre-
cisely model the correlation of different types of sensor devices
signals [27]. Every collected signal is broadcast among the
sensor devices in the clustered neighborhood D. Let the ith
sensor device signal be yti ∈ ytD and jth sensor device signal
ytj ∈ ytD, i, j ∈ D. In order to simplify it, yti as m and ytj as
n are denoted hereafter.

Therefore, it can be significant to consider how to obtain
joint probability density between any two of the signals m
and n. Signal Correlation is helpful for the reason that the
signals can specify a predictive relationship, which is delayed
in practice. The mutual information is referred to as statis-
tical independence. The statistical dependency/independency
between the two Gaussian distributed time signals m and n
can be expressed in the form of the joint probability density
p(m,n) of signals. which is given as follows: The correlation
coefficient between two signals m and n is denoted by ρmn.
The correlation coefficient can also sometimes be used to
decide if there is a statistical independency between two
signals like m and n. In one hand, if |ρmn| = 1, there is a
strong correlation between the two signals. On the other hand,
if |ρmn| = 0, there is no correlation between the two signals.
We need to note that a weak form of statistical dependency
can appear in the correlation interpretation. According to [28],
the statistical independence can be when there are two random
variables, which are not shown correlated. This is one of the
reason we assume statistical dependency or independency in
this work. Let ρm and ρn be the product of the marginal
densities of two signals m and n, respectively, which can be
stated as follows:

p(m,n) = p(m)p(n) (1)

The two signals are totally independent, if the expression in
(1) is equivalent to the product of the marginal densities in (3).
In order to compute the MII between the signals, there can be
a possibility to calculate the statistical dependency between
any of the two signals, which is as follows:

ω(m,n,C) =

∫ ∫
p(m,n) log

p(m,n)

p(m)p(n)
du dv (2)

The basis of the logarithm determines the units by which
information about statistical independency is determined. ω
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can be zero, if m and n are independent according to (2). Finite
bins and the number of sampled pair count can be achieved
by a forward approach, which is to divide the range of m
and n, i.r., ho = (uo, vo), o = 1, 2, · · · , n, falling into these
finite bins. This count permits us to roughly decide on the
probabilities. This leads to replacing (3) by the finite sum:

ωbin(m,n,C) =
∑
a,b

pmn(a, b) log
pm,n(a, b)

pu(a)pv(b)
(3)

where pu(a) ≈ nu(a)/n and pu(b) ≈ nu(b)/n are the
likelihood grounded on the number of points nu(a) and nv(b).
This falls into the ath bin of m and the bth bin of n,
respectively. We can have a joint probability based on the
number of points n(a, b) falling into box mumblers a and b,
which is pmn(a, b) ≈ n(a, b)/n. Here, MII value is symmetric
and non-negative and given as follows :

ω(m,n,C) = ω(n,m,C) ≥ 0 (4)

yr and ys are the MII values for all probable permuta-
tions of sensor device outputs (except r = s, where i =
1, 2, · · · , r, j = 1, 2, · · · , s). This leads to an ω-matrix for
all permutations of r and s. The main idea is that when the
presence of a signal compromise or fault fr is there, the MII
changes. Assume that it is in the rth index or channel:

ỹr = yr + fr (5)

This fault or untrustworthy situation happens only in the rth
index. Therefore, we can suppose that all permutations with
index r can demonstrate a decrease in ω. This enables us to
pinpoint faulty or untrustworthy signals. One or more sensor
devices’ faulty or untrustworthy signals can be concurrently
identified in the same way. Using the relative variation as a
signal fault or untrustworthy indicator is to make a likelihood
to picture the faulty or untrustworthy signals λωyr

:

λωyr
=
|ωyr
− ωref |
ωyr

(6)

Here, the actual dataset is denoted by yr and the reference
data set is denoted by the lower index ref. Therefore, detect-
ing sensor faults or untrustworthiness situations in different
combinations of them is done by the method based on the
MII.

B. Validation Decision

The untrustworthy or faulty signal detection can be executed
in a distributed manner when each of the sensor devices can
decide collected signal trustworthiness or faulty locally. This
is because the distributed technique only needs the neighbor-
ing sensor devices’ signals in a cluster to be synchronized.
Moreover, the decision is nearly fast and online, since a sensor
device does not need to delay for the signals from neighboring
sensor devices at one or two hops away.

Through this algorithm, whether the collected signals are
untrustworthy or faulty can be known from the local decision
on the sensor device’s collected signals, λωyr

> 0.5. This
implies that for the faulty or untrustworthy collected signals,
the MII is high. It is worth noting that the MII is not dependent

on a particular type of trustworthy or faulty situation. The
algorithm relying on the MII is able to identify diverse types
of signal faults (as discussed in Section III). By means of
the algorithm, a sensor device can know whether or not its
collected signals are trustworthy or fault, and forward the
signals to the CH.

V. SIGNAL UNTRUSTWORTHINESS VALIDATION BEFORE
THE AGGREGATION

In the previous section, the non-faulty or trustworthy signals
are collected for event monitoring. Once a device transfers the
trustworthy data, it may be compromised at the device level or
intermediate sensor device before/after the device makes the
data transmission. This is to say, a CH is most likely to receive
compromised (or altered) data for the aggregation if the data is
sent unprotected. We should guarantee that the acquired data
is not compromised during the data exchange or transmission.

To identify an untrustworthy sensor device or its unprotected
data at the time of data reception at the CH, we apply the
Truth Status Value Finding in TrustData. Traditionally,
truth value detection is applied in numerous fields for solving
conflicts in compound noisy signals. The perception of the
truth value identification algorithm is that it takes the first step
with a random supposition of ground true facts, and iteratively
performs the sensor device status value updates and truth
updates until convergence [29]. As a result, algorithms can
infer the sensor device trustworthiness or data trustworthiness
of sensor device and the truth of data from each other’s
devices.

In our algorithm, we calculate sensor device status value to
make a decision on the transmitted data, that is, trustworthy
or not. In structural health event detection, the sensor devices
need real values or facts for high-quality event detection. Note
that usually the ground fact or truth of each structural health
event is fixed. The main concept is that a high value is provided
as a sensor device’s status value, if the transmitted trustworthy
data comes near to the assessed ground true facts. Typically,
the sensor devices status values are calculated in the following:

Sk = log(

∑K
k′=1

∑M
m=1 d(x

k′

m, x
∗
m)∑M

m=1 d(x
k
m, x

∗
m)

) (7)

where xk
′

m are the observation values and x∗m are the estimated
ground true facts. There is s distance function denoted by d(.)
used to determine the difference between sensor devices xk

′

m

and x∗m [30].
The value of d(.) is due to a specific sensing application

situation. The presented scheme TrustData is envisioned
to handle structural health event identification of SHM appli-
cations. In the case of SHM applications, where the sensor
devices signals are continuous (e.g., structural vibration re-
sponse), we adopt a standardized squared distance function,
which is in the following:

d(xkm, x
∗
m) =

(xkm − x∗m)
2

stdm
(8)
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Here, to measure the amount of variation of the set of
observation values of signals, stdm is used as the standard
deviation of the observation values.

A. Truth Status Update.

Presume that each of the sensor device status values is static,
which is not changed as long as some change happens. Then,
the ground true facts for the m-th events can be estimated.
Here, m is used as one or more than one change points can
exist when there is a change in the structural health event.
For example, when there is a health event, multiple sorts of
sensing signals’ information, including accelerometer, stain,
displacement can be collected.

x∗m ←
∑K

k=1 Skx
k
m∑K

k=1 Sk

(9)

Since acceleration signals and strain signals are continuous
steaming signals, x∗m is used to get the estimated ground
truth facts. The truth finding process is described by the
Algorithm. The process of the algorithm commences with
arbitrarily guessing the ground truth facts for a particular
event, then iteratively updates sensor devices status values and
approximate ground true facts until a convergence criterion
is reached. Generally, the convergence criterion is taken with
respect to the particular application requirements. It can be
a threshold of the change points in the approximated ground
truth facts in two successive iterations.

B. Truth Status Value Finding

In this subsection, we provide the details of the proposed
truth status value finding through Algorithm 2. To achieve that,
a security protocol has been used. A semantically secure (p, t)-
threshold Paillier cryptography is undertaken, which is adopted
from [31], [32]. The Paillier cryptosystem is an additive
homomorphic cryptosystem, meaning that it can be used for
evaluating some statistical information, such as the mean and
the variance [32], which exactly matches our truth discovery
in CH. The number of sensor devices in the D including
both CH and sensor devices is denoted by p, and the smallest
number of (cluster and sensor) devices required to calculate the
decryption process is denoted by t. Therefore, the encryption
key pk = (g, n) which is public is known at each of the sensor
devices in TrustData, while the decryption key, which is
private, is broken down and distributed to sensor devices in D
(i.e., device i can have its private key share ski ). At the level
of data transmission, each of the sensor devices iteratively
carries out two procedures, which are given as follows:

• Status Value Update. Every device calculates the dis-
tances between its trustworthy data (i.e., observation
values) and the approximate ground true facts calculated
by the CH with respect to the distance function d(.). The
sensor device then performs encryption of the distance
information and sends the generated ciphertexts to the
CH. After all the ciphertexts of all of the sensor devices
are reached at the CH, the CH updates the status value
with security, i.e., making in encrypted form for every

Algorithm 2: Truth Status Value Finding

Input: Observation values of K sensor devices: {xk
m}M,K

m,k=1

Output: Generation of ground true facts for M signals: {x∗m}Mm=1
1. A CH arbitrarily sets the ground truth for each signal;
2. The CH transmits the calculated ground true facts ({x∗m}Mm=1);
3. Each device calculates d(.) and and has the rounded values

then encrypts them and transmits to the CH;
4. (upon the reception of ciphertexts of all the devices)

i. The CH get the approximate x∗m according to the secure sum;
ii. Get updates of the encrypted weight of devices;
iii. The updated encrypted weight is transmitted to every device;

5. When each device gets back weights in encrypted form from the CH,
i. Do secure sum by the devices’ weighted values;
ii. Transmit these in form of ciphertexts towards the CH;

6. (after getting ciphertexts from the devices in the cluster)
The CH computes the ground true facts;

7. Repeat steps 2 to 6 until a convergence criterion is met
8. Then get output ({x∗m}Mm=1);

sensor device. Finally, the updated status value of the
ciphertext is transferred back to every corresponding
sensor device.

• Secure Truth Approximation. Depending on the encrypted
status value transferred by the CH, every sensor device
calculates status value observation in the form of ci-
phertexts without the status value decryption. The sensor
device then transfers them to the CH. As soon as the CH
received all of the status value in the form of ciphertexts
from every sensor device, the CH calculates the ground
true facts for ensuring the trustworthy data.

In spite of this, every sensor devise data in form of plaintext
must not be available to other party or sensor device regard-
ing confidentially issues. We handle this issue through the
secure sum protocol that is obtained by the threshold Paillier
cryptosystem [33]. As shown in the Algorithm, such a secure
sum protocol is able to help to compute the sum of sensor
devices data in the form cyphertexts without revealing secret
information to outsiders.

The two procedures above commence with an arbitrary
initialization of the ground true fact for the trustworthy data.
The two procedures are then iteratively carried out until a
convergence is met. During the course of performing, the
procedures are carried out fully on encrypted data. Thus, it
can be confirmed that the observations of the status value of
every device are recognizable simply to itself and any other
device’s do not know the sensor device correct status values.

In support of secure truth approximation and updated status
value, we apply a secure sum protocol developed in [34] by
which sensor devices are permitted to calculate the sum of
the collected data while preserving their own data secret with
added computation complexity to any suspicious party or the
sensor devices of the system. In accordance with (9) and (11),
a CH computes the sum of the data gathered from sensor
devices so as to have updated status values and approximated
ground true facts. In spite of this, every sensor device’ data
in form of plaintext must not be available to other party or
sensor device regarding confidential issues. We handle these
issues through the secure sum protocol that is obtained by
the threshold Paillier cryptosystem [33]. As shown in the
Algorithm 2, such a secure sum protocol is able to help
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Fig. 4. Performance of TrustData in trustworthy data collection: achieved
MII under sensor device signal faults.

compute the sum of sensor devices’ data in the form of
cyphertexts without revealing secret information to outsiders.

VI. PERFORMANCE EVALUATION

A. Simulation Methods

In order to measure the performance and prove the effec-
tiveness of the proposed scheme (i.e., TrustData), we have
done comprehensive simulations in MATLAB by considering
real data sets that are collected by the SHM system applied
on the Guangzhou National TV Tower [35], [36] and a SHM
system toolsuite [37]. The considered dataset collects data
from 800 sensor nodes and 100 sensor cases are utilized in
the simulations. The ICPS deployment has been performed
using our ICPS-based deployment scheme as presented in
[38] The network size of the simulation environment is a
450 × 50 sensing field for the structural environment, e.g.,
aircraft, building.

For convenience, we take into account the vibration signals
in this simulation, which are influenced by the 100 sensor
locations in the field. Moreover, we add random Gaussian
noise in all the data, with zero mean and 10% standard
deviation of real signals. There are two parts in the data sets: i)
reference data for training the joint distribution; and ii) another
set is used for testing, where noise is added in both cases so
that it is reflected in the trained correlation model. The sensor
node updates its MII once a decision has been received.

We have chosen an existing truth finding technique in
the simulation as a baseline technique for status-value-truth-
finding scheme [30], which does not counteract the sensor
security during the whole procedure. The status value truth
finding is implemented by considering the Paillier Thresh-
old Encryption Toolbox, where we have set a (p,

⌊
p
2

⌋
)-

threshold Paillier cryptosystem (http://cs.utdallas.edu/dspl/cgi-
bin/pailliertoolbox/).

Again, a Voting scheme has been considered for performing
comparison. It is used to reduce conflicts during decision-
making based on received data. This method is used for
conducting majority-voting and the information related with
the highest number of occurrences is regarded as the right
answer. Usually, an assumption for a voting system is that all
the end devices are reliable equally and, consequently, the vote
for various end devices is weighted. We considered an existing
network-based-voting algorithm, as presented in [21].
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Fig. 5. Performance of data alternation and detection observing ground truth
estimation.

B. Performance measures

In order to measure the performance of the TrustData,
we consider two metrics i.e., Error Rate (ER) and mean of
absolute error (AE) and the continuous data. The first metric
i.e., ER is the percentage of the approach’s output that are
different from the trustworthy data and ground true facts. The
second one. i.e. AE, is to calculate the mean of absolute
distance between the ground true facts and estimated results.
Each simulation is running 50 times.

C. Results

We have conducted three sets of simulations. First, we
executed the proposed TrustData scheme for trustworthy
data acquisition and secured data transmission. We inject com-
promised (untrustworthy) signal information into the sensor
devices. Here, we regard compromised signals as the faulty
signals. This is done via arbitrarily modifying some sensor
devices’ signals in the data sets. We have arbitrarily chosen
a portion of the sensor devices from the network of the
ICPS and the faulty or compromised signals are injected into
their acquisition modules and make them as untrustworthy
or faulty sensor devices. In the simulations, the amount of
the faulty or untrustworthy signals varies from 15% to 25%.
Each device broadcasts its signals to the sensor devices in
the cluster neighborhood. Every faulty or untrustworthy signal
is substituted by an arbitrary amount independently obtained
through a uniform distribution in the sensor device deployment
environment (0, 450). The reason for selecting this type of fault
model is that it results in a set of uncorrelated data in the equal
magnitude according to the gathered signals in practice.

The MII obtained in the first five successful simulation
cases, with diverse sensor untrustworthy or fault injection are
shown in Fig. 4. There is no any untrustworthy/fault signal
injection in Case 1. This implies that the collected data is not
distorted almost in all of the sensor devices by any signal faults
or security compromised. In Case 2. it is observed that the high
MII value at some sensor devices includes sensor 9 and sensor
10. Their signals are untrustworthy or faulty or partly altered,
which is apparently detected. When the rate of untrustworthy
or faulty signal injection increases, i.e., in case 4, we can see
that the values of the MII at sensor devices in the neighborhood
becomes the maximum. In Case 3, changes are seen in only in
one or two points (such as sensor 10). This is also due to the
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Fig. 6. Performance on the error rate under both trustworthy data and altered
data situations in all the schemes.

influence of untrustworthy signal. As a result, data collected
from these sensor devices cannot be trustworthy. This validates
the precision of the untrustworthy signal detection. Every time
a CH gets such data, the CH may drop the collected data before
aggregation or a signal reestablishment process might be used
for the portion of untrustworthy data.

In the second set of simulations, we make a comparison
between TrustData and CRH in terms of the correctness of
ground true facts. The approximation errors of TrustData
are presented by arbitrarily predicting the ground true facts,
since we arbitrarily introduce the approximate ground true
facts, and apply a threshold of the change point in the approx-
imate ground true facts in two successive iterations until the
convergence criterion. The ground truth approximation errors
of TrustData, CRH, and Voting under different random
values are shown in Fig. 5. AE is used to measure the error.
It can be seen in the figure that the approximation errors
in TrustData are almost the same as the CRH while the
amount of sensor devices is changing.

Even TrustData demonstrates better performance than
the performance of CRH in some cases; specifically, when the
amount of sensor devices in the ICPS is not large. In addition,
it is seen that, with the increase of the amount of the sensor
devices, the approximation errors decrease. Another scheme,
Voting, depicts the poor performance when compared to both
TrustData and CRH. One of the probable causes is that
trustworthiness approximation based on the highest amount of
data packets or votes may not imitate the true facts in the
ICPS.

Nonetheless, the widely applied method to remove the
conflicts in a decision on a faulty or untrustworthy sensor is to
carry out majority voting so that the accurate response come
through information fusion from the average or maximum
amount of occurrences. From our results, it is evident that the
concern with such Averaging or Voting schemes is that all of
them presume all the data packets from all the sensor devices
are equivalently trustworthy, and thus the votes from diverse
sensor devices are equally weighted. However, the alteration
of packets or votes is not included in these schemes.

In the last set of simulations, we attempt to study the error
rates in different schemes. As shown in Fig. 6, we demonstrate
the performance of the schemes in terms of error rates on the
SHM data set. It can be seen that TrustData achieves a

lower error rate on the SHM data set compared to that of
the CRH and Voting. We can see that the CRH takes all of
acquired data where some of the signals are untrustworthy
or faulty. Untrustworthy data is discovered in both the CRH
and Voting. In the Voting scheme, sensor device signals are
considered equally trustworthy and/or the sensor device is
trustworthy which is with the highest votes. Sensor devices
in TrustData verify signal trustworthiness and include the
trustworthy signals. When a fraction of the trustworthy signals
again are compromised during the signal transfer, this signal
is not included in the aggregation. Therefore, the error rates in
TrustData become lower than the error rates in the CRH.

VII. CONCLUSION

This paper has introduced a scheme for event detection in
the ICPS referred to as Trustworthy and Secured Data Col-
lection Scheme (TrustData). The scheme ensures authentic
data collection for aggregation inside a cluster of the ICPS. In
order to achieve the trustworthiness of data in the ICPS, an
algorithm has been proposed, which ensures the integrity of
transmitted data. In order to have secured data in the ICPS,
we have improved the Truth Status Value Finding to derive
trusted facts from untrusted sensor data. Finally, we have
carried out an extensive performance analysis of TrustData
exploiting real-world data set and the results exhibit that the
collected data exploiting the proposed scheme is trustworthy
and secured, which may ensure a reliable decision-making in
event detection in the ICPS. The future direction of this work
is to provide security and authenticity of data transmission by
exploiting the sensor status value finding approach.
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