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Abstract—Internet of Things (IoT) devices and the edge jointly
broaden the IoT’s sensing capability and the monitoring scope
for various applications. Though accessing sensing data and
making decisions through IoT smart devices turns out to be
commonplace, it is challenging to guarantee user privacy and
preserve the accuracy (integrity) of the collected data. The
IoT smart devices frequently lose either IoT user’s privacy or
data integrity. This also makes it crucial to put a threshold
on the cost of computation and load of the IoT devices, as
gradually more IoT services demand access to the resources
that devices offer. In this paper, we propose BalancePIC, a
scheme that attempts to preserve a balance in the three aspects
(user privacy, data integrity in edge-assisted IoT devices, and the
computational cost). It achieves the balance through a balanced
truth discovery approach and a proposed enhanced technique
for data privacy, which are used in IoT device and edge server
interactions. It authenticates the IoT user participation with
privacy in the truth discovery process through a biometric-ECC
based authentication algorithm. The nature of the BalancePIC
scheme is to straightforwardly provide the likelihood for a
simple amendment on the cryptography technique and weight
assignment. This lessens the overall computational cost for the
IoT user devices but also restricts the communications between
the user devices and the edge server, which is important for data
integrity. We present an enhanced technique to preserve privacy
by guarding the user from potential threats and suspicious data
collection parties. To achieve this, BalancePIC takes steps
to blur the original sensory data of the device by processing
results in groups called zones. Simulation result analysis provides
evidence for the balance preservation in the three aspects.

Index Terms—Internet of Things, data collection, security,
privacy, data integrity, truth discovery, Biometric, ECC

I. INTRODUCTION

Internet of Things (IoT) devices including smartphone,
smartwatches, smartglasses, and body sensors are broadly
available and interconnected by various forms of communica-
tion technologies to the Internet. There are diverse applications
of IoT such as crowd sensing, smart home, smart city, body
networks, and so on [I], [2]. This has led to a dramatic
increase in the growth of sensory-data resources for the IoT.
However, there are severe constraints in the IoT devices,
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including computational ability, energy, storage, and security,
which degrade the performance of IoT applications. Recently,
edge computing is being proposed as a new computing model
in which a near-user high-end device with stronger computing
power provides required resources for the applications of
resource-constrained IoT devices. The edge computing-based
IoT (or edge-assisted IoT) scheme is able to mitigate some
challenges of communication and high computation costs,
as well as low-quality of local decision-making, and low
flexibility [1], [3].

One of the primary challenges with the edge-based IoT
system 1is that the IoT sensory data is susceptible to attacks
and threats, particularly, insider attacks that often happens in
the IoT device tier and the network communication tier [2]—
[4]. Different from insider attacks, outsider attacks can be
challenged by conventional security methods, such as authen-
tication, authorization, and auditing [5], [6]. The first priority
of security is to assure the availability and functionality of IoT
applications. Nevertheless, traditional security mechanisms,
including AES, Blowfish, DES, RSA, ECC require a large
computational cost to resist some internal attacks effectively,
especially some user privacy and data integrity attacks in
resource-constrained IoT [7]. There are various authentication
techniques available that are designed to solve data integrity
problems [8]. Though edge-assisted IoT can support security
with reduced computation when suing advanced cryptography,
the security aspects associated with IoT devices are still
concerning. There are weaknesses in user anonymity and other
ideal security functions that are seen to be vulnerable to
cyberattacks [0]. More importantly, those traditional security
mechanisms still consume a lot of resources of IoT devices
leading to a huge influence on the IoT application performance
and system lifetime. In this context, only simple security
protection mechanisms, i.e., authenticated key exchange and
access control, for the communications are possible for IoT
applications [1], [6].

A crucial concern about the IoT applications is that the
sensory data offered by different devices are frequently not
accurate in terms of user privacy (anonymity or compromised
sensory value) [2]. A method is to combine the likelihood of a
user offering trustworthy data with the IoT user weight during
the sensor data aggregation and aggregated output productions,
which are supposed to be close to the data provided by
trustworthy IoT users. The main difficulty is that the IoT
user trustworthiness is usually anonymous a priori and can be
obtained from acquired sensor data. To tackle the difficulty,
the truth discovery [9]-[12] is applied to decide on true facts
from untrustworthy user information.
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The objective of the truth discovery approach is to derive
exact evidence from untrustworthy data of IoT devices. Three
important requirements are revealed by the process of de-
termining exact facts: user privacy, data integrity, and mini-
mal computational cost as necessitated by [oT devices when
applying for different applications in practice. Current truth
discovery methods and some IoT applications such as crowd-
sensing [10]-[12] have a variety of outputs, from private to
accurate as well as a spectrum of computation cost of the IoT
devices. Most methods often dedicate at least any of the three
requirements to guarantee other or straightforwardly discard
requirement [6]. A current method, privacy-preserving truth
discovery (PPTD) [9], [13] concentrates on maintaining user
privacy of IoT devices in applications. Nevertheless, to achieve
this PPTD method conceals the collected sensing data and de-
mands that a large size of the sample before the approximated
truth turns out to be exact. It happens, particularly, when the
approximated ground truth is set arbitrarily. This is to make a
straightforward sacrifice toward the accuracy of the collected
data for user privacy.

In this paper, we propose BalancePIC, a scheme that
attempts to preserve a balance in the three aspects (user privacy
and data integrity in edge-assisted IoT, the computational
cost). BalancePIC can overcome the limitations of the
previous schemes to some extent. It achieves this through a
balanced truth discovery approach and an enhanced technique
for data privacy. It authenticates the IoT user participation in
the truth discovery process through a biometric-ECC based
cryptography algorithm. The nature of the BalancePIC
scheme is to straightforwardly provide the likelihood for a
simple amendment on the cryptography technique and weight
allocation. It lessens the overall computation cost of IoT user
devices in addition to restricting communications among the
user IoT devices and the edge server. This is important to the
integrity of the IoT device data.

An enhanced technique maintains user privacy by protecting
the user data from potential threats and untrustworthy data
collection parties. To achieve this, BalancePIC attempts
to combine some functions of privacy preservation via the
method of truth discovery and apply a concept of zoning
and data distorting at each IoT device user level. We put
a threshold on the IoT user devices’ participation in the
computation of the approximated ground truth. This outcome
is a reduction in both the cost of computation and load on
IoT user devices and the damage, which mainly occurs due
to the security threats/attacks on data integrity. BalancePIC
handles each user device as a database resource of sensing
data. It links to the user device that requires a low cost (in
terms of computation) output, and leaves the user device for
other services.

The contributions of this paper are four-fold.

o This paper proposes BalancePIC scheme to provide

a balance in the user privacy, and data integrity and
computation cost in edge-assisted IoT devices.

o It provides a biometric-ECC based authentication tech-
nique through a simple amendment on the traditional
cryptography technique and weight assignment for data
integrity.

o To authenticate the IoT user participation with privacy,
it utilizes enhanced truth discovery technique to protect
IoT device users from potential threats, such as untrusted
data collection parties.

o Its performance results achieved through simulations pro-
vide evidence for the preservation of the balance in user
privacy, data integrity, and the cost of computation.

The rest of the paper is organized as follows. We explain the
design of the proposed work in Section II. The development
methods of the scheme are described in Section III. Section
IV offers the biometric-ECC based authentication algorithm,
and Section V describes the enhanced technique. We conduct
the performance analysis through the simulation in Section VI.
Finally, the conclusion of this paper is provided in Section VII.

II. THE DESIGN OF BALANCEPIC

In this section, we first provide the definition of the edge-
assisted IoT network and then provide threat models. At
the end, we provide the design overview of the proposed
BalancePIC scheme.

A. Edge-assisted IoT Network Development

IoT brings auspicious solutions to develop resource con-
suming and computation-intensive facilities and functions in
various fields, including smart-city, smart-grid, e-healthcare,
and industrial automation. This revolution facilitates collabo-
rations between things and people and new chances to change
our society and enhance our life. With the growth of associated
things, a large quantity of data is produced from diverse
services and functions, concluding with devastating stress on
data computational cost and storage, transmission, and usage.
Transferring the acquired data from the IoT devices to the
cloud for storage and security analysis can utilize a huge
quality of costly bandwidth. 45% of generated data require
to be stored and handled at the edge of IoT networks or close
to IoT devices. Furthermore, all of the things produce data
continuously that should be evaluated speedily to fulfill the IoT
application demands. Centralized or global data storage and
investigation cannot pay for the requirements of data-centric
services, latency-sensitive, and security-sensitive applications.
This concept is called edge-assisted IoT [3], [14].

We consider a hierarchical edge-assisted IoT network sys-
tem that is partitioned into three tiers: 1) the data collection
tier, 2) the processing tiers, and 3) the application service tier.
As shown in Fig. 1, both the IoT network and edge network
are part of the data collection tier in the architecture, while
the edge server platform is part of the data processing tier and
the application service tier, and the cloud services lie in the
application service tier. For the data collection, a set of IoT
devices such as smartphone sensors are randomly or uniformly
distributed for a particular monitoring application, e.g., crowd-
sensing, patient e-healthcare. IoT devices are connected to one
or more edge servers [3].

The IoT devices collect the application data and then
forward the data to the edge server through a wireless com-
munication channel. Normally, an IoT device has serious
resource limitations, including storage, computing, and power
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Fig. 1. A typical example design of BalancePIC scheme

resources, while edge servers are distributed computing de-
vices usually having the more powerful capability. The edge
server devices carry out data processing at the edge between
the IoT network and cloud, near the IoT devices of the data. It
lessens communication resources such as bandwidth required
in IoT devices and Cloud data storage by carrying out analytics
and knowledge generation at or near the IoT devices of the
data. There are several other modules that can be in the second
or third tiers, including the service access model, enterprise-
level software stacks, and operating on the edge of an IoT
network deployment provides the greatest basis of the edge.

A number of edge devices across the network can offload
the computational load away from the Cloud, and can no-
tably lessen the bandwidth and latency in packet exchanges.
Moreover, the distributed edge servers can balance IoT traffic
and avoid the traffic peaks in IoT networks, lessening the
communication latency between edge server /cloudlet servers
and end (application) users, as well as lessening response times
for real-time IoT applications in comparison with traditional
cloud services. Furthermore, by sending computation and
communication overhead from IoT devices with severe energy
constraints, the IoT system can extend the lifetime of the
individual devices. In some applications of IoT with low
latency or high timeliness, such as remote healthcare, the user
needs to access the device data by using a mobile device.

Though the distributed scheme has various advantages for
IoT applications, the security and privacy with the scheme is

a significant concern. As edge server processes data at the
edge, the privacy-sensitive information connected to applica-
tion users can be compromised, as the sensed data of IoT
devices is collected at the edge server, which might be more
susceptible to modification than the cloud servers [15], [16].
As a result, privacy protection is usually assumed in edge
devices. There are numerous privacy-preserving mechanisms,
such as local differential privacy [17] and differential privacy
with high utility [18]. However, many of them require signifi-
cant computation and computation tasks to protect the privacy
of application users in the edge-based IoT environment.

The idea of BalancePIC is to maintain a balance between
privacy-preserving and data integrity regarding computation
cost bandwidth, etc. BalancePIC includes a balanced truth
discovery regarding the serious limitations of the previous
work in terms of user privacy, collected data integrity, and
low computational costs, as demanded by the natural growth
of IoT applications. The main idea is to limit the participation
of IoT devices in the computation of the approximated truth
(finding the true data), we attempt to reduce both the cost
and burden placed onto the application user devices, as well
as the damage caused by an active attack on data integrity.
BalancePIC aims to satisfy these and treats user devices as
if they were a database resource of IoT device sensory data.
It connects to the device, demands a low-cost result and gets
out, leaving the user device for other services to use.
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B. Threat Models

One of the primary challenges with the edge-based IoT
system is that the sensory data in IoT is susceptible to
different security threats/attacks, particularly. For example,
internal attacks regularly happen in the IoT device tier and
the network communication tier. Different from these attacks,
external attacks would be challenged by conventional security
protocols, such as encryption, authorization, and auditing.
Whenever [oT devices, IoT users, and edge servers exchange
information that can be sensitive information, the receiver
definitely has the guarantee that the data has come originally
from the expected sender and is not alerted unintentionally
or otherwise. Regarding the situations, there can be different
kinds of active and passive data integrity threats. We assume a
small set of sophisticated threat models for the edge-assisted
IoT network, which are shortly explained as follows.

o Collusion attacks. Numerous existing works propose se-
curity protocols [10], [19]-[22]. In most protocols, every
IoT device is assumed to be authentic. These protocols
apply various methods for secure communications. These
include authentication, authorization, hardware-based ci-
pher. However, there remain concerns with many of them,
including collusion attacks. This can be a type of attacks,
which conveys the risks of the important data if an
IoT device intentionally establishes communication with
an unknown device. Such an unknown device might be
compromised by an attacker. He can gain the essential
information from the application [10].

o Eavesdropping. It is a type of threats/attacks, which
carries security risks to the user data privacy (such
as patient’s sensing data privacy). It contains snuffling
significant data sent by the IoT device, which yields the
data privacy risks in communication.

« We also consider several attacks related to the integrity
and authentication, including resist replay attack, resist
impersonation attacks, resist sensor node capture attack,
and resist desynchronization attack

There is no same secret data stored in the user and the

server, and they do not need to update any information when
one session is completed. So this attack could not occur. In
terms of data privacy, we assume that an attacker may try to
get user and devices’ traceability and data secret.

C. The Basic Process of BalancePIC

The process in BalancePIC starts with setting the ap-
proximate ground truth with an arbitrary value. The arbitrarily
adjusted ground truth is transmitted to k user IoT devices; we
assume that this set of k devices are in a group named a
zone. An IoT device gets the truth value and unites it along
with its personal sensing information. Next, the IoT device
sends its outcome to the edge server. The device encodes
the information together with our suggested lightweight bio-
metric based authentication technique. This concludes the user
device’s involvement in the IoT-edge based scheme. Next, the
edge server gets the k& outcomes from & devices and measures
the mean. By this mean value, the edge server mines the
unique arbitrarily adjusted ground truth through an extraction

method. The approximated ground truth that the edge server is
left with is a precise match to the mean of the unique sensing
information of the user IoT devices.

The process of concealing a user device’s sensing infor-
mation with a united mean, adding the outcomes of a zone,
subsequently eliminating so-called “mask” to be left with a
accurate mean would be replicated with every zone being
managed. The results from each zone are aggregated with
the current approximated ground truth. This method prevents
individual data (maybe personal data) from being sent to the
edge server and solely representing the currently approximated
ground truth. This prevents personal information from being
acquired through alteration, eavesdropping, or the same types
of attacks.

In the occurrence that the data-collecting party is not trusted,
BalancePIC offers an enhanced technique for privacy. The
enhanced technique for data privacy permits user devices to
use an arbitrary weight when computing the mean of their
individual sensing data and the approximate ground truth
transmitted by the edge server. This blocks the edge server
from being capable to excerpt the user device’s sensing infor-
mation with around 100% accuracy by applying a proposed
extraction method. The scale of this weight would be offered to
the user by the edge server, to best fit the context of the ground
truth, or by the user device for maximum privacy security. It
is presumed that the user device chooses its individual scale
relying on its assessment of the data-collection party (i.e. by
using zero weight variance with trusted sites, +/- v% with
unknown/untrusted sites).

The BalancePIC also leaves the capability to enhance
alterations. Existing light-weighted authentication is supposed
to have the capability to balance the dependability of user
devices is also in the hands of the user of this scheme. Some
weighting methods and algorithms may be applied for this
purpose [91, [10], [13], [23].

D. Design Objective

The objective of the BalancePiC design is to provide a
balance among the privacy of the user, integrity of the gathered
sensing data, and cost of computation of the cryptography
methods applied, for example, the suggested biometric-ECC
based authentication algorithm. Especially, it is aimed to
guarantee the privacy of the IoT device user at the time when
the user needs access to the IoT device, the dependability
of the IoT device (no privacy information is leaked by this
device), and integrity of the data during the data exchange
between the IoT device and the edge server, and low-cost
during the authentication time among the IoT device and the
edge server.

III. ZONE PROCESSING FOR THE EDGE-ASSISTED 10T

In this section, we explain the zone development process
of the BalancePIC scheme. At first, we explain the zone
initialization. Then we discuss the zone processing. Finally,
we describe the extraction methods.
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A. Zone Initialization

The overview of functions for interactions between edge
servers and IoT devices is demonstrated in Figure 1. The
scheme constitutes of the following missions:

1) Edge Server: Arbitrarily initialize an approximated
ground truth.

2) Edge Server: Transmit the approximated ground truth
to k devices (a zone).

3) IoT device (s): Through formula (1), IoT device’s
sensory data and the average of the projected ground
truth are computed.

4) ToT device (s): The result is delivered to the server.

5) Edge Server: From a zone, the mean of all k results is
calculated.

6) Edge Server: By using formula (2), IoT device sensory
data is extracted to eliminate the data transmitted in
function 2.

7) Edge Server:

o In the case that it appears as the first zone, the
approximated ground truth is set to the outcome
obtained from function 6

e In the case that it is not the first zone, through
the formula (3), the aggregation of the currently
approximated ground truth is combined with the
output of function 6

B. Zone Processing

In the following subsection, we elaborate on the details
of functions 1-5. These functions help to calculate zone
information.

To begin with, the BalancePIC scheme initializes the
approximate ground truth to an arbitrary value [9]. Within
the edge server, the initialization takes place through a data
collection entity. When using the BalancePIC scheme, the
arbitrary value may have no impact on the approximate ground
truth. In spite of this, it is still recommended to use an
arbitrary value that makes it contextually related, particularly
when applying the enhanced technique elaborated in Section
V. The purpose of using the adjusted value is to ensure that
compromised or distinct sensing data is transmitted to the
edge server. In a specific zone, Algorithm 1 and Algorithm
2 show the zone processing technique and users compute in a
particular zone, respectively.

Based on the edge server’s utilization preference, arbitrary
ground truth is directly transmitted to & IoT devices. By
signifying this set of k devices, a zone is processed together,
so that the edge server does not handle any individual IoT
device sensory data. The size of the zone is denoted by the
k. The data-collection party is the one who can select the
value of k. If the data-collection party uses a small amount
of IoT devices, it proposes that a tiny value for k£ be used.
The benefit of a tiny value for k is that it makes sure that
the approximate ground truth is often renewed. k’s value can
additionally be ascertained in the context. It is completely
based on the data-collection party to determine the way the
set of k devices is selected for a specific zone. In order to
ensure contextual relevance, a region or crowd of devices can

be divided into n number of zones with size k on the basis of
device specifications, location or merely its availability to the
edge server. Depending on the context, the extent of anonymity
required varies.

The functions 6-7 are elaborated in the following. Every
k user devices compute the total amount of the approximate
ground truth passed on by the edge server and their own
sensory data. The summation is arrived at based on the
assumption that there are only two portions, the edge servers
and their own are weighted equally. The equation is as follows:

x = SensoryData % 0.5+ x % 0.5 (1)

Once the individual calculations are over for every one of
the set of k user IoT devices, these return the information to
the edge server. The outputs are then aggregated by the edge
server. The BalancePIC scheme that has been simulated
for the purpose of analysis simply calculates the mean of the
results, without taking into consideration the weighted depend-
ability. The overall zone processing align with functions 1-7
are simply described in Algorithm 1.

At an individual level, although the use of zone processing
complicates data, the larger image (one of k devices) still
maintain unambiguous. For example, for a batch of people
in New York City, it is possible to monitor the location and
the change of location. However, if the objective is to find the
habits of a person and the individual location, the data becomes
insufficient and incomprehensible with respect to the group.
On the other hand, additional information can be derived to
solve the following problems: which locations people stay at
in New York City during the day versus in the evening, which
areas have the most vigorous nightlife, what is the origin or
demographic of citizens who visit a special site at a particular
time, and so on.

Algorithm 1: Zone Development

Input: A set of k user IoT devices: device [k]
Result: Approximate ground truth: x
1 Initialization;
2 Arbitrarily adjusted the ground truth for each object;
3 repeat

4 for every k do

5 Transmit ground truth to a user IoT device;

6 Get aggregation of the device results;

7 end

8 if This zone is the first one then

9 Extract the arbitrary value;

10 2 = remainder of the IoT devices of the network;

11 else

12 Extract the value;

13 Get the aggregation of the remainder of the
devices and x;

14 end

15 until All of the zones are processed,

16 return x;
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Algorithm 2: User Computation

Input: A set of k user IoT devices: device [k]
Result: User Calculation Result (y)
1 for every edge server do
2 Get IoT device sensing data and = ;
3 Transmit ground truth to a user IoT device;
4 y = Aggregate sensing data and z (e.g., formula (1));
5 end
6 return y;

C. Extraction Method

In the following part, functions 6-7 are discussed regarding
the extraction. The arbitrary initialization of ground truths (in
a range according to context) gives a data accuracy problem if
not correctly resolved. From the accumulated sensory data, the
BalancePIC scheme resolves the issue through an approach
that extracts the approximated ground truths transmitted to &
users in the zone. To be sure, the user calculations aggregate
the sensory data of users’ devices, along with the approximated
ground truths supplied by edge servers, as two equal portions.
From k user devices within a zone, the sensory data is
accumulated. Therefore, it represents half of the device sensory
information plus half approximated ground truths. The formula
below derives approximated ground truths and leaves edge
servers with the accumulated sensory data:

s =2 %05+ [z — 2(xz®)] x 0.5 (2)

wherein s* denotes the sensory data accumulated in zone
z, 7 denotes the accumulated results provided by the IoT
devices (i.e. pre-extraction is denoted by s7), and x denotes
the presently approximated ground truth. In the one hand, this
technique of extraction is applied to excerpt the randomized
values which the approximated ground truth is adjusted to;
and on the another hand, in order to update ground truths, in
combination with the following expression:

r=s,xkfc+ax(c—k)/c 3)

where k denotes the amount of IoT devices in the zone,
whereas c denotes the amount of IoT devices, which engage in
the group-based sensing system that includes %k user devices
within the zone being presently handled. The technique of
extraction applied in combination with arbitrarily adjusted
values and the concept of masking sensing data from user IoT
devices, enable the privacy-protections without sacrificing the
integrity of data. The outputs of this approach are comprised
of precise copies of all sensory data aggregated from all c
devices, theoretically.

IV. BIOMETRIC-ECC BASED ALGORITHM FOR DATA
INTEGRITY

We describe the authentication feature for data integrity
features of the BalancePIC scheme in this subsection,
including cryptography.

A. Cryptography Techniques

BalancePIC scheme needs to rely on any concrete cryp-
tography technique. Nevertheless, it is recommended to imple-
ment cryptosystems with BalancePIC schemes in order to
properly guard the privacy of all parties involved. Possible
threats would arise if third parties were able to intercept
the data being transmitted from edge servers to user IoT
devices plus any data being transmitted from IoT devices
to the edge servers. If an attacker who captured the data
understands the nature of this BalancePIC scheme, he may
use the technique of extraction to acquire the individual’s
IoT sensory data (although the enhanced technique presented
in Section 5 protects against this possibility). It is just as
critical to realize that such approximated ground truths that
are being accumulated by data-collection parties might not be
information that those parties wish to disclose to third parties.

Traditional cryptography techniques, including well-known
cryptosystems such as Blowfish, DES, RSA involve a lot
of computations. A crucial aspect with IoT-based sensing
applications is that the sensing data offered by individual
participants is normally not trustworthy in terms of user
privacy (anonymity or compromised sensory value). To satisfy
the need for low-cost computation tasks in user IoT devices,
it is recommended that low computational cost cryptosystem
needs to be utilized. The cryptosystem utilized in PPTD is
highly complicated and necessitates device contributions to a
great extent. We attempt to avoid such a cryptosystem and
utilize a lightweight one. We consider a light-weight version
of the cryptographic algorithms.

B. Biometric-ECC based Authentication Algorithm

We present a combined biometric-ECC based authenti-
cation algorithm with user privacy (anonymity) for before
data exchange amongst the devices and edge servers in
BalancePIC. We omit the basic information of the ECC
here due to space limitation; however, interested reader may
refer to [24] for further study. At the beginning of the data
integrity verification, the ES (ES for an edge server) selects an
elliptic curve F, over a prime finite field denoted by F'F},, and
selects an extra subclass G of E.. This is produced by P by
taking a large prime number order n. Hence, an ES produces
the private/public key pair {z, X} for itself (here, z € Z xn
and X = zP. In addition, the ES selects a master secret key
denoted by w. ES issues the key parameters {E., G,n, P, X }.
This algorithm includes 3 levels, and the explanation of the
levels can be simply given in the following.

1) Enrolment Level: We divide the enrolment level into two
parts, i.e., IoT device enrolment and IoT user enrolment, and
these are both performed securely.

2) IoT Device Enrolment: For each 10T device (10Tp) with
its identity denoted by IoT'p;q, ES chooses a sole identity and
computes a private key Ky = h(IoTpig||w). Once this is
done, the ES saves the identity of the IoT device IoTp;q in its
storage and (I0T'p;4, K1) in the device. Then, the IoT device
can be placed in a particular area to construct a network.
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3) IoT User Enrolment: An 10T user IoTy chooses an
identity and a password pw,,, and obtains biometric informa-
tion in an IoT device with fuzzy extractor Gen(By ), where
Gen(By) = (Py,Qu). We utilize a fuzzy extractor technique
for Biometrics [25]. It is a fuzzy extractor tool that uses
a fixed-length string to recover the biometric information.
The biometric information distribution W on M for By
is given with a minimum entropy threshold e,,. Multiple-
tuple {M, e,,,l, 7, €} is used to symbolize the string with two
algorithms: Gen and Rep. BIOU is the acquired biometric
data distribution W on M with a threshold of min-entropy.
The Gen algorithm produces two strings: a private string
Py € {0, 1} for user ToTy, and a helper string Q.

Then, the IoT user produces a random number and calcu-
lates its key. Finally, the user submits the registration request
to ES securely. When ES gets a request of the registration, it
validates whether the user id is in the storage. If it finds, the
IoT user is requested to select a new id. Else, ES computes a
secret code (SC) for the user and sends it in a secure manner.
Finally, upon getting the secret codes, the IoT user saves the
code in the IoT device.

C. Authentication & Key Agreement Level

At any time, the IoTy; needs to get access to the sensory
data of IoT devices with the identity of the devices, the
authentication processes in the following can be carried out
among the IoT user, ES, and the IoT device, and in the end,
the IoT user and IoT device can agree in a session key for
further interaction. The procedures of this level are as follows:

e Procl: An IoT user produces a login request M; with
inputting identity and password, and imprints its biomet-
ric information in the IoT device and fuzzy extractor is
used in this case. The IoT device computes the secret
string and checks secret code. If this code is not satisfied,
the login request is declined by the IoT device, as one
factor of authentication, id, password, or the biometric is
unacceptable. Else, the user produces an arbitrary number
and calculates a string. In the end, the login request is
sent to the ES.

o Proc2. When ES receives the login request, it calculates
user login information and validates whether or not the
user id is from the storage. If it is found, the ES computes
associate security verification for the IoT device. The
request is dismissed by the ES if verification does not go
through. Otherwise, the ES can calculate a secret code
M5 with the random number and forwards the code to
the IoT device.

e Proc3. When the IoT device receives the message M,
from the ES, it computes id verification and checks the
secret code. The session is dismissed if the secret code
does not match. Otherwise, the IoT device computes a
code for ES (M3) and send it to ES.

o Proc4. Once the ES receives the message Mj , it com-
putes a further verification code (My) for the IoT device
and sends it to the IoT user.

o Proc5. When the IoT device receives message My, it
computes the code and verifies it. The session is dis-
missed if the code is unmatched. Else, the ES can be

authenticated by the user. Hence, the IoT device computes
the private key and checks. The session is dismissed if the
key does not match. The IoT device is then authenticated
by the user, and the user shares a session key with the
device. A further detail of the authentication procedure
can be found in our previous work [26].

Security Feature Analysis. In the above authentication,
to maintain anonymity and untraceability, a dynamic id is
considered in the login request My = {IoTpiq4,S1,55,S54}
as a substitute of real id. Here, S1 = aP, S; = aX,
IoTy = IoTyig ® h(S2) S3 = IoTpia ® B2 @® h(SQ),
and Sy = h(B2,52,I0Tp;q). Finally, the login request
My, = IoTy;q,S51,53,S54 is yielded to the ES. In order to
attain user id identity [oTp;q from the login request, x is
important info for an attacker to calculate S;. Nonetheless,
x can be a private key, which is only known to the ES. In
contrast, ES can attain IDU from login request by computing
D2 =xD1,IDU = IoTy @ h(S2). As a result, the proposed
algorithm obtains the feature of the anonymity of the IoT
user, and also facilities the identity validation of the IoT
user. In addition, IoT device’s id should not be sent via a
public communication or common method, and the ES can
attain the IoT device id from the login request by computing
82 = xSy, 101};;4 = 10Tpiq @ h(52), B2 = h(IoTy;,4l|w),
and IoT' D}, = S3 & B2.

As a result, the protocol confirms the IoT device
anonymity. Besides, every element of login request M; =
{IoTy;a, D1, D3, D4} dynamically changes with the arbitrary
number. Therefore, an attacker is not able to track a particular
IoT user through snooping the login information. The advan-
tage of untraceability is confirmed.

D. Data Integrity Checking with Weighted Reliability

With the authentication algorithm above, the user IoT de-
vice’s reliability can be computed based on the data integrity.
The BalancePIC scheme contains a truth detection tech-
nique for weighing the reliability of each IoT user device and
for establishing the truth through every device, in order to de-
termine if the data had an integrity problem (data compromise
happened). This is to validate whether any data is modified
or not. All IoT devices have equal value (decision input)
regarding ground truth aggregation. Weighted reliability, in
theory, guards the data integrity. Classic weighting techniques
are available [9], [11]-[13], [27]. For instance, [9] provides a
weighted dependability technique of calculation in that every
device’s weight information is transmitted to the user devices,
whereas the BalanceP IC scheme necessitates that such tech-
nique will be computed and used only at the edge server-side.
With the BalancePIC scheme, we calculate IoT device’s
status values in order to determine if the private information
was modified during transmission. The fundamental principle
is that the status value of a device could be assigned a high
value, where data from the transmitted device is set to be
approximate ground truths. The following equation is used to
calculate IoT device’s status values.

bt Do @k )
M d(ak,, )

Sy = log( ) 4)
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where :L"fn/ be the observation values and x, be the approxi-
mated ground true facts. There is distance function denoted by
d(.) used to determine the difference between sensor devices
¥ and %, [27].

The value of d(.) is due to a specific sensing application
situation. The presented scheme BalancePIC is envisioned
to handle structural health event identification of SHM appli-
cations. In the case of SHM applications, where the sensor
devices’ signals are continuous (e.g., structural vibration re-
sponse), we adopt a standardized squared distance function,
which is in the following:

2

(xfn — ‘T;L)

std,,

When functions (2-3) work together, base the weights of
the user devices in terms of the standard deviation as well
as the normalized squared-distance function. It would be just
as critical to realize that device reliability can vary between
contexts [12]. For the highest possible integrity of the data,
it can be recommended that the weighted dependability can
be computed by the edge servers for all user IoT devices in
regard to all particular contexts (wherever the edge server finds
at least 2 ground truths through various sensors).

®)

d(ap,,zy,) =

V. PROPOSED ENHANCED TECHNIQUE FOR DATA PRIVACY

When we need to manage the device users privacy, it is
crucial for us to consider all of the potential risks to data
privacy. It can also involve the likelihood of data collection
parties, which even looks untrustworthy. If an edge server
notifies that it is sending a message about the truth informa-
tion, but in reality, it is a phishing scam about privacy-related
data and also the individual sensory information of the user
IoT device can be acquired through extraction technique; in
this situation, we assume that the edge server message falls
short of aggregating the information amongst this & users’ IoT
devices in a particular zone. To properly conserve discretion,
the privacy should be safeguarded against all possible threats
from all data collection parties that are the outside ones and
eavesdropping ones.

Algorithm 3: Enhanced Technique for User Data Privacy
(calculated by the user)

Input: Approximate ground truth: z, variance v
Result: Result
1 if the value of v is not expected (enough) then
2 Do the replacement of v with a desirable value;
else

w

end

Get weight = a random value between 50 — v & 50 + 5;
Result = (sensing data ~%%ht) + (x-100 — weight/100);
return Result;

N S B

The enhanced technique considers this type of situations
by distorting the individual sensory information further. The
technique enables the user IoT devices to employ an arbi-
trary weight (inside a threshold regarding particular context),

especially, when we integrate the device sensory information
with approximate ground truth values obtained from the edge
servers. It will stop the edge server from obtaining the precise
particular IoT device sensory data. Our extraction technique
is simply set with high integrity when the result that is passed
to the edge server from the user IoT devices is half of the
device sensing information and also half of the approximate
ground truth. It may affect the integrity of the data negatively.
Nonetheless, as data is tackled within k IoT user devices inside
a zone each with a small variation on the calculated weight,
and the cumulative consequence is correct. The integrity of
the data becomes inaccurate, however, the effect is negligible
within certain situations considering the contexts. We provide
an enhanced technique in Algorithm 3.

When we apply the enhanced technique, we can have several
ways to designate appropriate variance on the weight. A
weight variance might be obtained from the edge server, with
the aim to meet the needs in a particular situation in context
or can be stored in an IoT device. A good idea is to think of a
combined algorithm. We enable the edge server to decide the
condition and provide definitions of the context. However, if
an edge server announces a variance that is too small, which
could be a risk to the user IoT device privacy, the user IoT
device may employ a value of the variance confirmed by itself
within a particular range of harmless variance values.

VI. PERFORMANCE STUDIES

The detailed performance evaluation of BalancePIC
scheme is studied in this section regarding its claim of
preserving the balance among data privacy, data integrity,
and computational load. We have conducted the evaluation
of BalancePIC through simulations.

A. Simulation Settings

We utilize a Windows 64-bit computer with Intel Core
i7 version, 8 GB of RAM. We use Python to manage the
programs. The BalancePIC scheme is implemented as an
extension of the Wireless Network Simulation tool (OM-
NeT++) that is compatible with multi-radios for every IoT
device node [28]. Even though OMNeT does not support
Bluetooth yet, Bluetooth has been emulated through the Zigbee
IEEE 802.15 WPAN scheme, with the communication range,
which is set to 10-12m.

We considered 3 classes in the simulations: 1) the IoT device
class, 2) the simulation class, and 3) the edge server class. The
edge server class has an object for the edge servers, which
contains the essential techniques that are used for imitating
the operations of the edge server running the BalancePIC
scheme, as it was explained in this paper. Similarly, the actions
are imitated by the device class that is expected of an IoT user
device. The experimental class supplies edge servers together
with the required IoT devices to organize zones and compute
the ground truth.

In the three classes, the experimental setting consists of 20
zones of IoT devices and 20 edge servers, and every zone
has up to 100 IoT devices with +/- 0.5% of the variance. The
edge server is located at a random location around the zone;
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Fig. 2. The percentage of weight variance vs. the difference

however, each edge server is set to be up to 50 meters away
from each other. Every simulation is repeated for 30 times
and is executed for 500 virtual minutes. Furthermore, as we
target the mobile devices and the sensors (regarding a crowd
of mobile devices), all of the simulated IoT sensor devices
have been configured to change arbitrarily 4m/s in one minute.
Experimental findings are gathered based on real-world data
traces of a sensing network system [13].

B. Comparisons

In the simulations, for the discovery of the status value
truth as a baseline setting, the traditional techniques of truth
discovery have been employed, i.e. the conflict resolution
on data, which is heterogeneous (CRH for short) [11], [27],
which have not done anything to break IoT device security
protection during the entire process. The cryptosystem of a
(p, | £])-threshold Paillier has been employed in our simula-
tions (http://cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox/). This
is with the Paillier Threshold Encryption Toolbox, which we
carry out with the discovery of the status value truth [9], [13].

C. Simulation Results

The objective of the first set of the simulations is to compute
the influence that the size of the zone has on the accuracy
of data while employing the enhanced technique. The sizes
of zone ranging from 3 to 20 are utilized in the experiment
and the pool of the devices is kept static. The value of
weight variance is measured against its effect on data accuracy
(without integrity problem). As shown in Fig. 2, the result
represents the difference between the approximated ground
truth as calculated by the edge server vs. the average truth
of the sensory data from devices.

In Fig. 3, the findings of the experiment show that the
difference (reduction in accuracy) increases while keeping the
device count fixed when the size of the zone rises. The extent
of the influences is minor (with a size of zone = 30, the
accuracy is around +/- 0.01%), but nonetheless, some context
situations may need higher accuracy or fewer devices in the
pools.

Our next objective of the simulation is to measure accuracy
(data integrity). Computation cost on user devices, relative
to PPTD, is assumed to be less, regarding simplification
of authentication algorithms, zone processing, and system
development. The experiments are not equivalently performed

Zone size vs. difference (fixed device count)
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Fig. 4. Comparisons regarding error rate (in maintaining the privacy) vs.
reliable data sources (that provided data without any data compromise.

for examining the BalancePIC simulations and PPTD [13],
which were analyzed previously. Findings from both cannot be
directly compared. Nonetheless, deductions can be composed
of the findings of simulations of BalancePIC, the PPTD
experiment as well as the assessment of CRH [11], [27], which
is a crowd-based IoT sensing scheme applied within the PPTD.
The results of the comparison between PPTD, BalancePIC,
voting, and other studies are displayed in Figure 3.

We can see that a minimum error rate is about 0.70-0.71,
which is illustrated in Fig. 3. The error curve in the figure
implies that the error found in maintaining the user privacy
and collected data that is without any data compromise, i.e.,
which is with high data integrity. In the error calculation,
the rounding factor L is irrespective [13] when the absolute
error average (calculated by using the average of absolute
distance between approximated outcomes and the ground
truths) applied in PPTD scheme is united with CRH with the
expression of the dotted blue line, and the error is found to
be 0.70-0.71. It displays that as far as there is a single data
reliable source of data (see Fig. 4), BalancePIC has a rate
of error close to O (with the illustration of the black line).
It demonstrates that the PPTD generates an error of about
0.71 without any of the additives for maintaining privacy. The
simulations confirm that BalancePIC contains an error of
0.05 at the time of its “worst case”, and a high variance
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of weight +/- 5% scenario while employing the enhanced
technique. Nonetheless, the value of weight can result in a
much lower error of about 0.001 using a lower variance.

As mentioned previously, it is not possible to compare
directly the findings of PPTD experiments with BalancePIC
simulations. The importance of the errors generated by using
PPTD is to provide evidence of the enhancement incorrectness
of data provided by BalancePIC. It is noteworthy that
BalancePIC also performs actions to certify the integrity of
data by safeguarding the users having the intention of altering
the approximated ground truth.

VII. CONCLUSIONS

We have presented BalancePIC, a novel scheme to pro-
vide a balance between the data security tasks and computa-
tional efforts for performing security tasks. BalancePIC ad-
vances the previous schemes by fulfilling three requirements of
IoT network: preserving the privacy of the device users when-
ever a user attempts to login in or gets involved in the data
collection; the data integrity, such as integrity of the data at the
data collection party; and the low-cost of computation in the
edge-assisted IoT networks. To achieve this, in BalancePIC,
we have presented a system design. This includes an extraction
method, a biometric-ECC based authentication algorithm and
the reliability weight based on the enhanced truth discovery.
Simulations running the BalancePIC scheme show that
accurate data within a few thousands of the percentage can
be achieved whilst preserving the privacy of the device user.
We believed that the proposed scheme can be applied to many
existing works with a modification for better performance and
molded to serve a particular context.
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