
Joint Optimization of Server and Network Resource
Utilization in Cloud Data Centers

Biyu Zhou∗†, Jie Wu‡, Lin Wang§, Fa Zhang¶, and Zhiyong Liu∗∥
∗Beijing Key Laboratory of Mobile Computing and Pervasive Device, ICT, CAS

†University of Chinese Academy of Sciences, Beijing, China
‡ Center for Networked Computing, Temple University, USA §Technische Universität Darmstadt, Germany

¶Key Lab of Intelligent Information Processing, ICT, CAS
∥State Key Laboratory for Computer Architecture, ICT, CAS

{zhoubiyu, zhangfa, zyliu}@ict.ac.cn, jiewu@temple.edu, wang@tk.tu-darmstadt.de

Abstract—Virtual machine placement is a key component of
cloud resource management, which may affect network band-
width allocation. In this paper, we revisit the virtual machine
placement problem in cloud data centers and aim to maximize
the overall resource utilization in multiple dimensions, while
ensuring that the resource constraints on both the server such
as CPU capacity and the network such as bandwidth are not
violated. We model the bandwidth-guaranteed virtual machine
placement problem and prove its NP-hardness, and design offline
and online algorithms to solve the problem. We first consider
the offline version and develop approximation algorithms with
bounded performance ratios for both the homogeneous and the
heterogeneous cases. Then, for the online version, we propose
simple and efficient heuristics based on the insights from the
offline algorithm design. Comprehensive experimental results
verify that the overall resource utilization can be significantly
improved by applying our proposals.

I. INTRODUCTION

Virtualization has already become a widely adopted tech-
nology for resource sharing in cloud computing. The ability
to virtualize physical resources, such as servers and networks,
provides immense benefits in terms of flexibility, reliability,
and scalability [1]. In a typical cloud data center, cloud tenants
submit their resource requests in the form of virtual machines
(VMs) to the cloud provider. The cloud provider then decides
the allocation of the physical resources to each of the requested
virtual machines. By consolidating the VMs from different
tenants to as less servers as possible, resource utilization can
be improved and consequently, the operational cost can be
reduced, while still satisfying the given tenant requests.

Although VM placement plays a vital role in cloud resource
management [2, 3], achieving efficient resource allocation
through VM placement is not trivial and remains as a critical
issue. There has been a great number of proposals for VM
placement in data centers, see [4, 5] for recent published
surveys. Most of them are focused on only single resource
dimensions [2, 6, 7], which makes them impractical when it
comes to real scenarios as VM placement usually intertwines
with multiple types of resources including CPU, memory,

This work is supported partially by the National Natural Science Foundation
of China (NSFC) Major International Collaboration Project 61520106005,
NSFC Project for Innovation Groups 61521092, and the German Research
Foundation (DFG) Collaborative Research Center (CRC) 1053 – MAKI.

and network bandwidth. Recently, there are also some pa-
pers considering multi-dimensional resource allocation [8–
15]. However, they still share some common drawbacks: (1)
The constraint programming based models require prolonged
search time in finding a reasonably good solution, while the
bin-packing based heuristics cannot provide any performance
guarantee. (2) While incorporating multiple resources in the
server, they fail to consider the constraints on network re-
sources. In fact, data center networks in use always suffer
unpredictable performance due to oversubscription and a lack
of application level bandwidth guarantee [16]. Although a lot
of attention have been drawn to solve this problem, such as
providing bandwidth reservations for VMs and fair bandwidth
sharing among tenants, there still remains a research gap in
combining VM placement and bandwidth guarantee.

In this paper, we revisit the VM placement problem and
consider jointly optimizing the resource utilizations of both
the server and the network. More specifically, we aim to
achieve the best overall resource utilization while providing
bandwidth guarantee on the network. We adopt the dual
vector bin-packing model [1], where a VM is abstracted as
a demand vector and each element in the vector represents
the resource requirement in the corresponding resource dimen-
sion. To better characterize the resource demands on multiple
dimensions, we introduce a new definition for the “size” of
a VM. Our goal is to select VMs and to find the placement
strategy for them such that the highest overall utilization for
all the resources can be achieved, i.e., the total size of the
accommodated VMs is maximized.

We conduct the investigation into the problem following two
steps. We first focus on the offline version where all the VM
demands are known a priori. As the network bandwidth is
shared by multiple servers, we study the influence of different
bandwidth allocations to our objective. We further classify the
problem into two cases: homogeneous and heterogeneous. The
former assumes that all the servers and network elements are
identical and the latter tackles the general case where we have
heterogeneous hardware in the data center. We then study the
online version, where the arrival of VMs is revealed gradually
and no a priori knowledge on the VM demands is assumed.

Compared with many previous studies [8–14] on VM



placement of multi-dimensional resources, the present work is
characterized by the joint optimization of the server resource
and the bandwidth resource that is shared among multiple
servers in the case of data center where the higher layers
of the network are highly oversubscribed. Furthermore, both
offline solutions with bounded performance ratios and online
solutions which are simple and efficient are presented. The
contributions are summarized as follows: (1) We define and
model a VM placement problem with bandwidth guarantee
for joint maximization of the server and network resource
utilization. Furthermore, we prove that the problem is NP-
hard in general. (2) For the offline version in which all
the VMs are known a priori, we classify the problem into
homogeneous and heterogeneous cases depending on whether
the hardware is identical or not. We develop bounded approx-
imation algorithms for both cases. (3) For the online version
in which VMs are revealed over time and decisions have to
be made on the fly, we present two efficient heuristics for the
online VM placement problem by exploring the insights from
our offline algorithms. (4) We evaluate our algorithms with
comprehensive simulations, and experimental results verify
that our proposal can achieve good overall resource utilization.

The remainder of this paper is organized as follows. Sec-
tion II provides the problem statement and the NP-hardness
proof. Section III presents the proposed bounded approximate
solutions for the offline setting. Section IV introduces two
efficient heuristics for the online setting. Section V shows the
experimental results and Section VI concludes the paper.

II. PROBLEM STATEMENT AND ANALYSIS

In this section, we first describe the scenario and introduce
some notations. Then, we provide a formal definition for the
bandwidth-guaranteed VM placement problem. Finally, we
carry out complexity analysis on the problem.

A. Problem Description
Assume that there is a set of m servers S = {si|1 ≤

i ≤ m}. Each server is equipped with a certain amount of
resources. For the simplicity of expression, we use only CPU
cycles to represent the resources considered on the server.
However, our model can be easily extended to incorporate
multiple resources. Each si ∈ S is associated with a pos-
itive value Ci to represent its capacity and we denote by
C = {Ci|1 ≤ i ≤ m} the capacity set. All the servers
are connected by an undirected network G = (V, E), where
V = P ∪S , P is the set of switches, and E is the set of links.
The network considered in this paper is a commonly adopted
three-tier architecture in data centers [17], where G follows a
multi-rooted tree-based network topology composed of three
layers of network switches, namely access, aggregate, and core
layers. Each server in S is connected directly to one of the
access layer switches. The aggregate layer switches provide
connectivity for all the access layer switches, while they are
interconnected by the core layer switches. Apart from that,
the core layer switches are also responsible for connecting the
data center to the Internet. As stated in [18], the higher layers

of the three-tier data center network architecture are usually
highly oversubscribed. Thus, the uplink bandwidth capacity of
the core switch is often the bottleneck of the entire network.

Real data from 17K VMs in a data warehouse hosted by
IBM Global Service show that there exist two types of traffic
patterns for VMs: the external traffic from each VM to the
Internet and the internal traffic among VMs. In some cases,
VMs only send (receive) data to (from) the Internet without
any internal communication [7]. We will specifically focus on
the external traffic as it has been overlooked in the literature.
Formally, each VM ri is associated with a resource demand
vector ⟨ci, bi⟩, where ci represents the amount of resources
required on the server (i.e., the number of CPU cycles in
our case), and bi represents the amount of required network
resources (i.e., the minimum amount of bandwidth required
to guarantee its connectivity to the Internet). As we are
considering an oversubscribed network where the bandwidth
of the core layer switches is the bottleneck of the entire
network, the above VM model that captures the bandwidth
demand on the cores switches from VMs will address the most
critical challenge in bandwidth-guaranteed VM placement. We
are also aware that incorporating network constraints in VM
placement is already complicated so the above model servers
as a starting point to investigate the influence of the VM
placement to the overall resource utilization of both the server
and the network. Nonetheless, we keep in mind to include both
traffic patterns in the VM model in our follow-up work.

Given a set of VMs, R = {ri|1 ≤ i ≤ n}, the goal of the
Bandwidth-Guaranteed Virtual Machine Placement problem
(BG-VMP) is to pack VMs into the physical servers such
that the overall resource utilization is maximized while no
constraints on either the server or the network are violated.
To better characterize the overall resource utilization, a simple
metric size is introduced in this paper.

Definition 1. The size of a VM ri is defined as the product
of the resource demands on all resource dimensions, which in
our case is given by cibi.

Note that the metric size can portray the level of load along
two dimensions in a unified manner. The intuition is that the
size will enlarge with the utilization increase of any resource
dimensions. A similar metric is introduced in [19] to capture
the combined CPU-network-memory load of a physical server.
Based on the above definition, we formally define

Definition 2. (BG-VMP) We are given m servers that are
connected by a three-tier datacenter network G = (V, E) and
a set of VM requests R = {ri|1 ≤ i ≤ n}, each of which
is associated with a resource vector ⟨ci, bi⟩. We seek to find
a subset A of the VM requests, i.e., A ⊆ R, and a partition
A1, · · · ,Am of A, such that the CPU capacity of each server
and the bandwidth capacity of each link in the network are
not violated, if we place the m components of the partition to
the m servers. Our goal is to maximize the total size of the
VMs in the selected subset, i.e.,

∑
i∈[1,m]

∑
rj∈Ai

cjbj .



B. Complexity Analysis
Theorem 1. BG-VMP is NP-hard.

Proof: We conduct the proof by building a polynomial-
time reduction from the dual bin-packing problem which is
known to be NP-hard [20]. The optimization version of the
dual bin-packing problem is described as follows.

Assume we are given a set of bins S = {si|1 ≤ i ≤ m},
each bin is associated with a positive value Ci; there are a set
of items R = {ri|1 ≤ i ≤ n}, each of which is associated with
a positive value ci. The problem is to find a subset of the items
and a partition A1, · · · ,Am of this subset into the m bins, such
that the sum of the items in partition Ai (i.e.,

∑
rj∈Ai

cj) is
at most Ci. The objective is to maximize the total size of the
packed items in the subsect, i.e., max

∑
i∈[1,m]

∑
rj∈Ai

cj .
Given any instance of the dual bin-packing problem, we

can always construct from it an instance of the BG-VMP
problem. We construct a set of servers from the set of bins
S = {si|1 ≤ i ≤ m}, and use the value Ci to represent the
CPU capacity of each server si. Then, we construct a three-
tier network G that connects all the servers at the leaf. Both
the bandwidth capacity of each link in the network and the
uplink bandwidth of each core layer switch are assumed to
be infinite. We construct a set of VMs from the set of items
R = {ri|1 ≤ i ≤ n}, and use the value ci to represent the
CPU demand of each VM ri. The bandwidth demand of each
VM is assumed to be one unit. It can be verified that as long as
we find the optimal placement for an instance of the BG-VMP
problem that maximizes the size of the packed VMs to all the
servers, we can always obtain accordingly the optimal solution
for the dual bin-packing instance by mapping the bins to the
servers and the items to the VMs. Consequently, the BG-VMP
is at least as hard as the NP-hard dual bin-packing.

III. OFFLINE ALGORITHMS

Theorem 1 reveals that obtaining the optimal solution of
the BG-VMP problem with a large input instance is nearly
impossible due to its high complexity. As a result, we will
focus on how to obtain efficient approximate solutions in
this paper. We observe that the main difficulty in solving
the BG-VMP problem comes from two aspects: i) The total
uplink bandwidth resource connecting to the Internet is shared
among all the servers. ii) The overall resource utilization of
a cloud datacenter is conditioned by the utilizations of both
the server CPU resource and the network link bandwidth
resource. In what follows, we first consider different allocation
strategies for shared uplink bandwidth resource among all the
servers, and analyze the influence of each of these strategies
to the overall resource utilization. We will then deal with
the two-dimensional resource allocation problem in the next
sections. Before going into details, we first define that a
bandwidth allocation is feasible if all the link bandwidth
capacity constraints are not violated.

Definition 3. (Total Resource Capacity) For a given set of
servers S = {si|1 ≤ i ≤ m} (each server is associated with
a positive value Ci representing the associated CPU capacity)

Fig. 1. An example of three-tier network architecture with 7 switches and 6
servers. Each link is labelled with a value representing the bandwidth capacity;
Each server is also labelled with a value representing the server CPU capacity.

and a given feasible allocation of uplink bandwidth capacity
for each server, B = {Bi|1 ≤ i ≤ m}, the Total Resource
Capacity can be computed by

∑
i∈[1,m] CiBi.

We further define that a bandwidth allocation is optimal if
the total resource capacity cannot be increased by applying
any adjustment on the allocation. It is then straightforward
that the total resource capacity under an optimal bandwidth
allocation is a nature upper bound for the BG-VMP problem.

An example is illustrated in Figure 1 to show the relation-
ship between bandwidth allocation and the maximum total
resource capacity. We can see that the maximum bandwidth
that can be reserved for each server to the Internet is 3
units. However, the server a and the server b share band-
width capacities in multiple links. If one reserves 3 units
of bandwidth for the server a, then the server b can get
at most 1 unit of bandwidth.The same situation occurs in
server c and server d. Server f gets the remaining 2 units of
bandwidth. The maximum total size of accommodated VMs is
(3 ∗ 3+4 ∗ 1) ∗ 2+3 ∗ 2 = 32 under this bandwidth allocation
strategy. If one reserves 3 units of bandwidth for the server b
and server d, and 1 units of bandwidth for the server a and
server c. Server f gets the remaining 2 units of bandwidth.
Then the maximum total size of accommodated VMs can be
(3 ∗ 1 + 4 ∗ 3) ∗ 2 + 4 ∗ 2 = 38, which is larger than the
former allocation strategy. The above example shows that the
bandwidth allocation for each server has significant influence
to the total resource capacity. In the following, we discuss the
optimal bandwidth allocation in the network.

Lemma 1. An efficient solution will allocate the server that
has a larger CPU capacity with a larger bandwidth capacity.

Proof: Assume that Btotal is the total uplink bandwidth
of all the core switches, and m is the total number of servers.
Each server is associated with a CPU capacity Ci. We may
assume that the CPU capacities satisfy C1 ≥ C2 · · · ≥ Cm.
Let Bi denote the bandwidth allocated to the server si, we
have

∑
i∈[1,m] Bi = Btotal. The maximum total resource

capacity of the datacenter is
∑

i∈[1,m] BiCi ≤ B1C1 +
C2(

∑
i∈[2,m] Bi) = B1C1 + C2(Btotal − B1) = C2Btotal +

(C1 − C2)B1. Considering C1 ≥ C2 · · · ≥ Cm, we can draw
the conclusion that, to maximize total resource capacity, we
should keep B1 ≥ B2 · · · ≥ Bm. The proof is completed.

According to Lemma 1, we reserve bandwidth for each
server in the network according to the following steps.

Step 1: Construct an extended network G′ according to the
following procedures. Create a virtual source node vs and a



virtual sink node vt. Add the virtual source node and sink node
to the original network G by connecting each core switch to
the sink node, and connect each server to the source node. Set
the bandwidth capacity of the link between sink node vt and
core switch vi as the uplink bandwidth of vi to the Internet,
set the bandwidth capacity of the link between source node
vs and each server si to infinity. Set the unit flow cost of the
link connecting source node vs and each server si as Ci. Set
the unit flow costs of other links in the network G′ to 0.

Step 2: Compute the maximum cost maximum flow with
the following procedures. First of all, use the additive inverse
of the cost of each link as the new cost of the link. Then, use
the Successive shortest path and capacity scaling method to
compute the minimum cost maximum flow [21]. Note that the
termination condition when the successive shortest path and
capacity scaling method is applied should be changed. The
algorithm terminates when the length of the shortest path is
no longer negative.

Step 3: Allocate bandwidth to servers according to Step 2.

Lemma 2. The above algorithm gives an upper bound of the
optimal solution of the BG-VMP problem.

Proof: According to the well-known minimum cost flow
theory [21] we know that the cost of the flow computed by
the above algorithm is the maximum. Since only the server
nodes of the network have costs and the cost of each server is
the product of the server CPU capacity and the flow capacity
passing through the server, allocating bandwidth for each
server according to the max flow computed will give an upper
bound of the optimal solution of the BG-VMP problem.

After reserving bandwidth for each server according to the
above algorithm, the discussion on the BG-VMP problem can
be classified into two cases: 1) Homogeneous Case. It refers
to the situation that all servers have identical CPU capacities
and allocated bandwidths; 2) Heterogeneous Case. It refers to
the situations that the CPU capacity and allocated bandwidth
of each server is not identical.
A. Homogeneous Case

We first consider the problem that packing VM requests into
servers with the same CPU capacity and bandwidth capacity
(denoted by P1) and give the following definition and lemma.

Definition 4. [22] An input sequence is termed accomodating
if there exists an optimal offline algorithm that can accept all
items.

Lemma 3. For m identical servers, and an accommodating
input, there exists an offline algorithm for the P1 problem that
achieves 1/2 approximation in linear time.

Proof: Since each server has the same CPU capacity and
is reserved for the same bandwidth capacity, we assume that
both the CPU capacity and the bandwidth of each server are 1.
Let c′i and b′i represent the normalized CPU demand and the
normalized bandwidth demand of each VM ri, respectively.
Given an accommodating VM sequence, we first use the 2-
approximation algorithm proposed by Kellerer et. al. [23] to

pack all the VMs into at most 2m servers. The time complexity
of this algorithm is O(n log n). By choosing the m servers
with the most size of VMs, we can place no less than m/2m
VMs in linear time. Thus, we get a 1/2 approximation.

Combining Lemma 2 and 3, we obtain the following.

Theorem 2. For an accommodating input, there exists an
offline algorithm for this homogenous BG-VMP problem that
achieves 1/4 approximation in linear time.

Proof: Let Q and Q′ represent the optimal solutions for
BG-VMP and P1, respectively. Let I denote the solution of our
algorithm. Let H denote the maximum total resource capacity.
It is easy to verify that the inequality H

2 ≤ Q′ ≤ Q ≤ H is
satisfied. Thus, we have I

Q ≥ I
H ≥ I

2Q′ ≥ 1
2∗2 = 1

4 .
B. Heterogeneous Case

The inconsistency of resources on servers brings in an
additional complexity. For m servers, each server has a CPU
capacity (Ci) and a bandwidth capacity (Bi). Let Cm and
Bm denote the minimum value among set {Ci|1 ≤ i ≤ m}
and set {Bi|1 ≤ i ≤ m}, respectively. For brevity, we define
some notations that will be used in the following part. Let
αi = min{⌊ Ci

Cm
⌋, ⌊ Bi

Bm
⌋} and βi = max{⌈ Ci

Cm
⌉, ⌈ Bi

Bm
⌉}. Let

α and β denote the average value of server CPU capacity
and allocated bandwidth, respectively (i.e., α =

∑
i∈[1,m] αi

m

and β =
∑

i∈[1,m] βi

m ). Let γ represent the ratio of β and α

(i.e., γ = β
α ). Here, γ is no less than 1. We first consider

the problem that packing VM requests into servers with
heterogeneous CPU capacity and bandwidth (denoted by P2).

Lemma 4. For an accommodating input, there exists an offline
algorithm for the P2 problem that achieves 1/2γ (γ ≥ 1)
approximation in linear time.

Proof: As defined above, the minimum CPU capacity
among all the servers is Cm, and the minimum allocated
bandwidth among all the servers is Bm. For each VM ri,
let c′i denote the normalized CPU capacity of Cm, and let b′i
denote the normalized bandwidth requirement of Bm. Both c′i
and b′i are positive and no larger than 1.

Given an accommodating VM sequence of the original
server set S , we assume that the minimum number of unit
servers with the resource vector < 1, 1 > needed to pack
all the VMs is OPTunit. Firstly, we use the 2-approximation
algorithm proposed by Kellerer et. al. [23] to pack all the
VMs into at most 2OPTunit unit servers. Then, we pick up∑

i∈[1,m] αi unit servers with the most sizes of VMs. Finally,
for each server si we allocate all the VMs that have been
packed in αi unit servers to it. Since αi = min{⌊ Ci

Cm
⌋, ⌊ Bi

Bm
⌋},

all the VMs in αi unit servers can be covered by the server
si. Thus the above is a feasible placement.

Now we prove that the above placement yields 1/2γ ap-
proximation in linear time. The approximation of the above
algorithm is no less than

∑
i∈[1,m] αi

2OPTunit
. Since OPTunit ≤

∑
i∈[1,m] βi, thus,

∑
i∈[1,m] αi

2OPTunit
≥

∑
i∈[1,m] αi

2
∑

i∈[1,m] βi
= α

2β
= 1/2γ.

The proof has been completed.



Algorithm 1 SortFirstFit
Input: A data center network G and a new arriving VM r.
Output: The placement of VM r.

1: Arrange the servers in descending order according to the
CPU capacity.

2: for si ∈ S do ◃ For each server si.
3: Compute the maximum possible bandwidth Bi.
4: if C ′

i ≥ ci and Bi ≥ bi then
5: Place the VM r in the server si.
6: Break.
7: Update the residual network.

Combine Lemma 2 and Lemma 4, we can get Theorem 3
as follows. The proof is similar with Theorem 2, We omit the
proof of Theorem 3 due to the space limit.

Theorem 3. For an accommodating input, there exists an
offline algorithm for this heterogeneous BG-VMP problem that
achieves 1/4γ (γ ≥ 1) approximation in linear time.

IV. ONLINE HEURISTICS

Motivated by the theoretical analysis for the offline BG-
VMP problem, we present two main principles for the online
version of the BG-VMP problem.
Principle 1. The utilizations of both CPU capacity and
available bandwidth should be jointly considered.
Principle 2. The optimal VM placement strategy should
allocate as much bandwidth as possible to the servers with
larger CPU resources.

Based on the two principles, the online BG-VMP problem
is accomplished by two simple and practical heuristics. The
first one is SortFirstFit. (in Algorithm 1) This algorithm
always places the arriving VM into the server with maximum
CPU capacity which has enough residual CPU capacity and
bandwidth. The second one is SortWorstFit. (in Algorithm 2)
This algorithm always places the arriving VM into the server
with maximum residual size. (as defined in Algorithm 2, line
4) The maximum possible bandwidth in both algorithms are
computed by solving a maximum flow problem.

Algorithm 2 SortWorstFit
Input: A data center network G and a new arriving VM r.
Output: The placement of VM r.

1: for si ∈ S do ◃ For each server si.
2: Compute the maximum possible bandwidth Bi.
3: if C ′

i ≥ ci and Bi ≥ bi then
4: Mark the residual size of si with C ′

i ∗Bi.
5: Place the VM r in the server with maximum residual size.
6: Update the residual network.

V. EVALUATION

Settings. The three-tier hierarchical network adopted here is a
10-ary 3-tree [24] composed of 1000 servers. The bandwidth

of each link between a level 2 switch and a server follows
a uniform distribution with the range of [2, 10]. We define
that the oversubscription ratio of a switch is the ratio of
the aggregate uplink bandwidth to the aggregate downlink
bandwidth. The oversubscription ratio of each level 0, 1 and 2
switch is set to 1, 1 and 0.7, respectively. The CPU capacity
of each server follows a uniform distribution with the range of
[2, 10]. The CPU demand and bandwidth demand information
of input VMs used for the evaluations are generated data sets
and real trace-driven data sets. Three generated data sets are
used in this paper to evaluate the different aspects of the
proposed heuristics. A real trace-driven data set is also used in
this evaluation. Specifically, the CPU resource information is
from Google cluster management data [25] and the bandwidth
resource information is from a data warehouse hosted by IBM
Global Services [7]. We evaluate the two heuristics proposed in
this paper, i.e., SortFirstFit and SortWorstFit. We also evaluate
the performance of Random, with FirstFit and WorstFit as the
benchmarks. Note that the latter two algorithms only consider
CPU capacity. Since solving the BG-VMP problem in a large
input instance is NP-hard, the optimal solution is not available
to obtain as a baseline. We vary the number of servers to see
the total accommodating VMs of each heuristic in this paper
to show the effectiveness of the proposed online algorithms.
Measuring the algorithm performance and the impact of
arriving VM sequence. We evaluate the performance of the
proposed heuristics under two types of arriving VM sequences
firstly. The first type of arriving VM sequence consists of
a sequence of small VMs followed by a sequence of large
VMs; The second type of arriving VM sequence consists of a
sequence of large VMs followed by a sequence of small VMs.
The results of the first data set are shown in Figure 2(a). The
input sequence consists of 1k VMs of size ⟨0.2, 0.4⟩ followed
by a sequence of VMs of size ⟨0.8, 1.0⟩. From the results, we
can see that SortFirstFit and SortWorstFit work much better
than the other heuristics. More specifically, the FirstFit works
slightly better than the WorstFit in this situation. When they
are provided with the same amount of servers, the former can
accommodate more VMs. The Random heuristic has the worst
performance. The results of the second data set are shown in
Figure 2(b). The input sequence consists of 2k VMs of size
⟨0.8, 1.0⟩ followed by a sequence of VMs of size ⟨0.2, 0.4⟩.
It can be seen from the results that the Random heuristic is
still the worst. However, in this situation, the performance
of all the heuristics except the Random heuristic are close.
Combining Figure 2(a) and Figure 2(b), we can draw the
conclusion that processing sorting before the placement may
make the placement more efficient.
Measuring the impact of hardware heterogeneity. The
results of the third data set are shown in Figure 2(c). In this
situation, we keep the amount of servers fixed and vary the
CPU capacity and the bandwidth of each link between a level
2 switch and a server to see the effect on the performance
of each heuristic. The network involves 1k servers. The CPU
capacity and the bandwidth of each link between a level 2
switch and a server follow a uniform distribution with the



(a) (b)

(c) (d)
Fig. 2. The number of VMs that can be accommodated when providing
different number of servers under different placement strategies with a) Small
VMs followed by large VMs and b) Large VMs followed by small VMs.
c) The number of VMs that can be accommodated given different hardware
heterogeneity settings under different placement strategies. d) The number of
VMs that can be accommodated providing various number of servers under
different placement strategies using the real traces.

range of [2, x], where x varies in range [4, 16]. Both the CPU
resource and bandwidth resource requirements of input VMs
follow the uniform distribution with the range of [0.1, 1]. It can
be seen that when the average server CPU capacity and the
average link bandwidth increase, the number of accommodated
VMs increases. Besides, the SortFirstFit and the SortWorstFit
work better than the FirstFit and the WorstFit. What’s more,
the advantages of sorting will be more significant when the
difference of resources of servers in the network are larger.
Testing with real traces. The results of the real trace-
driven data set are shown in Figure 2(d). The CPU resource
requirements of the VMs in the input sequence varied between
0.25, 0.5, and 1 with the probabilities of 0.99%, 92.67%,
and 6.34%, respectively [25]. 80% of the input VMs have a
bandwidth requirement less than 0.1 and 4% of them have
a bandwidth requirement larger than 1 [7]. It can be seen
from the results that the Random heuristic has the worst
performance. The SortFirstFit and the SortWorstFit perform
better than the FirstFit and the WorstFit. The results in this
situation verify that the performances of the five heuristics
using trace-driven data sets are in line with those using the
above three generated data sets.

VI. CONCLUSION

In this paper, we studied the the problem of placing VMs
in cloud data centers to maximize simultaneously the resource
utilizations of both the server and the network. The problem
is important as the overall efficiency in a data center is
dictated by multiple resources and one may contradict another
if optimizations are carried out independently in each of
the resource dimension. Depending on whether the hardware
resources in a data center are homogeneous or not, we develop
bounded approximation algorithms in the offline scenario,
while providing efficient heuristics based on the insights from
the offline algorithm design in the general online scenarios, for

each of the two cases. The effectiveness of the algorithms is
verified through theoretical analysis and extensive simulations.

REFERENCES
[1] M. Mishra and A. Sahoo, “On theory of VM placement: Anomalies in

existing methodologies and their mitigation using a novel vector based
approach,” in IEEE CLOUD, 2011.

[2] C. Hyser, B. Mckee, R. Gardner, and B. J. Watson, “Autonomic virtual
machine placement in the data center,” Hewlett Packard Laboratories,
Tech. Rep. HPL-2007-189, 2007.

[3] X. Jin, F. Zhang, L. Wang, S. Hu, B. Zhou, and Z. Liu, “Joint
optimization of operational cost and performance interference in cloud
data centers,” TCC, vol. PP(99), 2015.

[4] B. Jennings and R. Stadler, “Resource management in clouds: Survey
and research challenges,” J. Network Syst. Manage., vol. 23, no. 3, pp.
567–619, 2015.

[5] Z. Á. Mann, “Allocation of virtual machines in cloud data centers - A
survey of problem models and optimization algorithms,” ACM Comput.
Surv., vol. 48, no. 1, p. 11, 2015.

[6] J. Arjona, A. Fernández, M. A. Mosteiro, C. Thraves, and L. Wang,
“Power-efficient assignment of virtual machines to physical machines,”
Future Generation Comp. Syst., vol. 54, pp. 82–94, 2016.

[7] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placement,” in
INFOCOM, 2010.

[8] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” in SIGCOMM, 2014.

[9] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif, “Sandpiper:
Black-box and gray-box resource management for virtual machines,”
Computer Networks, vol. 53, no. 17, pp. 2923–2938, 2009.

[10] L. Wang, F. Zhang, A. V. Vasilakos, C. Hou, and Z. Liu, “Joint
virtual machine assignment and traffic engineering for green data center
networks,” SIGMETRICS PER, vol. 41, no. 3, pp. 107–112, 2013.

[11] L. Wang, F. Zhang, J. A. Aroca, A. V. Vasilakos, K. Zheng, C. Hou,
D. Li, and Z. Liu, “Greendcn: A general framework for achieving energy
efficiency in data center networks,” IEEE JSAC, vol. 32, no. 1, pp. 4–15,
2014.

[12] D. Li and J. Wu, “Reducing power consumption in data centers by
jointly considering VM placement and flow scheduling,” Journal of
Interconnection Networks, vol. 15, no. 1-2, 2015.

[13] N. Patel and G. Patel, “Vm placement of multidimensional resources
using cartesian coordinates based approach,” in NUiCONE. IEEE, 2015,
pp. 1–5.

[14] L. Wang, A. F. Anta, F. Zhang, J. Wu, and Z. Liu, “Multi-resource
energy-efficient routing in cloud data centers with network-as-a-service,”
in ISCC, 2015, pp. 694–699.

[15] Q. Liu, G. Wang, J. Wu, and W. Chang, “User-controlled security
mechanism in data-centric clouds,” in HPCC, 2015, pp. 647–653.

[16] S. Hu, W. Bai, K. Chen, C. Tian, Y. Zhang, and H. Wu, “Providing band-
width guarantees, work conservation and low latency simultaneously in
the cloud,” in INFOCOM, 2016.

[17] “Cisco data center infrastructure 2.5 design guide,” 2007.
[18] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data

center network architecture,” in SIGCOMM, 2008.
[19] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif, “Black-box

and gray-box strategies for virtual machine migration,” in NSDI, April
11-13, Cambridge, Massachusetts, USA, 2007.

[20] L. Epstein and L. M. Favrholdt, “On-line maximizing the number of
items packed in variable-sized bins,” Acta Cybern., vol. 16, no. 1, pp.
57–66, 2003.

[21] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic
efficiency for network flow problems,” J. ACM, vol. 19, no. 2, pp. 248–
264, 1972.

[22] J. Boyar, K. S. Larsen, and M. N. Nielsen, “The accommodating
function: A generalization of the competitive ratio,” SIAM J. Comput.,
vol. 31, no. 1, pp. 233–258, 2001.

[23] H. Kellerer and V. Kotov, “An approximation algorithm with absolute
worst-case performance ratio 2 for two-dimensional vector packing,”
Oper. Res. Lett., vol. 31, pp. 35–41, 2003.

[24] F. Petrini and M. Vanneschi, “k -ary n -trees: High performance networks
for massively parallel architectures,” in IPDPS, April 1-5, Geneva,
Switzerland, 1997.

[25] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
format + schema,” Google Inc., Technical Report, 2011.


