
Tiresias: Optimizing NUMA Performance with CXL
Memory and Locality-Aware Process Scheduling

Wenda Tang1,2, Tianxiang Ai1 and Jie Wu2
1China Telecom eSurfing Cloud

2China Telecom Cloud Computing Research Institute
{tangwd1,aitianxiang,wujie}@chinatelecom.cn

ABSTRACT
The growing demand for memory systems with larger ca-
pacities and faster data transfer speeds has driven progress
in the widespread adoption of multi-socket machines and
memory expansion through Compute eXpress Link (CXL).
However, processes running on such multi-socket machines
suffer non-uniform bandwidth and latency when accessing
physical memory. Despite prior efforts to propose data al-
location and placement strategies in NUMA environments
over the years, they still fall short due to the semantic gap
between the process scheduling and memory access pattern
– the process scheduler has limited knowledge of its run-
ning processes’ memory access latency. Actually, the latency
of memory access is influenced not only by the distance be-
tween NUMA nodes but also by the memory bandwidth pres-
sure, especially in scenarios involving co-located workloads.
We propose Tiresias, a feedback-based controller that mi-
grates NUMA effects on data access latency by transparently
employing memory locality-aware process scheduling and
provisioning differentiated memory bandwidth allocations
with assistance from CXL memory. Tiresias exploits multiple
resource optimization techniques, including (1) workload-
aware and software-based memory bandwidth management,
(2) a memory page migration strategy to alleviate mem-
ory bandwidth contention by leveraging CXL memory, and
(3) page-table self-replication (PTSR) based locality-aware
process scheduling. To evaluate the impact of Tiresias on
performance, we conduct an analysis that focuses on the
temporal and spatial correlation of memory access patterns.

KEYWORDS
CXL, NUMA, TLB, page-table replication, memory tiering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ACM-TURC ’24, July 05–07, 2024, Changsha, China
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1011-7/24/07
https://doi.org/10.1145/3674399.3674411

ACM Reference Format:
Wenda Tang1,2, Tianxiang Ai1 and Jie Wu2. 2024. Tiresias: Optimiz-
ing NUMA Performance with CXL Memory and Locality-Aware
Process Scheduling. In ACM Turing Award Celebration Conference
2024 (ACM-TURC ’24), July 05–07, 2024, Changsha, China.ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3674399.3674411

1 INTRODUCTION
Multi-socket architectures, connected via cache-coherent
interconnects, provide scalable memory bandwidth at high
capacities and are commonly used in modern data centers
and cloud deployments. Meanwhile, emerging architectures
using chiplets and multi-chip modules are driving the NUMA
(Non-UniformMemoryAccess) paradigm: accessingmemory
connected to the local socket typically offers greater band-
width and lower latency compared to accessing memory
linked to a remote socket. While NUMA can offer advan-
tages, it may also present challenges such as load imbalance,
resource fragmentation, and sub-optimal resource schedul-
ing. Furthermore, in order to mitigate the rising expenses
associated with the construction and operation of cloud data
centers, cloud service providers are actively exploring di-
verse strategies to enhance resource efficiency. For instance,
using dynamic resource management methods to co-locate
a greater number of application workloads into standard
physical servers in order to optimize server resource utiliza-
tion. However, increased workload density poses a signifi-
cant challenge in multi-tenant cloud environments, leading
to performance degradation issues. For example, the conse-
quences of Quality of Service (QoS) violation can be severe in
high-density cloud scenarios with “noisy neighbors”: some
applications consume a disproportionately high amount of
shared memory bandwidth, leading to saturation of the mem-
ory bandwidth. As a result, many applications suffer signifi-
cantly higher memory access latency. Fig. 1 shows how the
memory access latency (measured by Intel Memory Latency
Checker) increases monotonically as the memory bandwidth
pressure increases. Thememory access latency first increases
linearly and then increases exponentially when the mem-
ory bandwidth reaches a knee-point around 60% [23]. To
mitigate the performance interference in memory subsys-
tem, Intel introduces Resource Director Technology (RDT)

https://doi.org/10.1145/3674399.3674411
https://doi.org/10.1145/3674399.3674411


ACM-TURC ’24, July 05–07, 2024, Changsha, China Tang et al.

0 20 40 60 80 100
Memory Bandwidth (GB/s)

100

150

200

250

M
em

or
y 

Ac
ce

ss
 L

at
en

cy
 (

ns
)

86.1 89.4 94.1 99.3
110.2 111.9118.8

134.0

181.8

230.4
252.5

Figure 1: Memory bandwidth-latency curve. The la-
tency denotes the time used to access the memory of
local NUMA node with varying memory traffic on the
memory controller.

on its Xeon Scalable processors. RDT provides cores with
fine-grained hardware resource isolation support for LLC ca-
pacity and memory bandwidth limits. However, the process
of allocating memory bandwidth resources relies heavily
on the specific characteristics of an application, as well as
the intricate circumstances of workloads co-location. This
can present a challenge for end users due to its complex-
ity. Although decades of research efforts have been made to
propose NUMA-aware data placement strategies [7], NUMA-
aware thread scheduling [5], and NUMA-aware data/thread
co-scheduling [4, 16] over the years, they still fall short due
to the semantic gap between process scheduling andmemory
access patterns – the process scheduler has limited knowl-
edge of its running processes’ memory access performance.

Fortunately, workloads in public clouds are typically clas-
sified into two primary categories: latency-critical (LC) and
best-effort (BE) [11]. LC workloads, such as social media and
search engines, are prevalent and typically require lower
memory bandwidth resources but have strict service level
objectives (SLOs) concerning tail latency. On the other hand,
BE workloads are generally throughput-focused applications
(e.g., offline analytics) with highmemory bandwidth resource
requirements and less stringent latency constraints [23].
These motivate us to provide differentiated services to these
two types of workloads by leveraging RDT andNUMA-aware
strategies, where we aim to meet the SLOs of LC workloads
by ensuring memory access performance and to maximize
the throughput of BE workloads by efficiently allocating
the remaining memory bandwidth resources. Additionally,
Compute eXpress Link (CXL) is gaining recognition as a
groundbreaking technology that enhances memory band-
width while provides higher memory access latency [22].
While the memory access latency of CXL may not match
that of local NUMA, its supplementary memory bandwidth
serves as an valuable resource for BE workloads.

In this paper, we propose Tiresias1, a feedback-based con-
troller that optimize NUMA performance by transparently
1A revered figure in Greek mythology, known for his profound wisdom and
unique ability to foresee the future.

employing memory locality-aware process scheduling and
provisioning differentiated memory bandwidth allocations
with assistance from CXL memory. In Tiresias, workloads
that are user-oriented and have strict Service-Level-Agreement
(SLA) targets are given more reliable guarantee of high per-
formance memory resource allocation. On the contrary, for
tasks that are not latency-sensitive (i.e., BE workloads), CXL
memory resources serve as supplementary provisions, ensur-
ing the availability of burstable resources during instances
of resource scarcity.

In summary, the contributions of this work include:
• Mitigating memory interference via CXL mem-
ory expansion. By integrating CXL memory into the
traditional NUMA platform, we enhance the memory
bandwidth management capabilities, effectively mit-
igating the negative impacts of memory contention
among co-located workloads, thereby leading to im-
proved system performance and higher efficiency.

• Optimizing NUMA performance via resource co-
scheduling. We exploit multiple resource optimiza-
tion techniques in Tiresias, including (1) workload-
aware and software-based memory bandwidth man-
agement (§3.1), (2) a memory page mgiration strat-
egy to alleviate memory bandwidth contention by
leveraging CXL memory (§3.2), and (3) page-table
self-replication (PTSR) based locality-aware process
scheduling (§3.3).

• Performance analysis. We analyze the expected per-
formance of Tiresias by discussing the temporal and
spatial locality of memory access patterns of work-
loads. Besides, by utilizing both local memory and CXL
memory resources simultaneously, Tiresias demon-
strates noteworthy resource efficiency.

The remainder of the paper is organized as follows. §2 pro-
vides an overview of background and delineates the research
motivation behind our paper. §3 describes the design details.
In §4, we carry out performance analysis to showcase the
effectiveness of our design. §5 presents the conclusion and
future work.

2 BACKGROUND AND MOTIVATION
In this section, we review the NUMA performance optimiza-
tion literature related to our proposal, e.g., CXL-based mem-
ory pooling/tiering and data placement strategies in NUMA
systems.

2.1 Memory Pooling/Tiering and CXL
Memory pooling and tiering have become essential tech-
niques for enhancing resource utilization and cost efficiency.
Memory pooling allows for the aggregation of memory re-
sources from multiple servers, enabling them to be shared



Tiresias: Optimizing NUMA Performance with CXL Memory and Locality-Aware Process Scheduling ACM-TURC ’24, July 05–07, 2024, Changsha, China

Host CPU

CXL Controller

M
em

or
y 

C
trl

.

DDR

DDR

CXL/PCIe

 CXL Switch

Memory Ctrl.

DDR

DDR
CXL/PCIe

Host CPU

CXL/PCIe

M
em

or
y 

C
trl

.

DDR DDR

CXL Controller
CXL/PCIe

Memory Ctrl.

DDR DDR

CXL Controller
CXL/PCIe

Memory Ctrl.

DDR DDR

CXL Memory Pool

Memory
Page

Migration

Figure 2: CXL memory pool architecture.

and dynamically allocated among cloud workloads. This ap-
proach helps to mitigate memory stranding, where allocated
memory remains underutilized due to the fixed configura-
tion of physical servers [13]. Additionally, memory tiering
enhances pooling by classifying memory into distinct tiers
according to performance attributes like latency, bandwidth,
and expenses. The upper tier typically consists of faster,
more expensive memory (e.g., DRAM), while the lower tier
includes slower, more cost-effective alternatives (e.g., NVM).
By intelligently placing frequently accessed data (i.e., hot
data) in the faster tier and less frequently accessed data (i.e.,
cold data) in the slower tier, tiered memory systems can
achieve a balance between performance and cost [8, 18–20].
The Compute eXpress Link (CXL) [6, 26] is a protocol

that connects devices using the PCI Express (PCIe) interface
as the physical layer. It enables the connection of remote
byte-addressable CXL-memory to the physical address space
of the host machine, presenting itself as a CPU-less NUMA
node to applications [12, 13, 15]. The CXL Consortium has
recently introduced CXL version 3.0 [21], which includes
memory sharing features. In contrast to memory pooling in
CXL 2.0, the memory sharing functionality in version 3.0
allows the CXL switch to assign the same remote memory
area to several physical addresses of host machines simulta-
neously. This facilitates concurrent updates within the same
coherency domain [26]. Fig. 2 provides a conceptual repre-
sentation of the CXL memory pool architecture.

Several research efforts have explored the design and im-
plementation of CXL-based memory pooling [13] and CXL-
based tiering solutions [15]. For instance, Li et al. [13] focuses
on memory pooling using CXL, aiming to reduce DRAM
costs while meeting stringent cloud performance goals. Their
design builds on the insight that pooling across a manage-
able number of sockets is sufficient to capture most of the
benefits, thus enabling small-pool designs with low access
latency. Maruf et al. [15] presents TPP (Transparent Page
Placement) that leverages the CXL to enable efficient page
placement across different memory tiers. TPP is designed to

CXL memory

Socket 0 Socket 1

Socket 2 Socket 3

M
em

or
y 

0

PCIe

M
em

or
y 

2

M
em

or
y 

3
M

em
or

y 
1

Data

L1
L2
L3
L4

Process

Process

Process Process

QPI

L1
L2
L3
L4

L1
L2
L3
L4

L1
L2
L3
L4

L1 L2 L3 L4

CPU

Figure 3: An illustration of PTSR and data placement
for a multi-socket workload using 4-socket system
with CXL memory.

be application-transparent and can significantly improve the
performance of memory-intensive applications in produc-
tion environments.

2.2 NUMA-Aware Data Placement
Applications tend to operate optimally when the tasks access
memory located on the local NUMA node. The Automatic
NUMA Balancing (ANB) approach consistently seeks to re-
locate application data to the memory node that is nearest
to the tasks [7]. In the process of ANB, there’s a kernel task
that periodically examines a fraction of a process’s memory.
By default, it inspects 256MB of pages on each memory node.
If a CPU interacts with a sampled page, it results in a minor
page-fault, referred to as a NUMA hint fault. Pages that are
accessed by a remote CPU are migrated to the local mem-
ory node of that particular CPU, a process known as page
promotion [15].

As modern servers continue to expand their memory size,
surpassing the capacity of the Translation Lookaside Buffer
(TLB), they experience more TLB misses. This typically hap-
pens when executing large-memory workloads or during
the migration of a process or thread between NUMA nodes.
A TLB miss initiates a page-table walk, a process that in-
curs significant overhead. This overhead is magnified if the
page-table resides in remote memory, resulting in what is
known as the NUMA effect induced by the page-table [2, 17].
To alleviate the impact of the page-table-induced NUMA
effect, contemporary research suggests the implementation
of page-table self-replication (PTSR). Fig. 3 provides a con-
ceptual representation of PTSR and process of a TLB miss
for "Data" in CXL memory. The principal concept is to cre-
ate duplicates of an application’s page-tables, ensuring each
NUMA node possesses an identical replica. Consequently,
every page table access is consistently conducted in local
memory, thereby diminishing the NUMA effect instigated
by the page-table.



ACM-TURC ’24, July 05–07, 2024, Changsha, China Tang et al.

User mode Kernel mode
Start 

Measure memory access latency 

Memory bandwidth 
contention

Throttled memory
bandwidth

No

Syscall: perf_event_open()

Sample memory 
access addresses

Invalidae page-table entries

Validate page-table entries by 
handling page faults 

Yes

Find a BE workload's PID

Figure 4: Software memory bandwidth control.

3 TIRESIAS DESIGN
3.1 Differentiated Memory QoS Guarantee
Due to significant differences in the impact of memory la-
tency on performance between LC and BE workloads, it is
important to prioritize meeting the memory demands of LC
workloads within reasonable limits when facing memory
bandwidth resource contention.

To this end, Tiresias firstly classifies black-box workloads
as either LC or BE by leveraging resource utilization pattern.
Then, Tiresias proceeds to offer a differentiated memory QoS
guarantee for both types of workloads. At beginning, all
black-box workloads are marked as LC by default since it is
fine to classify a delay-insensitive workload as interactive,
but not vice-versa [24]. We periodically issue non-temporal
store/load instructions to sample real-time memory access
latency in local NUMA. When the mean value of sampled
memory access latencies exceeds a pre-determined threshold
(set at 180ns in our configuration), it indicates the occurrence
of memory bandwidth contention of local NUMA. To address
this issue, we throttle the memory bandwidth of BE work-
loads, prioritizing LC workloads. However, not all processors
have RDT support. Therefore, we design a software memory
bandwidth control method to address the limitation. Fig. 4
shows the details. We employ a page-table based scheme to
constrain thememory bandwidth utilization of BEworkloads
in the absence of RDT, thereby ensuring the performance
of LC workloads is not compromised. As such, Tiresias can
relieve the performance pressure on LC workloads, thereby
optimizing the overall system performance without compro-
mising the quality of BE workloads.

3.2 Bandwidth Expansion via CXL Memory
It is important to highlight that controlling memory band-
width solely can significantly impact the performance of BE
workloads. While recent work [23] suggests that using long-
term resource isolation and short-term resource sharing for
LC and BE workloads can offer differentiated QoS guaran-
tees, it fails to fully exploit the extra memory bandwidth
resource provided by CXL memory. Therefore, we want to

User mode

Kernel mode

Sample memory
access addressesLatency

Critical
Yes

No

Finish

Invalidate page-
table entries

Validate page-table
entries by handing

page faults

Migrate pages to
CXL memory

1

2
Hot data

Yes
No

Start

Figure 5: Unthrottling memory bandwidth of BE work-
loads via CXL memory.

fill this gap by dynamically managing and allocating the ex-
tra bandwidth resource, thereby enhancing the performance
of both LC and BE workloads without compromising on their
respective QoS requirements.
CXL memory has recently been the focus of significant

research efforts as an emerging technology that provides
high-speed, byte-addressable data access [3, 9, 22, 25]. We
exploit CXL memory to complement memory bandwidth
in Tiresias. Fig. 5 provides the workflow of our designed
mechanism. Firstly, a profiling phase is performed to sample
the memory access addresses of BE workloads using Intel
PEBS (Precise Event Based Sampling) technology. We then
invalidate corresponding page table entries for BE workloads
(①). To unthrottle memory bandwidth by leveraging CXL
memory, we migrate less frequently used memory pages
(②) from sampled records to CXL memory during the page
fault handling procedure and filter out these memory access
records in subsequent rounds of PEBS sampling. Empirically,
we sort the sampled records to identify the hot data by a pre-
determined hotness threshold. We also employ feedback con-
trol to dynamically modulate the hotness threshold through
periodical real-time memory access latency measurements.

Upon identifying that the memory access latency of local
NUMA falls below a pre-determined threshold (for instance,
100ns in our settings), we disable memory bandwidth throt-
tling and page migration for BE workloads. Additionally, to
enhance performance, we employ memory page promotion
from CXL memory to local NUMA, which in turn minimizes
memory access latency. This mechanism ensures an adaptive
response to varying workload characteristics, thereby opti-
mizing the memory resource utilization while minimizing
the likelihood of potential memory access bottlenecks.

3.3 Locality-Aware Process Scheduling
While conventional PTSR solutions may decrease remote
memory accesses for page tables, they still necessitate re-
mote memory access if the data is situated in a remote NUMA
location. Therefore, we propose a locality-aware process
scheduling in Tiresias. When remote memory access exhibits
temporal and spatial locality, we enhance efficiency of PTSR



Tiresias: Optimizing NUMA Performance with CXL Memory and Locality-Aware Process Scheduling ACM-TURC ’24, July 05–07, 2024, Changsha, China

by substituting the replicated page tables with partial page-
tables distributed across NUMAnodes. Specifically, dedicated
partial page-tables are configured for each running workload
across NUMA nodes. Each partial page table is constructed
properly to ensure it only succeeds in translating the corre-
sponding virtual memory addresses whose physical memory
addresses are situated within its NUMA region.
The first-touch page placement policy is adopted in Tire-

sias. This policy places every page at the processor that first
reads from/writes to this page after page allocation. Consid-
ering the fact that many scientific loop-parallel programs
reportedly contain various data access patterns that are mu-
tually incompatible, these programs often experience a sig-
nificant number of expensive remote memory accesses [14].
Therefore, in Tiresias, if a thread issues a memory access re-
quest that has to retrieve data from a different NUMA node’s
memory, a "cross-NUMA page fault" will take place. Subse-
quently, the OS will handle this page fault by rescheduling
the thread to the CPU located on the specific target NUMA
node. This method ensures that the thread is executed on the
appropriate CPU for efficient data retrieval and processing
within the designated NUMA domain.

4 PERFORMANCE ANALYSIS
In this section, we analyze the performance obtained by us-
ing Tiresias under CXLmemory expansion. Given aworkload
with 𝑀 accesses to local NUMA and 𝑁 accesses to remote
NUMA totally, 𝑙𝑎𝑐𝑐𝑒𝑠𝑠 (approximately 100ns) and 𝑠𝑎𝑐𝑐𝑒𝑠𝑠 (ap-
proximately 1us) represent the access latency for local and
remote NUMA, respectively. The expected average access
latency 𝐸 can be calculated by employing the linear super-
position of expectations:

𝐸 =
𝑙𝑎𝑐𝑐𝑒𝑠𝑠 +

∑𝑀+𝑁
𝑖=2 ((𝑝1 + 𝑝2)𝑙𝑎𝑐𝑐𝑒𝑠𝑠 + 2𝑝3𝑠𝑎𝑐𝑐𝑒𝑠𝑠 )

𝑀 + 𝑁
(1)

, where 𝑝1, 𝑝2 and 𝑝3 represent probabilities of occurrence
for two consecutive local access, two consecutive remote
access, and other cases. Specifically, 𝑝1 =

(
𝑀+𝑁−2

𝑁

)
/
(
𝑀+𝑁
𝑁

)
=

𝑀 (𝑀−1)
(𝑀+𝑁 ) (𝑀+𝑁−1) , 𝑝2 =

(
𝑀+𝑁−2

𝑀

)
/
(
𝑀+𝑁
𝑀

)
=

𝑁 (𝑁−1)
(𝑀+𝑁 ) (𝑀+𝑁−1) , and

𝑝3 =
(
𝑀+𝑁−2
𝑁−1

)
/
(
𝑀+𝑁
𝑁

)
= 𝑀𝑁

(𝑀+𝑁 ) (𝑀+𝑁−1) . Then,

𝐸 = (𝑀
2 + 𝑁 2

𝑀 + 𝑁
𝑙𝑎𝑐𝑐𝑒𝑠𝑠 +

2𝑀𝑁

𝑀 + 𝑁
𝑠𝑎𝑐𝑐𝑒𝑠𝑠 )/(𝑀 + 𝑁 ). (2)

It is worth noting that 𝑠𝑎𝑐𝑐𝑒𝑠𝑠 encompasses both the sched-
uling overhead and the actual local NUMA access latency.
Recent findings [26] suggest that the memory latency for
CXL memory, denoted by 𝑟𝑎𝑐𝑐𝑒𝑠𝑠 , typically hovers around
390ns, which is significantly higher than the access latency
values for local NUMA. It is important to acknowledge that
the expected average memory access latency (𝑖 .𝑒 ., 𝐸) is theo-
retical in nature. The actual performance is frequently im-
pacted by the concept of temporal and spatial locality of

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time 1e7

4.0
0

4.2
5

4.5
0

4.7
5

5.0
0

5.2
5

5.5
0

5.7
5

M
em

or
y 

Vi
rt

ua
l A

dd
re

ss

1e9+1.3971e14

0.00188

0.00475

0.00706

0.00886

0.01032

0.01116

0.01302

0.01453

0.01542

0.02134

temporal locality

sp
at

ia
l l

oc
al

ity

Figure 6: Kernel density estimation plot of memory
address accesses over time in a Memcached.

memory access of application workloads. This principle indi-
cates that memory accesses following a particular access are
more likely to be directed towards data that has been recently
accessed or data located close to previous accesses. Fig. 6
represents a kernel density estimation plot showing the pat-
tern of memory address accesses over time in a Memcached
system captures by DynamoRIO [1]. As can be seen, Mem-
cached demonstrates notable temporal and spatial locality
in memory accesses. This kind of locality plays a significant
role in decreasing effective latency, potentially resulting in
situations where 𝐸 ≪ 𝑟access.

However, it should be noted that there is a noticeable pres-
ence of remote memory access contributing to a significant
portion of the total memory bandwidth for some benchmarks
(e.g., NPB suite [10]), ranging from 11% to 48% [14]. As a re-
sult, only data locality-aware CPU scheduling may lead to
substantial overhead due to the challenges posed by the low
temporal and spatial locality of memory accesses. Therefore,
Tiresias periodically detects such fluctuations and switches
back to conventional PTSR solution.

5 CONCLUSION AND FUTUREWORK
In this paper, we propose Tiresias, a feedback-based con-
troller that migrates NUMA effects on data access latency
by transparently employing memory locality-aware process
scheduling and provisioning differentiated memory band-
width allocations with assistance from CXL memory. By em-
ploying multiple resource optimization techniques, Tiresias
not only provides differentiated performance QoS guaran-
tees for both LC and BE workloads but also significantly
enhances NUMA system performance. Based on our perfor-
mance analysis, we have also identified substantial potential
performance enhancements with the observations of tem-
poral and spatial locality of memory access. In the future,
we plan to conduct experiments on real CXL hardware to
evaluate the effectiveness of Tiresias.



ACM-TURC ’24, July 05–07, 2024, Changsha, China Tang et al.

REFERENCES
[1] 2024. DynamoRIO dynamic instrumentation tool platform. http://

dynamorio.org/
[2] Reto Achermann, Ashish Panwar, Abhishek Bhattacharjee, Timo-

thy Roscoe, and Jayneel Gandhi. 2020. Mitosis: Transparently self-
replicating page-tables for large-memory machines. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems. 283–300.

[3] Moiz Arif, Kevin Assogba, M. Mustafa Rafique, and Sudharshan
Vazhkudai. 2022. Exploiting CXL-based Memory for Distributed Deep
Learning. In Proceedings of the 51st International Conference on Parallel
Processing, ICPP 2022, Bordeaux, France, 29 August 2022 - 1 September
2022. ACM, 19:1–19:11. https://doi.org/10.1145/3545008.3545054

[4] Nathan Beckmann, Po-An Tsai, and Daniel Sánchez. 2015. Scal-
ing distributed cache hierarchies through computation and data co-
scheduling. In 21st IEEE International Symposium on High Performance
Computer Architecture, HPCA 2015, Burlingame, CA, USA, February
7-11, 2015. IEEE Computer Society, 538–550. https://doi.org/10.1109/
HPCA.2015.7056061

[5] Yuetao Chen, Keni Qiu, Li Chen, Haipeng Jia, Yunquan Zhang, Limin
Xiao, and Lei Liu. 2022. Smart scheduler: an adaptive NVM-aware
thread scheduling approach on NUMA systems. CCF Transactions on
High Performance Computing 4, 4 (2022), 394–406.

[6] SM CXL Consortium et al. 2022. Compute express link: The break-
through CPU-to-device interconnect. Retrieved February 2 (2022),
2023.

[7] Zhuohui Duan, Haikun Liu, Xiaofei Liao, Hai Jin, Wenbin Jiang, and
Yu Zhang. 2019. Hinuma: Numa-aware data placement and migration
in hybrid memory systems. In 2019 IEEE 37th International Conference
on Computer Design (ICCD). IEEE, 367–375.

[8] Subramanya R Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan
Sundaram, Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten
Schwan. 2016. Data tiering in heterogeneous memory systems. In
Proceedings of the Eleventh European Conference on Computer Systems.
1–16.

[9] Junhyeok Jang, Hanjin Choi, Hanyeoreum Bae, Seungjun Lee,
Miryeong Kwon, and Myoungsoo Jung. 2023. CXL-ANNS: Software-
Hardware Collaborative Memory Disaggregation and Computation for
Billion-Scale Approximate Nearest Neighbor Search. In 2023 USENIX
Annual Technical Conference (USENIX ATC 23). USENIX Association,
Boston, MA, 585–600. https://www.usenix.org/conference/atc23/
presentation/jang

[10] Hao-Qiang Jin, Michael Frumkin, and Jerry Yan. 1999. The OpenMP
implementation of NAS parallel benchmarks and its performance.
(1999).

[11] Kostis Kaffes, Dragos Sbirlea, Yiyan Lin, David Lo, and Christos
Kozyrakis. 2020. Leveraging application classes to save power in
highly-utilized data centers. In Proceedings of the 11th ACM Sympo-
sium on Cloud Computing. 134–149.

[12] Hwanjun Lee, Seunghak Lee, Yeji Jung, and Daehoon Kim. 2023. T-
CAT: Dynamic Cache Allocation for Tiered Memory Systems with
Memory Interleaving. IEEE Computer Architecture Letters (2023).

[13] Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-
doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,
Ishwar Agarwal, et al. 2023. Pond: Cxl-based memory pooling sys-
tems for cloud platforms. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2. 574–587.

[14] Zoltan Majó and Thomas R. Gross. 2012. Matching memory access pat-
terns and data placement for NUMA systems. In 10th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, CGO

2012, San Jose, CA, USA, March 31 - April 04, 2012. ACM, 230–241.
https://doi.org/10.1145/2259016.2259046

[15] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,
Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-
hury, Shobhit O. Kanaujia, and Prakash Chauhan. 2023. TPP: Transpar-
ent Page Placement for CXL-Enabled Tiered-Memory. In Proceedings
of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3, ASPLOS
2023, Vancouver, BC, Canada, March 25-29, 2023. ACM, 742–755.

[16] Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelkader Sellami,
and Anastasia Ailamaki. 2016. Adaptive NUMA-aware data placement
and task scheduling for analytical workloads in main-memory column-
stores. Proc. VLDB Endow. 10, 2 (oct 2016), 37–48. https://doi.org/10.
14778/3015274.3015275

[17] Hongliang Qu and Zhibin Yu. 2024. WASP: Workload-Aware Self-
Replicating Page-Tables for NUMA Servers. In Proceedings of the 29th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2. 1233–1249.

[18] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon
Peter. 2021. Hemem: Scalable tiered memory management for big
data applications and real nvm. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles. 392–407.

[19] Jie Ren, Dong Xu, Junhee Ryu, Kwangsik Shin, Daewoo Kim, and
Dong Li. 2024. MTM: Rethinking Memory Profiling and Migration for
Multi-Tiered Large Memory. In Proceedings of the Nineteenth European
Conference on Computer Systems. 803–817.

[20] Sai Sha, Chuandong Li, Yingwei Luo, XiaolinWang, and ZhenlinWang.
2023. vTMM: Tiered Memory Management for Virtual Machines. In
Proceedings of the Eighteenth European Conference on Computer Systems.
283–297.

[21] D Das Sharma and Ishwar Agarwal. 2022. Compute Express Link 3.0.
white paper, CXL Consortium (2022).

[22] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan
Huang, Houxiang Ji, Siddharth Agarwal, Jiaqi Lou, Ipoom Jeong, et al.
2023. Demystifying cxl memory with genuine cxl-ready systems and
devices. In Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture. 105–121.

[23] Wenda Tang, Senbo Fu, Yutao Ke, Qian Peng, and Feng Gao. 2022.
Themis: Fair Memory Subsystem Resource Sharing with Differentiated
QoS in Public Clouds. In Proceedings of the 51st International Conference
on Parallel Processing. 1–12.

[24] Wenda Tang, Jiazhen Zhu, Tianxiang Ai, Guanghui Li, Bin Yu,
Xin Yang, and Wanchun Dou. 2023. Thoth: Provisioning Over-
Committed Memory Resource with Differentiated QoS in Public
Clouds. In 2023 IEEE International Conference on High Performance
Computing & Communications, Data Science & Systems, Smart City
& Dependability in Sensor, Cloud & Big Data Systems & Application
(HPCC/DSS/SmartCity/DependSys). IEEE, 82–89.

[25] Yupeng Tang, Ping Zhou, Wenhui Zhang, Henry Hu, Qirui Yang, Hao
Xiang, Tongping Liu, Jiaxin Shan, Ruoyun Huang, Cheng Zhao, Cheng
Chen, Hui Zhang, Fei Liu, Shuai Zhang, Xiaoning Ding, and Jian-
jun Chen. 2024. Exploring Performance and Cost Optimization with
ASIC-Based CXL Memory. In Proceedings of the Nineteenth European
Conference on Computer Systems, EuroSys 2024, Athens, Greece, April
22-25, 2024. ACM, 818–833. https://doi.org/10.1145/3627703.3650061

[26] Mingxing Zhang, Teng Ma, Jinqi Hua, Zheng Liu, Kang Chen, Ning
Ding, Fan Du, Jinlei Jiang, Tao Ma, and Yongwei Wu. 2023. Partial
Failure Resilient Memory Management System for (CXL-based) Dis-
tributed Shared Memory. In Proceedings of the 29th Symposium on
Operating Systems Principles (Koblenz, Germany) (SOSP ’23). Associa-
tion for Computing Machinery, New York, NY, USA, 658–674.

http://dynamorio.org/
http://dynamorio.org/
https://doi.org/10.1145/3545008.3545054
https://doi.org/10.1109/HPCA.2015.7056061
https://doi.org/10.1109/HPCA.2015.7056061
https://www.usenix.org/conference/atc23/presentation/jang
https://www.usenix.org/conference/atc23/presentation/jang
https://doi.org/10.1145/2259016.2259046
https://doi.org/10.14778/3015274.3015275
https://doi.org/10.14778/3015274.3015275
https://doi.org/10.1145/3627703.3650061

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Memory Pooling/Tiering and CXL
	2.2 NUMA-Aware Data Placement

	3 Tiresias Design
	3.1 Differentiated Memory QoS Guarantee
	3.2 Bandwidth Expansion via CXL Memory
	3.3 Locality-Aware Process Scheduling

	4 Performance Analysis
	5 Conclusion and Future Work
	References

