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Abstract—With the popularity of cloud computing, optimizing
cloud resource consumption while providing predictable cloud
service has become one of the focuses of research in recent years.
In order to ensure a predictable performance, the requests from
tenants are abstracted as Virtual Clusters, which not only specify
the computing demands, but also establish the communication
requirements among virtual machines. While much work has
been done on virtual cluster embedding under a variety of goals,
very few people have studied this issue in consideration of service
survivability, which also plays a vital role in ensuring the perfor-
mance in cloud data centers. In this paper, we study the resource
optimization for survivable embedding of virtual clusters and
aim to minimize the consumption of cloud resources in terms
of server and bandwidth, while ensuring that both the resource
constraints and the survivability constraints are not violated. We
formally define this problem and analyze its complexity, and
design efficient algorithms to solve the problem. Comprehensive
experimental results verify that the overall resource consumption
can be significantly reduced by applying our proposals.

Index Terms—Virtual Cluster, resource optimization, surviv-
ability, bandwidth guarantee, cloud data center.

I. INTRODUCTION

Virtualization has already become a widely adopted tech-
nology for sharing resources in cloud computing [1, 2]. By
multiplexing physical resources such as server and network
bandwidth through properly scheduling the requests from
different tenants, the resource usage can be reduced while
the service level agreement (SLA) of each tenant is satisfied.
A simple interface is maintained between tenants and cloud
providers: cloud tenants submit their resource requests in the
form of virtual machines (VMs) to the cloud provider. The
cloud provider then decides the allocation of the physical
resources to each of the requested virtual machines. Simple
as it is, the shared nature of the network in multi-tenant
cloud data centers determines that the network performance
for different tenants can vary significantly. This has stimulated
the recent research on providing service abstractions that
guarantee the bandwidth in cloud resource sharing.
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The Virtual Cluster (VC) abstraction introduced in [3] is one
of the most popular service abstractions due to its simplicity
and efficiency [3–9]. The VC request allows each tenant to
specify a topology rather than only the number of VMs.
The topology specifies both the number of VMs required
and the minimum aggregate bandwidth capacity requirements
between any two VMs. The VC abstraction adopts the hose
model [3] to specify the bandwidth requirements between
each VM pair. When a VC request is admitted to access,
the cloud provider will place all the VMs of the tenant on
physical servers that have enough empty VM slots and reserve
sufficient bandwidth in the network to guarantee the bandwidth
requirements according to the hose model. In this way, the
network performance of the tenant is guaranteed. The resource
allocation process for VC requests is also named Virtual
Cluster Embedding (VCE).

In addition to bandwidth, another equally important perfor-
mance attribute that should be ensured when providing cloud
service to tenants is the service availability in the event of
a burst physical server failure. Unfortunately, many existing
proposals have failed to take ensuring service availability as
a goal when dealing with resource optimization for VCE.
In a large-scale cloud data center, physical server failure
can happen frequently [10]. When such a failure happens,
all VMs in the failed server will stop working. Even a
single element failure can cause severe revenue losses for
those tenants [11]. According to Cerin’s study [12], software
failures have led to up to tens of millions of dollars being
lost in current mainstream cloud systems including Amazon,
Windows Azure, Google App, etc. In order to reduce the losses
caused by these failures, a lot of survivability mechanisms that
exploit the redundancy of the resources in cloud data centers
are proposed [13] to enable a quick service recovery when
failures happen. One survivability mechanism [10] that has
been widely adopted in cloud data centers works in a proactive
manner. This mechanism is based on the observation that
some techniques, such as Hardware Predicted Failure Analysis
alerts, can provide an advanced warning of expected hardware
failure [14]. Such an alert can trigger the system to move the
VMs on a server that is about to fail to backup resources that
have been reserved prior to the actual failure, at the cost of an
underutilized resource when no failure happens. In this way,
the continuation of cloud service is guaranteed.978-1-5090-6468-7/17/$31.00 c⃝2017 IEEE



In this paper, we study the problem of resource optimization
for VCE in cloud data centers under the proactive survivability
constraint. Particularly, we consider VCE under 1-survivability
constraint, which means that a tenant service can recover from
an arbitrary single-server failure [10]. However, our solution
can be easily extended to a k-survivability case. We consider
the model that each physical server involves several uniform
VM slots, each representing one resource unit that has a certain
amount of CPU, memory, disks, etc. A slot can be used to
place an arbitrary VM. Given a fixed data center network
topology (typically a tree-like network architecture [15]) and a
set of VC requests, our aim is to find a feasible embedding plan
for all the VC requests in the cloud data center network that
minimizes both the server resource consumption (the number
of slots that should be reserved) and the bandwidth resource
consumption (the total bandwidth capacity that should be
reserved) without violating the 1-survivability constraint.

However, there is a conflict between simultaneously min-
imizing the bandwidth resource consumption and server re-
source consumption under the given survivability constraint.
Intuitively, we can increase the the fault tolerance by spreading
VMs of a tenant across many servers, thus reducing the server
resource consumption (by reducing the number of backup
VM slots). However, this allocation requires more bandwidth
resource in the network (as illustrated in Figure 5(a)). On the
other hand, to reduce the bandwidth resource consumption of
a tenant, we can assemble all the VMs in a subtree of the
network as much as possible. This allocation, however, reduces
the fault tolerance of a tenant, and thus increases the server
resource consumption (as illustrated in Figure 5(b)).

(a) (b)

Fig. 1. The survivable embedding of the VC request < 3, 1B > in a simple
network topology with three switches and four physical servers illustrates
the trade-off between server usage (spread VMs across servers, 5(a)) and
bandwidth usage (pack VMs together, 5(b)). A black box indicates a slot
has been allocated to a primary VM. A dotted box indicates a slot has been
allocated to a backup VM. The value on each link indicates the number of
bandwidth units that should be reserved in the plan. It can been seen that (a)
needs the least slots (4) at the cost of 8 units of bandwidth; (b) consumes no
bandwidth at the cost of 6 slots.

One challenge in this scheduling problem is achieving a
good balance between server resource consumption and band-
width resource consumption. To tackle the resource optimiza-
tion problem, we first give a detailed description of the service
model adopted in this paper. Then, a formal definition of the
problem that combines two objectives (i.e., server resource
optimization and bandwidth resource optimization) into a
unified objective is presented. We then apply optimization
techniques to compute an efficient VCE plan in terms of

minimizing the unified objective for a single VC request.
Finally, we design an effective heuristic scheduling algorithm
that packs multiple VC requests to cloud data center networks
to minimize the unified objective.

The main contributions are summarized as follows.
• This paper models and defines the VC request embedding

problem under the survivability constraint. It formulates
the resource optimization problem in terms of both server
resource and bandwidth resource into an bi-objective
optimization problem. Furthermore, we analyze that the
problem is NP-hard in general.

• We design a novel scheduling algorithm with the follow-
ing features: i) it exploits the trade-off between server
resource usage and bandwidth resource usage to reduce
the unified objective; ii) it provides a simple method for
approximating the maximum load on the subtree rooted
at an arbitrary node in the network topology.

• We conduct comprehensive simulations to evaluate the
performance of our algorithms, and experimental results
verify that our proposal can achieve a significant reduc-
tion of resource consumption.

The remainder of this paper is organized as follows. Sec-
tion II provides the background and related work. Section
III presents the models and problem statement. Section IV
presents the optimization framework and algorithm details.
Section V shows the experimental results and Section VI
concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Virtual Cluster Embedding

Virtual cluster (VC) is one of the most popular service
abstractions for a multi-tenant cloud computing environment.
It offers a bandwidth guarantee among all the VMs [3]. The
VC request, r :< N,B >, allows tenants to specify a topology
rather than only the number of VMs. The topology specifies
both the number of VMs required (N) and the minimum ag-
gregate bandwidth capacity requirement (B) between any two
VMs (as illustrated in Figure 2). The VC abstraction adopts the
hose model [3] to specify the bandwidth requirement between
each VM pair. For each switch, v, in the network, assume that
the number of VMs within the subtree rooted at v is Nv , then,
the bandwidth reserved on outbound link of switch v for VC
request r should be no less than min{nv, N−nv}·B. The VC
abstraction is simple and flexible, and thus has been widely
used in both academia and industry.

...

virtual switch

B
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Fig. 2. An example of virtual cluster provisioning.

When a VC request arrives, the cloud provider then places
all the VMs on physical servers that have enough VM slots
and reserves sufficient bandwidth in the network to guarantee



the bandwidth requirement according to the hose model. In
this way, the network performance of the tenants is guaranteed.
The resource allocation process for VC requests is also named
Virtual Cluster Embedding (VCE). A feasible VCE indicates
that the resource capacity constraint is not violated.

B. Survivable VCE

Survivability plays a vital role in cloud service provision.
The topic of providing survivable virtual cloud services has
been studied extensively, focusing on either survivable VM
hosting or virtual infrastructure hosting. However, ensuring a
high survivability in VCE efficiently remains a problem. The
only relevant work on this topic is conducted by Yu et al.
in [16], where the authors study the problem of providing a
survivable VCE with minimal resource consumption as we do.
However, they focus on a simple case where only the server
resource in terms of the VM slot is considered for a single VC
request scenario, while our work simultaneously optimizes the
consumption of both the server and bandwidth resources for
multiple VC requests scenario.

This work considers a proactive 1-survivability mechanism.
When a VC request is accepted, the cloud provider will not
only place the primary VMs of the VC request in the network,
but will also reserve enough backup resources for this VC
request to ensure that there are enough backup VM slots
and bandwidth resources in the event of an arbitrary single
physical server failure under the hose communication model.
We consider 1-survivability due to the fact that, while single-
server failures are frequent in cloud data centers, simultaneous
multi-server failures are rare [17]. Once an advanced warning
of expected server failure is generated, the system moves all
the VMs on the failing server to backup slots for sustained
service. To avoid confusion, the VMs requested by tenants
are called primary VMs and the VM slots reserved for backup
use are called backup VMs. Specifically, a survivable VCE is
defined as an allocation of server and bandwidth resources to
the VC request such that during any single-server failure, a
feasible VCE exists in the resilient network.

Figure 1 depicts two survivable VCE plans for the VC
request r :< 3, 1B >. In Figure 1(a), compared to a VCE
plan that uses only 3 VM slots and 5B units of bandwidth,
the survivable VCE plan consumes 4 VM slots and 8B units
of bandwidth. In Figure 1(b), compared to a VCE plan that
consumes only 3 VM slots and 0 units of bandwidth, the
survivable VCE plan consumes 6 VM slots and 0 units of
bandwidth. With these redundant resources, the service of r
can be recovered from any single-server failure.

III. MODELS AND PROBLEM STATEMENT

In this paper, we study the resource optimization problem
when providing embedding plans for virtual clusters in cloud
data centers under the survivability constraint. We first de-
scribe the scenarios and introduce some notations. Then, we
provide a formal definition for the survivable VC embedding
problem and formulate this problem into an optimization
problem. Finally, we analyze the complexity of the problem.

A. Network Service Models

The data center is portrayed as a large-scale computing
system made up with thousands of servers connected by a
specifically designed network topology. Let H denote the set
of all physical servers, the total number of servers in the
network is M = |H|. The data center network architecture
studied in this paper can be abstracted as a three-level single-
rooted tree, T = (V, E), where V is the set of switches
and E is the set of network links. It is composed of three
layers of network switches, namely access, aggregate, and
core layers. We assume that all servers in the network and all
links connecting the servers are identical. The bandwidth of
the uplink of each switch is the summation of the bandwidth
of the downlinks. This is reasonable since the networks are
generally built with identical commodity switches and uniform
servers in modern cloud data centers. We consider this type
of network architecture because many of the multi-rooted tree
based network architectures used today can be equivalently
abstracted as a single-rooted tree by aggregating multiple equal
paths into a single one. Figure 3 shows an example of the
equivalent abstraction of a 4-ary FatTree topology [18].

(a) Original 4-ary FatTree topology.

(b) Equivalent abstraction of a 4-ary FatTree topology.

Fig. 3. A 4-ary FatTree topology. In (a), the bandwidth of all links is 1 unit.
In (b), the bandwidth of the links associated with the root switch is 4 units;
The bandwidth of the links connecting with servers is 1 unit; The bandwidth
of the remaining links is 2 units.

We use slot to represent one resource unit that has a certain
amount of CPU, memory, disks, etc. Each slot can host one
virtual machine (VM). For each physical server, hi ∈ H, we
define c as the total number of VM slots on hi. For each uplink
out from a physical server, the bandwidth capacity of this link
is denoted by b. Tenants use VC abstraction to specify their
computing demands. We consider a set of m independent VC
requests, R = {ri|1 ≤ i ≤ m}, as the input demands. This
hypothesis makes sense because a typical strategy for handling
online job scheduling is to divide time into equal time slots
and schedule newly arrived tasks in a time slot as a batch. We
attempt to find survivable VCE plans for all requests in R.



B. Resource Optimization

Our aim is to determine a feasible and survivable embedding
plan for a given set of VC requests (i.e., R = {ri|1 ≤ i ≤ m})
that minimizes the total resource consumption. The problem is
important for cloud data centers, as it can help maximize the
data center’s future ability to accommodate tenants’ requests.
We describe an assignment of VMs by the variables {xk,i}.
The variable xk,i indicates the number of VMs of the VC
request rk (including both primary VMs and backup VMs) is
placed on server hi. The types of resources to be optimized
in this paper are listed as follows.
Server resource. We use the average number of VM slots that
are reserved and occupied on all physical servers as the overall
measure of the server resource consumption in the network.
Let SC denote the average server resource consumption. Cor-
respondingly, SC involves both the slots occupied by primary
VMs from tenants and the backup VMs reserved to ensure
service survivability. Then, SC can be formally defined as

SC(X) =
1

m

m∑
k=1

M∑
i=1

xk,i

Bandwidth resource. We use average bandwidth units that
are reserved on all links as the overall measure of the band-
width resource consumption in the network. Let BC denote
the average network resource consumption. Correspondingly,
BC includes the bandwidth reserved to guarantee the commu-
nication requirements among all the primary VMs and backup
VMs. Let F (k) denote the total number of both primary and
backup VMs of VC request rk. We use I(v, k) to denote the
number of VMs (both primary and backup VMs) located in
the subtree rooted at v. Then, BC can be formally defined as

BC(X) =
1

m

m∑
k=1

∑
v∈V∪H

min{I(v, k), F (k)− I(v, k)} ·Bk

We combine the above two objectives into a single objective
using a scalarization function. Specifically, the total resource
consumption considered in this paper is defined as the sum of
the bandwidth resource consumption and the server resource
consumption. Let TC denote the total resource consumption,
it can be formally defined as

TC = (1− α) ·BC + α · SC (1)

where α ∈ [0, 1] is a tunable positive weight. This scalarization
function accommodates a flexible trade-off between BC and
SC, expressed through the choice of α. In extreme cases (i.e.,
α equals 0 or 1), the above objective degenerates into a single
optimization.

Given the network topology with an initial assignment of
resources to services and a set of tenant VC demands as
the input, the problem we study in this paper is finding the
survivable embedding of all these VC requests that uses the
minimum total resources in cloud data centers. The unified
total resource (TC) considered here indicates both the band-
width and server resources. Formally, the problem is defined
as the following optimization problem.

Definition 1: Given network T = (V, E) and a set of tenant
VC requests, R = {ri|1 ≤ i ≤ m}, the goal of the Resource
Optimization for Survivable Virtual Cluster Embedding (RO-
SVCE) is to find an embedding plan for all the requests in the
network such that TC is minimized while the constraints on
either survivability or resource capacity are not violated.

Not surprisingly, the general RO-SVCE problem is NP-hard.
[3] This can be easily proven by a reduction from the bin
packing problem [19]. The key challenge of RO-SVCE is to
deal with the trade-off between server resource optimization
and bandwidth resource optimization. As illustrated in Figure
1, a solution that uses fewer slot resources will result in more
bandwidth consumption (as in Figure 5(a)), while a solution
that uses fewer bandwidth resources will result in more VM
slot consumption. In the following section, we will provide
efficient algorithms to deal with this issue.

IV. RESOURCE OPTIMIZATION FOR VIRTUAL CLUSTERS
UNDER SURVIVABILITY CONSTRAINT

In view of the hardness of the RO-SVCE problem, we
propose efficient heuristic algorithms to tackle this issue in
this section.

A. Solution for single VC requests

We start by designing an efficient algorithm that solves
this problem for a single VC request (i.e., r :< N,B >).
Before going into details, we first present two observations.
Let Nb denote the minimum number of backup slots needed
to guarantee the survivability constraint. Let qi denote the
number of VC request r’s primary VMs allocated to the
physical server, hi ∈ H.

Observation 1: Nb is determined by the maximum number
of primary VMs in a single physical server, i.e., Nb =
maxhi∈H{qi}. The total server resource consumption can be
formulated as SC = N + Nb. Thus, minimizing the server
resource usage is equivalent to minimizing the value of Nb.
This observation motivates us to control the server resource
consumption by adjusting the value of Nb, which can be easily
adjusted in a linear manner.

Observation 2: A minimum-bandwidth survivable VCE
should allocate all VMs within a subtree as much as possi-
ble. This observation motivates us to control the bandwidth
resource consumption by packing VMs together.

Based on the two observations, we design an algorithm
(S Algo) to tackle the RO-SVCE problem for a single VC
request. The intuition is that the consumption of the server
resource is linearly related to the value of Nb, while the
consumption of the bandwidth resource has a monotonic
relationship with the level of aggregation of the VMs. Given
the value of Nb, an embedding plan that consumes minimum
bandwidth resource can be find by searching the smallest
subtree that can accommodate the VC request. By adjusting
the value of Nb, we can achieve a balance between the
consumption of server and network resources.

S Algo is illustrated in Algorithm 1. The algorithm works
in a greedy manner. Initially, the number of backup VMs



Algorithm 1 S Algo(r).
Require: Data center topology T .
Ensure: Allocation for request VC r :< N,B >.

1: TC∗ ←∞, v∗ ← v0, l∗ ←∞.
2: for Nb ∈ {1, · · · , N} do
3: for hi ∈ H do
4: ci ← min{ci, Nb}.
5: /*Level 0 stands for the edge, level 1 represents the

aggregation, level 2 means the core*/
6: for l ∈ {0, 1, 2} do
7: Cal Capacity(l).
8: for each switch v in Level l do
9: /*nv is the capacity of node v*/

10: if nv ≥ (N +Nb) then
11: Cal Embeding(v).
12: Compute the total resource usage TC.
13: if TC > TC∗ then
14: Continue.
15: TC∗ ← TC, v∗ ← v.
16: if TC∗ =∞ then
17: No feasible solution exists.
18: else
19: Cal Embeding(v, l); Return TC∗.

(i.e., Nb) is set to 1. Given the value of Nb, the number
of available slots in each server is upper bounded by Nb

accordingly due to the survivability constraint. Then, we use
a procedure, Cal Capacity(l) (as illustrated in Algorithm 2),
to compute the number of available VMs that can be located
in the subtree rooted at each switch, v, in the network from
the bottom to the top (also referred to as the capacity of the
switch, i.e., nv). The Cal Capacity(l) procedure works in a
bottom-to-top manner. Once a switch, v, whose subtree has
enough capacity to hold the VC request, is found (without
loss of generality, let’s say that v is in level l), a procedure,
Cal Embedding(v, l) (as illustrated in Algorithm 3), is called
to find an embedding plan for this request in the subtree. Then,
we compute the total resource consumption under this new
embedding plan. If the new embedding plan reduces the total
resource consumption, this new embedding plan is recorded
as a potential embedding plan. By increasing the value of Nb,
we can achieve a point where the total resource consumption
cannot be reduced by increasing the number of backup slots.
At this point, the algorithm terminates. The final embedding
plan is the output of the algorithm. It can be verified that the
embedding plan obtained by S Algo achieves a good balance
between the server resource usage and the bandwidth resource
usage.

The number of available VMs that can be located in the
subtree rooted at each switch in level l in the network cannot
be calculated using an easy expression. In fact, the number
of available VMs that can be located in the subtree rooted
at switch v when it is chosen as a root in the embedding
plan (denoted by nv) is not the same as when it is not a root
(denoted by ∆v). We use a simple procedure, Cal Capacity(l)

Algorithm 2 Cal Capacity(l).
Require: Data center topology, T .
Ensure: The capacity of the node, v.

1: for each switch v in Level l do
2: /*Sv is the set of node in level l − 1 that connects to

switch v, i.e., the set of all children of v*/
3: O ← ∅.
4: for vi ∈ Sv do
5: if vi ∈ H then
6: ni ← ci.
7: if ni ≥ ⌊ biB ⌋ then
8: O ← O ∪ vi.
9: ∆i ← min{ni, ⌊ biB ⌋}.

10: i∗ ← argmaxvi∈O⌊ biB ⌋.
11: if (

∑
vi∈Sv

∆i −∆i∗) ≤ ⌊ bi∗B ⌋ then
12: ∆i∗ ← ni∗ .
13: nv ←

∑
vi∈Sv

∆i.

(as illustrated in Algorithm 2), to compute approximate values
for both nv and ∆v. The algorithm works in a bottom-to-top
manner. Let Sv denote the set of nodes in level l − 1 that
connect to switch v (i.e., the set of all children of v). We first
show the calculation of the value of ∆i for node vi. This value
is computed by its parent node. The computation is as follows.
If the child is a physical server, the capacity of this child is
initialized to the number of its available slots. For each switch,
v, the number of available VMs that can be located within
the subtree of its child, vi ∈ Sv, is limited by the capacity
and the uplink of vi. Thus, its capacity can be computed by
∆i = min{ni, ⌊ biB ⌋}.

Now, we show the computation of the value of nv for node
v. Intuitively, the value of nv should be the summation of the
values of ∆i of all its child nodes. However, due to the specific
features of the hose communication model adopted by the VC
abstraction, the actual value of nv may be slightly larger than
the sum. Consider a simple case in Figure 4, assume that
the VC request is < 12, 1B >. For the left child, vL, we
have ∆L = min{4, 5} = 4. For the right child, vR, we have
∆R = min{6, 4} = 4. Thus, we have nR = 4 + 4 = 8.
However, according to the hose communication model, it is
easy to know nR = 4 + 6 = 10. To tackle this issue, the
Cal Capacity(l) algorithm first finds out all the children that
satisfy ni ≥ ⌊ biB ⌋ (denoted by set O). Then, it finds the
child node with the maximum value of ⌊ biB ⌋ in O (this child
is referred to as vi∗). After that, it determines whether the
child v∗i is bandwidth-constrained or server-constrained. If it is
bandwidth-constrained (i.e., (

∑
vi∈Sv

∆i−∆i∗) ≥ ⌊ bi∗B ⌋), the
maximum number of VMs that can be located in the subtree
rooted at v∗i is min{ni, ⌊ biB ⌋} (i.e., ∆i∗ = min{ni, ⌊ biB ⌋}).
Otherwise, the maximum number of VMs that can be located
in the subtree rooted at v∗i is n∗

i (i.e., ∆i∗ = n∗
i ). By summing

up all the values of the maximum capacities of all the child
nodes, the algorithm outputs the capacity of the root node
v (i.e., nv =

∑
vi∈Sv

∆i). It can be easy to verify that the



Fig. 4. A simple example of a three node topology.

computed values of nv and ∆i are equal or a slightly smaller
than the actual values, and thus are feasible.

Once a switch, v, whose subtree has enough capacity to hold
the VC request is found, the Cal Embedding(v, l) procedure
will be called to calculate an embedding plan for this request
in the subtree. The procedure works in a up-to-bottom manner.
Let Q denote the set of nodes that are waiting to be processed
(i.e., candidate set). The candidate set is initialized to {v}. Let
δv denote the number of VMs waiting to be assigned at node
v. For each node, u, in the candidate set, it first sorts all its
children (i.e., vi ∈ Su) in descending order of their capacities
( i.e., ∆i). Then, it fills each child, vi, with VMs in sequence
until the δu VMs have been allocated. The number of VMs
assigned to each node vi is denoted by δi. After the end of a
round, the candidate set is updated. The process is executed
recursively in each level. When all the VMs are allocated to
physical servers, the algorithm terminates.

Algorithm 3 Cal Embedding(v, l).
Require: Data center topology, T .
Ensure: Allocation for VC request, r.

1: Q ← {v}, δv ← N .
2: while l ≥ 0 do
3: Q′ = ∅.
4: for u ∈ Q do
5: Sort all children (i.e., vj ∈ Su) in descending order

of their capacities ( i.e., ∆i).
6: Assign each child vi with δi VMs to fill up its

capacity ∆i in sequence until the δu VMs have been
allocated.

7: Q′ ← Q′ ∪ Su,
8: Q ← Q′, l← l − 1.

B. Solution for multiple VC requests

Based on the solution for a single VC request, we can
now present an algorithm (M Algo) to solve the RO-SVCE
problem for the multi-tenant case. M Algo is described as
follows. Let wi (wi = Ni ∗ Bi) denote the weight of the
request, ri. Firstly, we sort all the VC requests in descending
order of their weights. The intuition is that the embedding of
the VC request with a larger weight has a greater impact on
the final performance. Thus, it should be proceeded earlier.
After the order has been determined, all the VC requests are
embedded one-by-one according to S Algo. The algorithm is
also illustrated in Algorithm 4.

C. Discussions

1) Acceleration: By searching the value space of Nb,
the algorithm will compare up to N minimum bandwidth

Algorithm 4 M Algo(R).
Require: Data center topology, T .
Ensure: Allocation for VC request set, R.

1: for ri ∈ R do
2: wi ← Ni ∗Bi.
3: Sort all requests in descending order of their weights.
4: for ri ∈ R do
5: S Algo(ri).

consumption embedding plans under each value of Nb in order
to find the optimal plan that achieves a good balance between
bandwidth resource usage and server resource usage. Due to
the monotonic relationship between the two metrices, a binary
search method can be applied to accelerate the process of
the algorithm (i.e., the number of comparisons that should
be conducted can be reduced to up to log(N) times).

2) Extension: Although we use the FatTree topology in this
paper to facilitate the description of our solution, S Algo can
be extended to other typical data center network topologies
that can be abstracted as a single-rooted tree following the
method illustrated in Figure 3. In addition, although this paper
deals with the 1-survivability case, the proposal can be easily
extended to the k-survivability case by setting the number of
backup VM slots to the summation of the first k-minimum
number of primary VM slots in the servers.

V. EVALUATION

The effectiveness and efficiency of our proposed algorithms
are evaluated through extensive simulations. In this section,
we will give a detailed summary of our simulation findings.

A. Evaluation Settings

1) The data center network: The data center network
topology adopted here is a typical 8-ary FatTree topology.
The topology contains 8 pods, each pod includes 4 aggre-
gation switches and 4 edge switches. Each aggregation switch
connects 4 core switches and 4 edge switches. There are 16
core switches in total. Each edge switch connects 4 servers.
In total, 128 servers are connected by these edge switches.
Each server involves 10 VM slots. All switches and servers
are connected by 10Gbps links. We use the single-rooted
equivalent abstraction of the 8-ary FatTree topology to conduct
the following evaluations. The solution for the single-rooted
equivalent abstraction topology can be easily transformed into
a solution for the typical multi-rooted FatTree by adopting
the Equal-Cost Multi-Path routing (ECMP) principle, while
the resource consumed before and after conversion remains
unchanged.

2) The scenarios: In this evaluation, in order to simulate
the real data center load, we randomly generate some loads
on each server and each link following a normal distribution
given by N (2, 0.5) and N (1, 0.2), respectively. We consider
two scenarios: the single VC request scenario and the multiple
VC requests scenario. In the single VC request scenario, only
a VC request is provided as the input. This scenario can be



used to describe a kind of online task arrival mode, where
tasks arrive one by one. Once arrived, the task will enter the
queue and wait to be processed. We test two settings for a
VC request in this scenario, i.e., < 8, 4 > and < 16, 2 >,
to present how our proposal deals with the inherent trade-off
between the server resource consumption and the bandwidth
resource consumption. In the multiple VC requests scenario,
multiple VC requests are provided as the input. This scenario
can be used to describe anther kind of online task arrival mode,
where tasks arrive in batches. Tenant requests arrive in the
form of < N,B >, where N follows a normal distribution
given by N (10, 2) and B follows a normal distribution given
by N (1, 0.5). We generate 50 tenant requests to form a batch
in the following evaluation.

3) The benchmarks: We compare our algorithm (referred
to as TRO) to two benchmark algorithms. The first one is a
shadow-based [10] algorithm (referred to as EXP-1). Specifi-
cally, the shadow-based solution is a widely-adopted solution
for VM management, which reserves a backup VM slot for
each of the original VMs. We use the heuristic algorithm
proposed in [16] to employ the shadow-based solution to the
VC abstraction. We also compare our algorithm to a newly
proposed heuristic algorithm (referred to as EXP-2) in [16]
that aims to minimize the number of total VM slots used when
providing survivable VC embedding.

4) Evaluation metrics: The performance of the above
benchmark algorithms is evaluated in terms of the total re-
source consumption (TC), the server resource consumption
(SC), and the bandwidth resource consumption (BC).

B. Simulation Results

1) Single VC request scenario: In this subsection, we
present the simulation results of our algorithm on a single VC
request scenario. Table I illustrates the values of TC, SC and
BC. Note that all the results are averaged among 2 independent
tests (i.e., < 8, 4 > and < 16, 2 >). It can be observed that
a setting that increases the bandwidth resource savings will
undermine the server’s resource-saving performance and vice
versa. When α = 0, SC is 18.5 while BC is 16. When α = 1,
SC is 13 while BC is 25.5. By changing the value of α, we
can control the trade-off between SC and BC. To apply the
TRO algorithm to real data centers, the manager can choose
an optimal setting for α that can achieve the most desirable
performance.

TABLE I
PERFORMANCE COMPARISON WITH DIFFERENT VALUES OF α, EACH

VALUE IS AVERAGED AMONG 2 INDEPENDENT TESTS.

α TC SC BC
0 34.5 18.5 16

0.25 33.5 16 17.5

0.5 34.5 15 19.5

0.75 37.5 14.5 23

1 38.5 13 25.5

We then compare the performance of the TRO algorithm and
two benchmark algorithms in the single VC request scenario.
In this simulation, we set the value of α as 0.3, which has been
proven to achieve a good balance between the server resource
consumption and the bandwidth resource consumption in our
simulations. We evaluate 5 settings for the VC request (i.e.,
r1 =< 8, 2 >, r2 =< 8, 4 >, r3 =< 12, 3 >, r4 =< 16, 2 >,
and r5 =< 16, 4 >) to see the impact on the different
sizes of VC requests to the performance. Figure 5 shows the
performance comparison of the three algorithms. It can be
seen that the TRO algorithm outperforms the newly proposed
EXP-2 algorithm in terms of bandwidth resource consumption
(i.e., BC) while achieving a similar performance in terms of
server resource consumption (i.e., SC). This is because TRO
optimizes the total resource consumption while EXP-2 only
optimizes the number of VM slots. In addition, EXP-2 works
better than EXP-1. This is because EXP-1 always uses twice
the number of actual demanded VM slots while the bandwidth
resource consumption is not optimized.

(a) (b)

Fig. 5. The performance comparison in terms of a) the server resource con-
sumption and b) the bandwidth resource consumption among three algorithms
under 5 settings for VC requests (i.e., r1 =< 8, 2 >, r2 =< 8, 4 >,
r3 =< 12, 3 >, r4 =< 16, 2 > and r5 =< 16, 4 >).

2) Multiple VC requests scenario: In this subsection, we
show the performance of our algorithms in the multiple VC
requests scenario. We also set the value of α as 0.3. We vary
the size of a batch to see the impact on the performance. All
the results are averaged among m independent tests, where
m is the size of the batch. Results are illustrated in Figure 6.
The simulation results are similar to those from the single VC
request scenario. From Figure 6(a) we can conclude that, in
terms of server resource consumption, TRO outperforms EXP-
2 and is close to EXP-1. From Figure 6(b) we can see that TRO
outperforms EXP-1 and EXP-2 in terms of bandwidth resource
consumption. However, there are some special features in
the multiple VC requests scenario. It can be seen that the
gap between TRO and the other two benchmark algorithms
is bigger than in single VC request scenario. This implies
that TRO has a better request serving capacity in the batch
scenario. The reason is that the design of TRO considers task
scheduling while the other two algorithms fail to consider the
optimization in the multiple requests scenario.

VI. RELATED WORK

Recently, there has been much interest in designing service
abstraction that can provide bandwidth guarantee for multi-
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Fig. 6. The performance comparison in terms of a) the server resource
consumption and b) the bandwidth resource consumption in the multiple VC
requests scenario under 5 settings for the size of a batch (i.e., the size of a
batch is set as 10, 30, 50, 70 and 90, respectively).

tenant cloud. The virtual cluster (VC) abstraction proposed
by Ballani et al. in [3] is the most popular abstraction for
batch-processing applications. Based on this abstraction, the
authors also design a system named Oktopus to implement
the proposed abstraction. After that, some other proposals that
extend the VC abstraction are presented, such as TIVC [4],
SVC [5], DCloud [20] and CloudMirror [21].

Much work has focused on providing virtual cluster em-
bedding under a variety of goals. Zhu et al. [6] proposed
an optimal algorithm to embed a VC request in the network
with minimum bandwidth consumption. Their method is based
on dynamic programming, and the time complexity is high.
Rost et al. [7] discuss the computational complexity of star-
topology embedding and hose embedding, and propose the
HVC-ACE heuristic to benefit the embedding in terms of
acceptance ratio and resource footprint. Some other work
focuses on dynamic scaling VCs [9, 22]. However, few work
has been done on ensuring a high survivability in VCE. The
only relevant work on this topic is conducted by Yu et al.
in [16], where the authors study the problem of providing a
survivable VCE with minimal resource consumption as we do.
However, they focus on a simple case where only the server
resource in terms of the VM slot is considered for a single VC
request scenario, while our work simultaneously optimizes the
consumption of both the server and bandwidth resources for
multiple VC requests scenario.

VII. CONCLUSION

In this paper, we study the resource optimization for the
survivable embedding of virtual clusters in cloud data centers.
Our aim is to minimize the consumption of resources in
terms of server and bandwidth, while ensuring that both the
resource constraints and the survivability constraints are not
violated. We formally define this problem and analyze its
complexity. Through a thorough understanding of the trade-off
between the server resource usage and the bandwidth resource
usage, we design efficient algorithms to obtain the resource
optimization for both the server and bandwidth resources.
Comprehensive experimental results verify that the overall
resource consumption can be significantly reduced by applying
our proposals.
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