
1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2875698, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, AUGUST 2017 1

Joint Scheduling of Overlapping MapReduce
Phases: Pair Jobs for Optimization

Huanyang Zheng and Jie Wu, Fellow, IEEE

Abstract—MapReduce includes three phases of map, shuffle, and reduce. Since the map phase is CPU-intensive and the shuffle
phase is I/O-intensive, these phases can be conducted in parallel. This paper studies a joint scheduling optimization of overlapping
map and shuffle phases to minimize the average job makespan. New concepts of the strong pair and the weak pair are introduced. Two
jobs are defined as a strong pair if the shuffle and map workloads of one job equal the map and shuffle workloads of the other job,
respectively. Two jobs are defined as a weak pair if their total map workloads equal their total shuffle workloads. We prove that if the
entire set of jobs can be decomposed to strong pairs of jobs, then the optimal schedule can pairwisely execute jobs that can form a
strong pair. Following the above intuition, several offline and online scheduling policies are proposed. Extensions are made based on
weak pairs. Real data-driven experiments validate the efficiency and effectiveness of the proposed policies.

Index Terms—MapReduce framework, map and shuffle phases, joint scheduling, makespan optimization.

F

1 INTRODUCTION

MapReduce is a well-known programming framework used
to process the ever-growing amount of data collected by
modern instruments, such as the Large Hadron Collider and
next-generation gene sequencers. Although MapReduce has
been widely adopted in a number of data centers, more
improvements are still needed to meet the huge demands of
big data computing. In the current MapReduce framework,
each job consists of three dependent phases: map, shuffle, and
reduce. The map and reduce phases generally deal with a
large amount of data computations, while the shuffle phase
transfers the data among different MapReduce workers. In
terms of the resource demand, the map and reduce phases
are CPU-intensive, while the shuffle phase is I/O-intensive.

Currently, most state-of-the-art research on MapReduce
optimizations focuses on the map and reduce phases. How-
ever, the shuffle phase also plays a very important role in
transferring the data from map workers to reduce workers.
It has a significant impact on the average job makespan,
especially when the data is big. Moreover, Chen et al. [1]
reported that jobs processed by the Facebook MapReduce
cluster are shuffle-heavy. Consequently, this paper studies a
joint scheduling optimization of map and shuffle phases to
minimize the average job makespan (the time span from the job
arrival to the completion of the shuffle phase). The reduce
phase is not jointly optimized since its workload is relatively
light. According to Zaharia et al. [2], only 7% of jobs in a
production MapReduce cluster are reduce-heavy.

MapReduce usually involves a lot of nodes across the
network. This paper focuses on single node optimizations
for MapReduce. Our key observation is that the map and
shuffle phases have different resource demands for a single
node in MapReduce. Since the map phase is CPU-intensive

• H. Zheng and J. Wu are with Center for Networked Computing, Temple
University, Philadelphia, PA 19122, USA.
E-mail: {huanyang.zheng, jiewu}@temple.edu

Manuscript received April 19, 2017; revised August 26, 2017.

Time

Time

0%

100%

0%

100%

J2

J2
J1

J1

Map CPU

utilization

Shuffle I/O

utilization

2 3 4

50%

0

(a) Schedule one.

Time

Time

0%

100%

0%

100%

J2

J2J1

J1

Map CPU

utilization

Shuffle I/O

utilization

2 310

(b) Schedule two.

Fig. 1. An example for the joint scheduling of overlapping phases.

and the shuffle phase is I/O-intensive, they can potential-
ly be conducted in parallel to minimize the average job
makespan. The key challenge comes from the fact that the
map and shuffle phases cannot be fully parallelized due to
their dependency relationship. The shuffle phase of a job must
start later than its map phase, and cannot finish earlier than
its map phase. This is because the shuffle phase may wait
to transfer the data emitted by the map phase. An example
includes the WordCount [3], in which the map workers emit
key-value pairs at a certain rate to be shuffled to the reduce
workers. If the map workload of a job is larger than its
shuffle workload, the I/O resource may be underutilized,
leading to a non-optimal job schedule. In addition, this
paper considers that the job workload to be fixed as a
prior (map and shuffle workloads are not symbiotic, and
applications such as SecondarySort are not considered).

To illustrate the above motivation more clearly, an exam-
ple is shown in Fig. 1, which involves two jobs of J1 and
J2. J1 is shuffle-heavy and J2 is map-heavy. Assuming that
the resources are fully utilized, the map and shuffle phases
of J1 take 1 and 2 time slots, respectively. The resource
demand of J2 is the opposite of that of J1 (1 time slot for
the shuffle phase and 2 time slots for the map phase). As
shown in Fig. 1(a), schedule one executes J2 first, leading

Authorized licensed use limited to: Temple University. Downloaded on July 20,2020 at 20:28:14 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2875698, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, AUGUST 2017 2

to an underutilization of the I/O resource. This is because
J2’s shuffle phase needs to wait to transfer the data emitted
by its map phase (suppose a constant data emission rate).
Consequently, schedule one takes 4 time slots to finish all the
jobs. As shown in Fig. 1(b), schedule two is a better scheme.
It executes J1 first and only takes 3 time slots to finish all
the jobs. It can be seen that, in order to maximally utilize
the I/O resource, the shuffle-heavy job should be executed
earlier than the map-heavy job.

New concepts of the strong job pair and the weak job
pair are introduced to address the above problem. Two jobs
are called a strong pair if the shuffle and map workloads of
one job equal the map and shuffle workloads of the other
job, respectively. Two jobs are called a weak pair if their
total map workloads equal their total shuffle workloads.
We prove that if the entire set of jobs can be decomposed
to strong pairs of jobs, then the optimal schedule is to
pairwisely execute jobs that can form a strong pair. Several
offline and online scheduling algorithms are proposed to
minimize the average job makespan. They first group jobs
according to job workloads, and then, execute jobs within
each group through a pairwise manner. Extensions are made
based on weak pairs.

The remainder of this paper is organized as follows.
Section 2 surveys the related works. Section 3 describes the
model and formulates the problem. Sections 4 and 5 study
the offline job scheduling with strong and weak job pairs, re-
spectively. Online scheduling is extended. Section 6 includes
extensive real data-driven experiments. Finally, Section 7
concludes this paper and discusses future directions.

2 RELATED WORK

Extensive studies on the MapReduce scheduler have been
conducted over the past few years. An example includes the
delay scheduling [4], which postpones the task scheduling
and ameliorates the locality degradation in the Hadoop
scheduler. Another example is the ARIA [5], which allocates
appropriate amounts of resources to each MapReduce job
to meet service level objectives. Zhang et al. [6] improved
ARIA by estimating the amount of resources required to
complete a program. Wolf et al. [7] proposed a framework
to optimize different scheduling metrics, based on a perfor-
mance model, with respect to the job execution time. Tang
et al. [8] proposed a scheduling policy that dynamically
determines the start time of each reduce task according to its
job context. Mantri [9] can mitigate the impact of outliers. It
monitors task executions with real-time outlier estimations,
then takes reactions, such as restarting and terminating
specified outliers. Tarazu [10] was a communication-aware
scheme, which schedules predictive load-balancing MapRe-
duce jobs to reduce the network traffic within heterogeneous
Hadoop clusters. Quincy [11] achieved a balanced tradeoff
between the job fairness and the data locality through a min-
cost flow method and a preemption mechanism. Amoeba
[12] supported lightweight elastic tasks that can release the
CPU resources without losing I/O computations. Moreover,
multi-resource (CPU and I/O) packing problems were also
investigated for MapReduce schedulers [13–15]. For exam-
ple, Graphene [13] was designed to schedule jobs that have
complex dependency structures and heterogeneous resource

demands. Graphene focused on the long-running tasks and
those with tough-to-pack resource demands. These trouble-
some tasks can be scheduled in advance of the remaining
tasks without violating the dependency constraints. PRISM
[14] divided tasks into several phases, where each phase has
a constant resource usage profile, and performs scheduling
at the phase level. The importance of phase-level scheduling
was demonstrated by the resource usage variability within
the lifetime of a task using a wide-range of MapReduce jobs.
A phase-level scheduling algorithm was also introduced
to improve execution parallelism and resource utilization.
Verma et al. [15] developed a method to break the barrier
between the Map and Reduce stages in MapReduce, in
order to improve the efficiency. A barrier-less MapReduce
framework was designed to obtain the equivalent generality
and retain ease of programming. However, the above works
focus on the resource scheduling for map and reduce phas-
es. The overlapping shuffle phase is not jointly optimized.

In 2013, Lin et al. [16] proposed a landmark model for
the overlapping map and shuffle phases in MapReduce.
They proved that the problem of minimizing the average
job makespan is NP-hard in the offline scenario and APX-
hard in the online scenario. Therefore, no online scheduling
policy can guarantee a constant approximation ratio with
respect to the optimal scheduling policy. However, Lin’s
scheduling policy may not be efficient, since the optimal
pattern is under-explored. We show that optimal results can
be obtained by pairing map-heavy jobs and shuffle-heavy
jobs under load-balancing offline scheduling scenarios. Li et
al. [17] considered a model with overlapping shuffle and re-
duce phases, utilizing the data locality to minimize the time
for the shuffle phase. However, Li’s scheduling policy does
not guarantee an approximation ratio over time. This paper
is also related to Wang’s research [18], where the shuffle
phase is reconfigurable to dynamically coordinate the map
and reduce phases. A mathematical model was proposed to
judge the computing complexities with different operating
orders within the map-side shuffle, so that a faster execution
can be achieved through reconfiguring the order of sorting
and grouping. Some sampled features during the shuffle
stage were collected to support the evaluation of the com-
puting complexities of each operating order. By contrast,
this paper optimizes the MapReduce with a fixed shuffle
workload. In addition, our scheduling policy is similar to
OMO [19], which aimed to optimize the overlap between
the map and reduce phases. OMO is based on the lazy start
of reduce tasks and the batch finish of map tasks, which
catch the characteristics of the overlap and achieve a good
alignment of the two phases.

Our problem is a variation of the flow shop scheduling
problem [20], which is a class of scheduling problems with
a set of machines. Each job is processed on this set of
machines in compliance with the given processing orders.
A continuous flow of jobs is scheduled with the objective
of a minimum completion time or waiting time. Flow shop
scheduling is a special case of job shop scheduling [21], in
which there is a strict order of machines for each job to
be processed [22]. Our problem is similar to a flow shop
scheduling problem with two machines: one machine repre-
sents the map phase, while the other machine represents the
shuffle phase. The difference is that our problem minimizes

Authorized licensed use limited to: Temple University. Downloaded on July 20,2020 at 20:28:14 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2875698, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, AUGUST 2017 3

the average job makespan, while the flow shop scheduling
problem minimizes the completion time or the waiting time.
As a result, our problem prefers to schedule jobs with
lighter workloads before jobs with heavier workloads, but
the flow shop scheduling problem does not have such a
preference. It has been proven that the flow shop scheduling
problem with only two machines can be optimally solved in
a polynomial time, but the flow shop scheduling problem
with more than two machines is NP-hard [20]. There are
some extensions of the flow shop scheduling problem. Wang
et al. [23] proposed an effective distribution algorithm to
solve the distributed flow shop scheduling problem. The
earliest completion factory rule was employed based on an
encoding that generates feasible schedules and calculates
the schedule objective value. A probability model was built
for describing the probability distribution of the solution
space. Marichelvam et al. [24] presented a cuckoo search
meta-heuristic algorithm to minimize the makespan for the
flow shop scheduling problem. A constructive heuristic was
incorporated to obtain the near-optimal solutions rapidly.

3 MODEL AND PROBLEM FORMULATION

This paper focuses on a MapReduce framework with over-
lapping map and shuffle phases. In MapReduce, map work-
ers continuously emit processed data (at a constant rate),
which are in turn shuffled to reduce workers. We consider
that map and shuffle phases mainly take CPU and I/O
resources, respectively. Hence, they may be conducted in
parallel. However, the shuffle phase is dependent on the
map phase. This is because the shuffle phase may wait to
transfer the data emitted by the map phase. If the data
transfer rate of the shuffle phase is higher than the data
emission rate of the map phase, then the shuffle phase has
to wait for the data emission. As a result, the shuffle phase
of a job must start later than its map phase and cannot finish
earlier than its map phase. The reduce phase is not jointly
optimized, since its workload is light [2].

We study both offline and online scenarios with n jobs
in total. The offline scenario means that all jobs arrive at
the system at the start time, waiting to be scheduled (job
information is pre-known). The online scenario means that
the scheduler only obtains the workload information of a
job upon its arrival, which may not be the start time. Let
J = {J1, J2, ..., Jn} denote the set of jobs, where Ji is the
ith job. Let tmi and tsi denote the map and shuffle workloads
of Ji, respectively. The workload of a job is its execution
time under fully-utilized resources. A MapReduce job may
include multiple parallel subtasks on different machines. In
such an event, its workload is the sum among different
subtasks. The CPU resource is always fully utilized. In
contrast, the I/O resource may be underutilized due to
the dependency relationship between the map and shuffle
phases. The actual shuffle time is considered to be reversely
proportional to the I/O utilization for model simplicity. For
example, when the I/O utilization is 25%, the shuffle time
is quadrupled. Note that this assumption can be improved.
One reason is that MapReduce framework manipulates the
shuffle with patch pattern, i.e., shuffle data is not delivered
to network until a local data buffer is fully filled. As a result,
shuffle can present burst of data at I/O ports. Other reasons

TABLE 1
Notations.

Ji and n Ji is the ith job and n is the number of jobs
J set of jobs, J = {J1, J2, ..., Jn}

tmi and tsi the map and shuffle workloads of Ji
S a schedule for J
Gi the ith job group

∆i,j the job priority difference between Ji and Jj
α a weight parameter
k a parameter to determine number of job groups

can be overhead and and machine performance variance.
However, when the shuffle workload is large enough with
respect to the local buffer, this assumption becomes solid in
terms of approximating the average performance [19].

We have the following definitions:
Definition 1. The job of Ji is said to be balanced if and only

if tmi = tsi . If tmi > tsi , Ji is map-heavy. On the other
hand, if tmi < tsi , Ji is shuffle-heavy.

Definition 2. The makespan of a job is the time span from
its arrival to its shuffle phase completion, including its
waiting time before the job execution.

The objective of this paper is to minimize the average job
makespan through jointly scheduling overlapping map and
shuffle phases. We do not minimize the latest job comple-
tion time (or other objectives) since these objectives have
been well-studied in the flow shop scheduling field [20].
We assume that the MapReduce has a centralized scheduler,
which abstracts the job schedule as a sequential order. The
scheduler executes the next job, only if the MapReduce
cluster has sufficient machines with idle CPU resources.
This is because the next job may require the CPU resources
of multiple machines to start its map phase. Our problem is
NP-hard and APX-hard in the offline and online scenarios,
respectively [16]. Therefore, this paper studies some special
cases to design effective heuristics for our problem.

Note that a job may not execute immediately after its
arrival, since it may be scheduled to wait for other jobs. To
minimize the average job makespan, we prefer to execute
jobs with lighter workloads earlier. This is because the small-
er jobs can finish earlier. This preference can introduce an
unfair policy that many small tasks could block the issue of
large tasks for a long interval (algorithm performances can
be degraded if considering the fairness issue). However, this
paper does not explore the fairness problem for simplicity.
The key challenge comes from the dependency relationship
between the map and shuffle phases, which may lead to I/O
underutilization (and thus, a non-optimal schedule). As a
result, the optimal schedule may not be simply ranking jobs
by their workloads. The following section will explore some
insights. Finally, all notations are shown in Table 1.

4 OFFLINE SCHEDULING WITH STRONG JOB PAIR

4.1 Strong Job Pair and Its Optimality
To obtain more insights on the offline scheduling, we start
with a special case of J , based on the following definition:
Definition 3. Two jobs, Ji and Jj , are called a strong pair if

tmi = tsj and tsi = tmj .

If two jobs can form a strong pair, then their map and shuffle
workloads are exactly opposite to each other, meaning that

Authorized licensed use limited to: Temple University. Downloaded on July 20,2020 at 20:28:14 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2875698, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, AUGUST 2017 4

Algorithm 1 Pair-based Scheduling Policy
Input: The job set, J , and its workloads, {tmi } and {tsi}.
Output: A schedule of the job execution order.

1: Initialize an array, S, to denote the job execution order;
2: Put all jobs into the order array of S;
3: Sort all jobs in S according to max(tmi , t

s
i);

4: for each subset of jobs with the same max(tmi , t
s
i) do

5: Reorder jobs by iteratively taking out a pair of jobs of
Ji = arg maxi(t

s
i − tmi) and Jj = arg maxj(t

m
j − tsj);

6: return the order array of S as the schedule;

they can be executed together to avoid I/O underutilization.
This is a special case that can result in the optimal offline
schedule, as shown in the following theorem [25]:
Theorem 1. If J can be decomposed to strong pairs of jobs,

then jobs that can form a strong pair are pairwisely
executed in the optimal offline schedule for J . For each
strong job pair, the shuffle-heavy job is executed before
the map-heavy job.

The proof of Theorem 1 is described in [25]. It means that
we can avoid I/O underutilization by pairwisely executing
jobs that can form a strong pair. This idea can be extended
by organizing a bundle of jobs (such as a 3-tuple of jobs)
as a basic scheduling unit. However, such an extension
may bring a higher scheduling complexity and may post a
higher optimality prerequisite on the workload distributions
of jobs. Therefore, we use a pair of jobs (rather than a 3-tuple
of jobs) as the basic scheduling unit.

4.2 Pair-based Scheduling and Discretization
Our first idea is to schedule jobs based on their workloads
and try to pair jobs that have the same workloads based
on Theorem 1. Consequently, Algorithm 1 is proposed,
which has two stages. The first stage (lines 1 to 3) is based
on Lin’s MaxSRPT algorithm [16], where jobs are sorted
according to max(tmi , t

s
i). Note that max(tmi , t

s
i) represents

the dominant workload of Ji. Jobs with lighter workloads
should be executed earlier, since small jobs could finish
earlier to minimize the average job makespan. The second
stage (lines 4 and 5) is our novel contribution based on
Theorem 1. Jobs are iteratively paired according to their map
and shuffle workload differences. We prioritize jobs with
smaller workloads (the first stage) over jobs with better pairs
(the second stage), since the former one generally rules the
latter one (as verified in experiments). The time complexity
of Algorithm 1 is O(n log n), and n is the number of jobs.
This time complexity results from the sorting procedure in
Algorithm 1 (lines 3 and 5).

As shown in [25], Algorithm 1 works well when only a
small portion of jobs can be paired.
Theorem 2. Algorithm 1 is optimal when all jobs in J are

simultaneously map-heavy, balanced, or shuffle-heavy.

4.3 Couple-based Scheduling and Generalization
We find that Algorithm 1 fails to work well when a

large portion of jobs can be paired. Therefore, Algorithm 2 is
proposed to address the above issue. Similar to Algorithm 1,

Algorithm 2 Couple-based Scheduling Policy
Input: The job set, J , and its workloads, {tmi } and {tsi}.
Output: A schedule of the job execution order.

1: Initialize an array, S, to denote the job execution order;
2: Put all jobs into the order array of S;
3: Sort all jobs in S according to tmi + tsi ;
4: for each subset of jobs with the same tmi + tsi do
5: Reorder jobs by iteratively taking out a pair of jobs of

Ji = arg maxi(t
s
i − tmi) and Jj = arg maxj(t

m
j − tsj);

6: return the order array of S as the schedule;

Algorithm 3 Generalized Scheduling Policy
Input: The job set, J , and its workloads, {tmi } and {tsi}.
Output: A schedule of the job execution order.

1: Initialize an array, S, to denote the job execution order;
2: Put all jobs into the order array of S;
3: Set Ji’s priority as [α·max(tmi , t

s
i) + (1−α)·(tmi + tsi)];

4: Sort all jobs in S according to their priorities;
5: for each subset of jobs with the same priority do
6: Reorder jobs by iteratively taking out a pair of jobs of

Ji = arg maxi(t
s
i − tmi) and Jj = arg maxj(t

m
j − tsj);

7: return the order array of S as the schedule;

Algorithm 2 also has two stages. In the first stage (lines 1
to 3), all jobs are sorted according to their total map and
shuffle workloads, i.e., tmi + tsi . Its intuition is similar to
that of Algorithm 1: jobs with lighter workloads should be
executed earlier, since the smaller jobs can finish earlier to
minimize the average job makespan. The key difference is
that jobs are sorted by total map and shuffle workloads in
Algorithm 2, instead of dominant workloads in Algorithm 1.
The second stage of Algorithm 2 (lines 4 and 5) is identical to
Algorithm 1, where jobs are iteratively paired based on their
map and shuffle workload differences. The time complexity
of Algorithm 2 remains O(n log n)1.

As shown in [25], Algorithm 2 works well when a large
portion of jobs can be paired.
Theorem 3. Algorithm 2 is optimal when J can be decom-

posed to strong pairs of jobs.

Moreover, we have the following corollary:
Corollary 1. Algorithms 1 and 2 are equivalent and optimal

when all jobs in J are simultaneously balanced.

While Algorithm 1 works well when only a small portion
of jobs can be paired, Algorithm 2 works well when a
large portion of jobs can be paired. They are equivalent and
optimal when all jobs are balanced. To balance this tradeoff,
Algorithm 3 is proposed to combine Algorithms 1 and 2. It
uses [α·max(tmi , t

s
i) + (1−α)·(tmi + tsi)] as Ji’s priority, then

sorts all jobs according to their priorities. α serves as a
weight parameter that satisfies 0 ≤ α ≤ 1.

4.4 Group-based Policy

Previous subsections introduced Algorithms 1, 2, and 3 to
schedule jobs with a discretization process, which controls
the granularity of the job priority. Jobs with similar priori-
ties are grouped for the pairing process. The discretization

Authorized licensed use limited to: Temple University. Downloaded on July 20,2020 at 20:28:14 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2875698, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, AUGUST 2017 5

Algorithm 4 Group-based Scheduling Policy
Input: The job set, J , and its workloads, {tmi } and {tsi}.
Output: A schedule of the job execution order.

1: Initialize an array, S, to denote the job execution order;
2: Put all jobs into the order array of S;
3: Set Ji’s priority as [α ·max(tmi , t

s
i) + (1−α) · (tmi + tsi)];

4: Sort all jobs in S according to their priorities;
5: Divide jobs into k groups by dynamic programming:

Initialize a two-dimensional array of OPT ;
Initialize OPTj,l = 0 when j = 0 or l = 0;
Compute OPTj,l = minl≤i≤j{OPTi−1,l−1 + ∆i,j};
Trace back the optimal job grouping through index i;

6: for each group of jobs do
7: Reorder jobs by iteratively taking out a pair of jobs of

Ji = arg maxi(t
s
i − tmi) and Jj = arg maxj(t

m
j − tsj);

8: return the order array of S as the schedule;

process is essentially a grouping (or clustering) procedure,
and thus, it could be replaced by other grouping methods.
This subsection presents a pairwise scheduling policy that
groups jobs through a dynamic programming approach. The
grouping goal is to divide jobs into k groups, such that
the Sum of the Maximum Job Priority Difference within
each group (SMJPD) is minimized. Let G1, ..., Gk denote
the k job groups. SMJPD =

∑k
l=1

{
maxJi,Jj∈Gl

∆i,j

}
with

∆i,j =
∣∣[α·max(tmi , t

s
i)+(1−α)·(tmi + tsi)]−[α·max(tmj , t

s
j)+

(1−α)·(tmj + tsj)]
∣∣. Here, ∆i,j denotes the job priority differ-

ence between Ji and Jj . The optimal grouping result can
be obtained by a dynamic programming approach. With-
out loss of generality, we assume that all jobs are already
sorted according to their priorities, i.e., [α·max(tmi , t

s
i) +

(1−α)·(tmi + tsi)] is non-decreasing with respect to the index
i. Let OPTj,l denote the optimal SMJPD for the first j jobs
(J1, J2, ..., Jj), when they are divided to l groups. OPTn,k is
the desired result. The optimal substructure for the dynamic
programming approach is shown as follows:

OPTj,l = min
l≤i≤j

{OPTi−1,l−1 + ∆i,j} (1)

Since jobs are assumed to be sorted by their priorities, ∆i,j

is also the maximum job priority difference for the job group
of Ji, Ji+1, ..., Jj . Then, Eq. 1 can be interpreted as follows.
The optimal grouping for the first j jobs of l groups is
composed of (1) the optimal grouping for the first i− 1 jobs
of l − 1 groups, and (2) the remaining jobs of Ji, Ji+1, ..., Jj
as a new group. The index of i is traversed to guarantee
the optimality. Since i is traversed, computing the dynamic
programming entry ofOPTj,l takesO(n) on average.O(nk)
entries exist in total, and thus, the eventual time complexity
of the dynamic programming approach is O(n2k). As for
the initialization, we set OPTj,l = 0 when j = 0 or j ≤ l.

Algorithm 4 is proposed, setting the job priority of Ji
as [α·max(tmi , t

s
i) + (1−α)·(tmi + tsi)] (lines 1 to 3). Then, the

dynamic programming approach is applied to group jobs
based on their priorities. Meanwhile, groups are also sorted
according to their priority ranges (lines 4 and 5). For each
group, jobs are iteratively paired according to their map and
shuffle workload differences (lines 6 and 7). We prioritize
jobs with smaller workloads (the first stage) over jobs with

Algorithm 5 Online Group-based Scheduling Policy
Input: The old schedule, S, and a new arriving job, Ji.
Output: A new schedule of the current job execution order.

1: Set Ji’s priority as [α ·max(tmi , t
s
i) + (1−α) · (tmi + tsi)];

2: if a random number is smaller than 1/nk2 then
3: Call Algorithm 4 to completely reschedule all jobs;
4: return the new schedule;
5: else
6: for each job group, Gl, in S do
7: Compute maxJj∈Gl

∆i,j ;
8: Add Ji into Gl = arg minGl

{maxJj∈Gl
∆i,j};

9: Reorder jobs in Gl via the same way as Algorithm 4;
10: return the updated S as the schedule;

better pairs (the second stage), since the former one gener-
ally rules the latter one (verified in experiments). The time
complexity of Algorithm 4 is O(n2k), which results from
the dynamic programming approach. Although Algorithm
4 has a higher time complexity than Algorithms 1, 2, and
3, it skips the discretization process, which may result in
information loss. As a tradeoff, Algorithm 4 controls the job
granularity through a more flexible manner via k.

4.5 Extension to Online Scheduling
The proposed online scheduling algorithm includes an

initialization process. At the system start time, Algorithm 4
is used to schedule the existing jobs. If the number of
existing jobs is less than k, then each job is regarded as
a job group. Note that job groups are sorted according to
their priority ranges. Upon a new job arrival, Algorithm 5 is
called. It includes two sub-methods: method one completely
reschedules all jobs (lines 2 and 3) and method two slightly
modifies the existing old schedule (lines 5 to 10). Methods
one and two are chosen through a random number gener-
ator. The random number is uniformly distributed between
0 and 1. Therefore, line 2 indicates that Algorithm 5 has a
small probability of 1

nk2 to choose method one, and has a
large probability of 1 − 1

nk2 to choose method two. Here, n
is the total number of jobs that are waiting for the schedule.
The above probabilities aim to balance the time complexity.

Method one calls Algorithm 4 to reschedule all jobs, and
thus takes a time complexity of O(n2k). In contrast, method
two modifies the existing old schedule to resolve the new
job. It checks every job group for the new arrival job, and
then adds the new job to its closest existing job group. The
closest group is the one that can minimize the maximum job
priority difference with the new job (lines 6 to 8). It can be
found within a time complexity of O(k), since we only need
to check the minimum and maximum job priorities in each
job group. All jobs in this group and the new arrival job are
completely reordered in a pairwise manner (line 9). Since
each job group is expected to include n

k jobs, method two
is also expected to take O(n

k). Consequently, Algorithm 5
takes O(n

k), since [1
nk2 ·O(n2k) + (1− 1

nk2) ·O(n
k)] ∈ O(n

k).

4.6 Job Prediction and Error Handling
The performance of our algorithms depend on the param-
eters α, n, and k. However, jobs are no longer known a

Authorized licensed use limited to: Temple University. Downloaded on July 20,2020 at 20:28:14 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2875698, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, AUGUST 2017 6

priori for the online scenario. At this time, job prediction ap-
proaches can be applied to determine these parameters. For
example, CherryPick [26] leverages Bayesian optimization
to build performance models for various applications, and
the models are just accurate enough to distinguish the best
or close-to-the-best configuration from the rest with only a
few test runs. We can use the same approach to determine
the parameters α, n, and k. In addition, the history of job
workloads can be used to improve the prediction accuracy.
For example, Cortez [27] introduced an extensive charac-
terization of job workloads, including distributions of the
job lifetime, deployment size, and resource consumption.
Moreover, job prediction can be used to handle errors with
respect to job workload information. If the job workload
information is not available, we can use predicted job work-
load to schedule it.

5 OFFLINE SCHEDULING WITH WEAK JOB PAIR

Based on the strong job pair, the previous section describes
several scheduling algorithms. However, the requirement of
the strong job pair is very strict, and thus, is not likely to be
satisfied in real scenarios. To relax such a strict requirement,
this section further proposes the concept of the weak job
pair and the corresponding scheduling algorithms.

5.1 Weak Job Pair and Its Optimality
We start with relaxing the strong job pair to the weak job
pair, as defined in the following:
Definition 4. Two jobs, Ji and Jj , are called a weak pair if

tmi + tmj = tsi + tsj .

Definition 5. A weak pair is further called a strict weak pair
if the shuffle-heavy job in this weak pair occupies no
more than half of the total map workload and no less
than half of the total shuffle workload.

The weak pair is an extension of the strong pair. A strong
pair must be a weak pair, but vice not versa. The key idea is
that the weak pair also avoids I/O underutilization, leading
to a better schedule. However, weak pairs do not guarantee
the optimality, since pairing a small job and a large job
(in terms of total workloads) may not be effective. Such a
pairing avoids I/O underutilization at the cost of scheduling
a heavier job ahead, as shown in the following example:

Jobs J1 J2 J3 J4
tmi 1 98 45 55
tsi 2 97 49 51

Let us consider two schedules for the above example. The
first schedule is just J1, J2, J3, and J4. Note that J1 and J2
form a weak pair, while J3 and J4 form another weak pair.
Moreover, the weak pair formed by J3 and J4 has a larger
total workload than the weak pair formed by J1 and J2.
The first schedule completely avoids I/O underutilization.
The job makespan for J1, J2, J3, and J4 is 2, 99, 148, and
199, respectively. Consequently, the average job makespan
is 112. In contrast, the second schedule is J1, J3, J4, and
J2. Note that J1 and J3 do not form a weak pair. The
job makespan for J1, J2, J3, and J4 is 2, 51, 102, and
199, respectively. Consequently, the average job makespan is

88.5, which is smaller than 112. Clearly, the first schedule is
not optimal. This is simply because the first schedule avoids
I/O underutilization at the cost of scheduling a heavier job
ahead (i.e., J2 is scheduled ahead). On the other hand, if
weak pairs are formed without scheduling a heavier job
ahead, then the optimality can be obtained:

Theorem 4. If J can be decomposed to strict weak pairs
of jobs, then jobs that can form a strict weak pair are
pairwisely executed in the optimal offline schedule for
J . For each strict weak job pair, the shuffle-heavy job is
executed before the map-heavy job.

The proof of Theorem 4 is omitted since it is a very sim-
ple extension of Theorem 1. The key insight of Theorem 4 is
that strict weak pairs are formed without scheduling a heav-
ier job ahead. For each strict weak pair, the total workload
of the shuffle-heavy job is close to the total workload of the
map-heavy job. The shuffle-heavy job and the map-heavy
job in a strict weak pair occupy no less than half of the total
shuffle and map workloads, respectively. Compared to the
strong pair, the weak pair is more practical. The next two
subsections leverage weak pairs for the scheduling.

5.2 New Couple-based Scheduling

Algorithm 6 is proposed to leverage weak pairs of jobs. It is
a variation of Algorithm 2 and also needs the discretization
process. The idea is to maintain weak pairs in the schedul-
ing. Lines 1 and 2 show the initialization. Line 3 sorts jobs
that have the same |tmi − tsi |, i.e., jobs that can form a weak
pair are grouped. Note that each job group may have more
than two jobs, i.e., a job may form different weak pairs with
the other jobs. Lines 4 and 5 process each subset of jobs. The
smallest possible pair is iteratively taken out. If a subset of
jobs includes an odd number of jobs, then the last job will
be put to the end of the schedule. Lines 6 and 7 determine
the scheduling based on pairs, which are ordered by their
total workloads, tmi + tmj + tsi + tsj . Finally, line 8 returns
the result. Let n denote the number of jobs in J . The time
complexity of Algorithm 6 becomes O(n2). This is because
we need O(n2) to find out the smallest pair in each subset
of jobs. Sorting takes only O(n log n).

Jobs J1 J2 J3 J4 J5 J6
Discrete tmi 3∆ 7∆ 2∆ 3∆ 7∆ 8∆
Discrete tsi 4∆ 6∆ 4∆ 1∆ 5∆ 10∆

The above table shows an example for Algorithm 6 after
the discretization process. In line 3, J1 and J2 are sorted
together, while J3, J4, J5, and J6 are sorted together. Note
that J3 can form two different weak pairs with J4 and J6,
respectively. Lines 4 and 5 form weak job pairs for each
subset of jobs. In the first subset, J1 and J2 are paired. In
the second subset, J3 and J4 are paired in the first iteration,
since they form the smallest weak pair (compared to J3 and
J5, J6 and J4, and J6 and J5). J6 and J5 are paired in the
second iteration (shuffle-heavy job before map-heavy job for
each weak pair). Line 5 sorts these three weak pairs into J3
and J4, J1 and J2, and J6 and J5. Consequently, the final
schedule is J3, J4, J1, J2, J6, and J5.

Algorithm 6 is a variation of Algorithm 2. The former
is based on weak pairs while the latter is based on strong

Authorized licensed use limited to: Temple University. Downloaded on July 20,2020 at 20:28:14 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2875698, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, AUGUST 2017 7

Algorithm 6 New Couple-based Scheduling Policy
Input: The job set, J , and its workloads, {tmi } and {tsi}.
Output: A schedule of the job execution order.

1: Initialize an array, S, to denote the job execution order;
2: Put all jobs into the order array of S;
3: Sort all jobs in S according to |tmi − tsi |;
4: for each subset of jobs with the same |tmi − tsi | do
5: Pair jobs by iteratively taking out a pair, Ji and Jj ,

such that tmi + tsi + tmj + tsj is the smallest among all
possible pairs in the job subset;

6: Sort all pairs by their total workloads, tmi + tsi + tmj + tsj ;
7: Put sorted pairs into S; in each pair, the job that maxi-

mizes tsi − tmi is scheduled first;
8: return the order array of S as the schedule;

Algorithm 7 Match-based Scheduling Policy
Input: The job set, J , and its workloads, {tmi } and {tsi}.
Output: A schedule of the job execution order.

1: Initialize an array, S, to denote the job execution order;
2: if the number of jobs in J is odd then
3: Find out the most map-heavy job that maximizes tmi −

tsi , put it to the end of S, and remove it from J .
4: for each pair of jobs in J , say Ji and Jj do
5: Define the matching weight between jobs Ji and Jj as

wij = α ·|tmi +tmj −tsi−tsj |+(1−α)·|tmi +tsi−tmj −tsj |.
6: Find out the minimum weighted matching for jobs in J

through the weighted Blossom algorithm; Two matched
jobs are regarded as a matched pair;

7: Sort all pairs by their total workloads, tmi + tsi + tmj + tsj ;
8: Put sorted matched pairs into S; in each pair, the job

that maximizes tsi − tmi is scheduled first;
9: return the order array of S as the schedule;

pairs. Note that Algorithm 6 is not necessarily better than
Algorithm 2 in terms of the average job makespan. This is
because weak pairs may be formed at the cost of scheduling
a heavier job ahead. Actually, all proposed algorithms are
trying to balance the tradeoff between the job pairing and
the job workload. The next subsection uses matching to con-
trol the above tradeoff without the discretization process.

5.3 Match-based Scheduling Policy
This subsection uses the matching to balance the tradeoff
between the job pairing and the job workload without the
discretization process. The key idea is that, when two jobs
are paired, we need to consider both their pairing degree
and their workload difference. The pairing degree measures
to what degree two jobs can form a weak pair, such that
I/O underutilization can be avoided. On the other hand,
a smaller workload difference between two jobs gets rid of
scheduling a heavier job ahead. We use the matching weight
to check whether two jobs can be paired. Given two jobs, Ji
and Jj , their matching weight is defined as follows:

wij = α · |tmi +tmj −t
s
i−t

s
j |+ (1− α) · |tmi +tsi−t

m
j −t

s
j | (2)

The former part, |tmi +tmj −t
s
i−t

s
j |, is the pairing degree. The

latter part, |tmi +tsi−t
m
j −t

s
j |, is the workload difference be-

tween Ji and Jj . α is just a weight parameter that satisfies

Algorithm 8 Online Match-based Scheduling Policy
Input: The old schedule, S, and a new arriving job, Ji.
Output: A new schedule of the current job execution order.

1: if a random number is smaller than 1/n4 then
2: Call Algorithm 7 to completely reschedule all jobs;
3: return the new schedule;
4: else
5: for each job in J , say Jj do
6: Define the matching weight between Ji and Jj as

wij = α·|tmi +tmj −tsi−tsj |+(1−α)·|tmi +tsi−tmj −tsj |.
7: Find the job, say Jj , that minimizes wij ;
8: if tsi − tmi > tsj − tmj then
9: Put Ji before Jj and update S.

10: else
11: Put Ji after Jj and update S.
12: return the updated S as the schedule;

0 ≤ α ≤ 1 (also used in Algorithms 3, 4, and 5). Note that
a smaller wij indicates a better pairing between Ji and Jj .
wij reduces to 0 when Ji and Jj form a strong pair. When
α = 1, the matching weight only considers the job pairing
degree. In this case, jobs that can form weak pairs have
the minimum matching weight. On the other hand, when
α = 0, the matching weight only considers the job workload
difference. In this case, jobs with the same workloads have
the minimum matching weight.

The minimum weighted matching, which can be com-
puted through the weighted Blossom algorithm [28], is used
to balance the tradeoff between the job pairing degree and
the job workload difference. Consequently, Algorithm 7 is
proposed. Line 1 is the initialization. Lines 2 and 3 focus on
a corner case, in which J includes an odd number of jobs. In
this corner case, the most map-heavy job, which maximizes
tmi − tsi , is scheduled to the end of S. Lines 4 and 5 compute
the matching weight for each pair of jobs in J . Consequently,
line 6 pairs jobs through the minimum weighted matching.
Lines 7 and 8 sort and schedule matched job pairs by their
total workloads, tmi + tsi + tmj + tsj . In each pair, the job that
maximizes tsi − tmi is scheduled first. Finally, line 9 returns
the result. The time complexity of Algorithm 7 is O(n4) due
to the weighted Blossom algorithm [28–30].

5.4 Extension to Online Scheduling
This subsection extends the match-based scheduling policy
to the online scenario, where jobs are no longer known a
priori. The scheduler can only obtain the workload informa-
tion of a job upon its arrival. Due to the problem hardness,
we propose a heuristic scheduling algorithm based on Algo-
rithm 7. The key idea is similar to Algorithm 5, which uses a
probabilistic procedure to balance the tradeoff between the
algorithm performance and the time complexity.

The proposed online scheduling algorithm includes an
initialization process. At the system start time, Algorithm 7
is used to schedule the existing jobs. Upon a new job
arrival (say Ji), Algorithm 8 is called. It includes two sub-
methods: method one completely reschedules all jobs (lines
1 to 3), and method two just inserts Ji into the existing old
schedule (lines 4 to 11). Methods one and two are chosen
through a random number generator. The random number

Authorized licensed use limited to: Temple University. Downloaded on July 20,2020 at 20:28:14 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2875698, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, AUGUST 2017 8

is uniformly distributed between 0 and 1. Therefore, line 1
indicates that Algorithm 8 has a small probability of 1

n4 to
choose method one, and has a large probability of 1− 1

n4 to
choose method two. Here, n is the total number of jobs that
are waiting for the schedule.

Method one calls Algorithm 7 to reschedule all jobs, and
thus takes a time complexity of O(n4). In contrast, method
two modifies the existing old schedule to resolve the new
job. It computes the matching weight between the newly
arrived job, Ji, and each existing job in J (lines 5 and 6).
The job, say Jj , that has the minimum matching weight
with Ji is found in line 7. Ji will be inserted around Jj ,
depending on their workloads. If Ji is more shuffle-heavy
(i.e., tsi − tmi > tsj − tmj), Ji is inserted before Jj in S (lines 8
and 9). On the other hand, if Jj is more shuffle-heavy (i.e.,
tsi − tmi ≤ tsj − tmj), Ji is inserted after Jj in S (lines 10
and 11). Since lines 5 and 6 need to compute the matching
weight between the newly arrived job and each existing job,
method two takes O(n). Consequently, Algorithm 8 takes
O(n), since [1

n4 ·O(n4) + (1− 1
n4) ·O(n)] ∈ O(n). Note that

method one has a better scheduling performance at the cost
of a larger time complexity, while method two has a worse
scheduling performance but a smaller time complexity. They
are balanced through the random number generator, leading
to a linear time complexity on expectation.

6 EXPERIMENTS

6.1 Settings
Our experiments are conducted based on the Google cluster
dataset [31, 32], which are described in [25]. Four algorithms
are used for comparison:

• MaxDiff ranks jobs by their map and shuffle work-
load differences (tmi − tsi for job Ji). The job with a
larger workload difference will be executed later. It
prioritizes shuffle-heavy jobs over map-heavy jobs to
avoid I/O resource underutilization.

• Pairwise is based on Theorem 1, which has suggested
that jobs should be pairwisely scheduled. This policy
orders jobs by iteratively taking out a pair of jobs of
Ji = arg maxi(t

s
i − tmi) and Jj = arg maxj(t

m
j − tsj).

• MaxShuffle ranks jobs by their shuffle workloads.
Jobs with a larger shuffle workload are executed ear-
lier in order to avoid I/O resource underutilization.

• MaxSRPT is proposed by Lin et al. [16]. It sched-
ules jobs according to their dominant workloads,
i.e., max(tmi , t

s
i) for job Ji. Our algorithms improve

MaxSRPT through executing jobs pairwisely.

Our experiments denote Algorithms 1 to 8 as Pair-based,
Couple-based, Generalized, Group-based, OGroup-based,
NCouple-based, Match-based, and OMatch-based schedul-
ing policies for simplicity. In default, we can set ∆ = 0.1
seconds as the discretization step (Algorithms 1, 2, 3, and 6),
α = 0.5 as the weight parameter (Algorithms 3, 4, 5, 7, and
8), and k = 20 as the number of groups (Algorithms 4 and
5). Three metrics are used for comparison. The first metric is
the average job makespan, which is the time span from the
job arrival to its shuffle phase completion. The other two
metrics are the average job waiting time and the average job
execution time. The waiting time of a job is the time span from

TABLE 2
Offline performance evaluation in the Google cluster dataset.

Scheduling Average job Average job Average job
algorithms waiting time execution time makespan

MaxDiff 8806 682 9488
Pairwise 8289 149 9138

MaxShuffle 7929 898 8827
MaxSRPT 4768 840 5608
Pair-based 4809 581 5390

Couple-based 4787 563 5350
Generalized 4683 560 5243
Group-based 4619 532 5151

NCouple-based 5399 636 6035
Match-based 4431 512 4943

the job arrival to the start of its map phase. The execution
time of a job is the time span from the start of its map phase
to the completion of its shuffle phase. The job makespan is
the sum of the job waiting time and the job execution time.

6.2 Evaluation Results for Offline Scheduling
Experiments in the Google cluster dataset are conducted for
the offline scenario, in which all jobs are supposed to arrive
at the system start time. The results are shown in Table 2
with the unit of seconds. MaxDiff, Pairwise, and MaxShuffle
have the worst performances. However, Pairwise has a
significant smallest average job execution time through ex-
ecuting jobs pairwisely. It ignores the total map and shuffle
workloads of jobs, leading to an overly large job waiting
time. We also find that the Pair-based scheduling policy has
a larger average job wait time than the MaxSRPT policy,
since the discretization process is information-lossy. How-
ever, the former policy has a smaller average job execution
time through executing jobs pairwisely. The Couple-based
policy improves the Pair-based policy through considering
the total map and shuffle workloads of a job rather than
its dominant workload. The Generalized policy improves
the Pair-based and the Couple-based policies by combining
them with a given weight parameter of α. The Group-based
policy improves the Generalized policy by grouping jobs
optimally. An interesting observation is that the NCouple-
based policy does not have a good performance. This is
because weak pairs are formed at the cost of scheduling
a heavier job ahead. For the Google cluster dataset, we
can conclude that scheduling jobs with lighter workloads
before jobs with heavier workloads is more important than
avoiding I/O underutilization through weak pairs. Finally,
the Match-based policy has the best performance, since it
subtly balances the tradeoff between the job pairing and the
job workload through a matching procedure.

The impacts of the discretization step size, ∆, is shown
in Fig. 2 (offline scenario in the Google cluster dataset).
Fig. 2(a) shows that a small ∆ does not have a significant
impact on the average job waiting time. However, a large
∆ results in an exponentially increased average job waiting
time, due to the information loss on the total or dominant
job workload. Meanwhile, Fig. 2(b) shows that both overly
small and overly large ∆ will increase the job execution
time. This is because the pairing process is broken down by
an improper ∆. The corresponding average job makespan
is shown in Fig. 2(c). We can conclude that ∆ should not
be overly small or overly large to minimize the average job
makespan. For the Google cluster dataset, a good value for
∆ can range from 0.01 to 0.1.

Authorized licensed use limited to: Temple University. Downloaded on July 20,2020 at 20:28:14 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2875698, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, AUGUST 2017 9

10
−3

10
−2

10
−1

10
0

10
175

85

95

105

115

Discretization step size of ∆

A
ve

ra
ge

 jo
b

w
ai

tin
g

tim
e

(m
in

)

Pair−based
Couple−based
Generalized
NCouple−based

(a) Average job waiting time.

10
−3

10
−2

10
−1

10
0

10
16

9

12

15

18

21

24

27

Discretization step size of ∆

A
ve

ra
ge

 jo
b

ex
ec

ut
io

n
tim

e
(m

in
)

Pair−based
Couple−based
Generalized
NCouple−based

(b) Average job execution time.

10
−3

10
−2

10
−1

10
0

10
180

90

100

110

120

130

140

Discretization step size of ∆

A
ve

ra
ge

 jo
b

m
ak

es
pa

n
(m

in
)

Pair−based
Couple−based
Generalized
NCouple−based

(c) Average job makespan.

Fig. 2. Offline performance evaluation with respect to the discretization step size of ∆.

0 0.2 0.4 0.6 0.8 1
72

76

80

84

88

Weight parameter of α

A
ve

ra
ge

 jo
b

w
ai

tin
g

tim
e

(m
in

)

Generalized
Group−based (k=5)
Group−based (k=20)
Group−based (k=50)
Match−based

(a) Average job waiting time.

0 0.2 0.4 0.6 0.8 1
8

8.5

9

9.5

10

10.5

11

11.5

Weight parameter of α

A
ve

ra
ge

 jo
b

ex
ec

ut
io

n
tim

e
(m

in
)

Generalized
Group−based (k=5)
Group−based (k=20)
Group−based (k=50)
Match−based

(b) Average job execution time.

0 0.2 0.4 0.6 0.8 1
81

85

89

93

97

Weight parameter of α

A
ve

ra
ge

 jo
b

m
ak

es
pa

n
(m

in
)

Generalized
Group−based (k=5)
Group−based (k=20)
Group−based (k=50)
Match−based

(c) Average job makespan.

Fig. 3. Offline performance evaluation with respect to the weight parameter α.

The impacts of the weight parameter, α, and the group
number, k, are together shown in Figs. 3 (offline scenario
in the Google cluster dataset). As for the weight parameter
α, Fig. 3(a) shows an interesting pattern. The Generalized
policy reduces to the Pair-based policy when α = 1, and
reduces to the Couple-based policy when α = 0. However,
it achieves the smallest average job waiting time when
α is around 0.6. In addition, the Match-based policy is
significantly different than all the other policies with respect
to α, and it achieves the smallest average job waiting time
when α is around 0.2. The average job execution time is
shown in Fig. 3(b). α has a slight impact on the average
job execution time for the Generalized and Group-based
policies, but has a significant impact for Match-based policy.
This is because, when α = 1 in the Match-based policy,
the matching weight only considers the job pairing degree,
such that I/O underutilization can be avoided at the cost of
scheduling a heavier job ahead. The average job makespan
is shown in Fig. 3(c). The Match-based policy has a smaller
average job makespan than the Generalized and Group-
based policies. Another notable point is with respect to k.
While Fig. 3(a) shows that an overly small k leads to a large
average job wait time, and Fig. 3(b) shows that an overly
large k leads to a large average job execution time. As shown
in Fig. 3(c), in order to minimize the average job makespan
for the Group-based policy, k should be neither too small
nor too large, depending on the dataset.

6.3 Evaluation Results for Online Scheduling

Experiments in the online scenario are conducted in the
Google cluster dataset, which includes the job arrival time.
We start with the number of waiting jobs per hour under
each scheduling policy. The results are shown in Fig. 4. Not
all policies are presented here due to the page limitation.
Fig. 4(a) shows the result for the Pairwise policy, which has

the worst performance. Compared to other policies, the Pair-
wise policy has a larger number of waiting jobs for a longer
time around days 4, 5, and 12. It also has more waiting
jobs from days 22 to 30. Fig. 4(b) shows the result for the
MaxSRPT policy, which is not the best one, due to the peak
for days 20 to 24. In contrast to the Pairwise and MaxSRPT
policies, the Group-based policy has a smaller number of
waiting jobs over time, as shown in Fig. 4(c). This is because
it considers to schedule jobs in a pairwise manner to avoid
the underutilization of the I/O resource. The performance
of the OGroup-based policy is shown in Fig. 4(d). It has
a slightly worse performance from days 26 to 30 than its
offline version. Note that the scheduling time complexity
of the online version is O(n

k), which is lower than the
scheduling time complexity of the offline version, O(n2k).
The performance of the Match-based policy is shown in
Fig. 4(e). The Match-based policy has the best performance
among all policies, since it balances the tradeoff between
the job pairing and the job workload. However, the time
complexity for the Match-based policy is O(n4) upon each
new job arrival, in which n is the number of waiting jobs. To
reduce the scheduling complexity, the OMatch-based policy
is introduced, as shown in Fig. 4(f). The OMatch-based
policy has a slightly worse performance than Match-based
policy. However, the time complexity of the OMatch-based
policy is O(n), which is significantly smaller than the time
complexity of the Match-based policy.

Detailed performance statistics are shown in Table 3 with
the unit of minutes. A new concept of an 80%-interval is
used to represent the variable interval after removing the
largest 10% of the values and the smallest 10% of the values.
For each job, we define its ratio as the ratio of its practical
execution time to its dominant workload. A larger ratio in-
dicates that the corresponding job needs to wait for the I/O
resource for a relatively longer time. A job with a ratio of
one means that its execution time cannot be shortened. The

Authorized licensed use limited to: Temple University. Downloaded on July 20,2020 at 20:28:14 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2875698, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, AUGUST 2017 10

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
100

101

102

103

104

Time (day)

N
um

be
r o

f w
ai

tin
g

jo
bs

(a) Pairwise scheduling policy.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
100

101

102

103

104

Time (day)

N
um

be
r o

f w
ai

tin
g

jo
bs

(b) MaxSRPT scheduling policy.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
100

101

102

103

104

Time (day)

N
um

be
r o

f w
ai

tin
g

jo
bs

(c) Group-based scheduling policy.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
100

101

102

103

104

Time (day)

N
um

be
r o

f w
ai

tin
g

jo
bs

(d) OGroup-based scheduling policy.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
10

0

10
1

10
2

10
3

10
4

Time (day)
N

um
be

r
of

 w
ai

tin
g

jo
bs

(e) Match-based scheduling policy.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
10

0

10
1

10
2

10
3

10
4

Time (day)

N
um

be
r

of
 w

ai
tin

g
jo

bs

(f) OMatch-based scheduling policy.

Fig. 4. Online performance evaluation with respect to the number of waiting jobs.

TABLE 3
Online performance evaluation in the Google cluster dataset.

Scheduling Job waiting time statistics Job execution time statistics Job makespan statistics
algorithms Average 80%-interval Max Average 80%-interval Worst ratio Average 80%-interval Min Max

MaxDiff 42 [1, 138] 220 5 [0, 13] 239 47 [0, 138] 0 230
Pairwise 35 [1, 103] 193 1 [0, 3] 45 36 [0, 101] 0 178

MaxShuffle 23 [0, 86] 176 15 [2, 37] 542 38 [3, 95] 1 154
MaxSRPT 16 [0, 45] 183 13 [0, 44] 220 28 [0, 74] 0 81
Pair-based 19 [1, 51] 205 3 [0, 5] 113 22 [1, 48] 1 54

Couple-based 18 [1, 49] 195 3 [0, 5] 75 21 [1, 46] 1 49
Generalized 16 [1, 44] 187 3 [0, 5] 69 19 [1, 45] 1 47
Group-based 15 [1, 41] 174 3 [0, 4] 58 18 [1, 39] 1 41

OGroup-based 16 [2, 47] 185 3 [0, 5] 68 19 [1, 46] 1 48
NCouple-based 21 [2, 63] 201 1 [0, 3] 51 32 [1, 56] 0 97

Match-based 12 [1, 38] 164 3 [0, 4] 54 15 [1, 37] 1 39
OMatch-based 13 [2, 40] 178 3 [0, 4] 61 16 [1, 42] 1 44

worst ratio is the smallest ratio among all jobs. In Table 3,
it can be seen that the Pairwise policy has the smallest
job execution time, but it has a larger job waiting time.
In contrast, the MaxSRPT policy has a small job waiting
time with a large job execution time. The proposed Pair-
based and Couple-based policies balance the job waiting
and execution times to obtain smaller job makespans. The
Generalized policy has a slight improvement by combining
the above two policies, while the Group-based policy also
has some improvements by optimally grouping jobs. The
OGroup-based policy has a slightly worse performance than
Group-based policy, as well as a smaller scheduling time
complexity. Note that the NCouple-based policy does not
have a good performance. Although its job execution time
is small, its job waiting time is large. The Match-based policy
has the best performance by balancing the tradeoff between
the job pairing and the job workload. Similar to the OGroup-
based policy, the OMatch-based policy also has a slightly
worse performance than the Match-based policy, as well as
a smaller scheduling time complexity.

7 ACKNOWLEDGMENTS

This research was supported in part by NSF grants CNS
1629746, CNS 1564128, CNS 1449860, CNS 1461932, CNS
1460971, and CNS 1439672.

8 CONCLUSION

MapReduce includes three phases of map, shuffle, and re-
duce. Since the map phase is CPU-intensive and the shuffle
phase is I/O-intensive, these phases can be conducted in
parallel. This paper focuses on a joint scheduling optimiza-
tion in MapReduce, where map and shuffle phases can be
overlapped and be conducted in parallel. The scheduling
objective is to minimize the average job makespan. The key
challenge is that the map and shuffle phases cannot be fully
parallelized due to their dependency relationship: the shuf-
fle phase may wait to transfer the data emitted by the map
phase. To avoid I/O underutilization, jobs that can form a
strong pair should be pairwisely executed. Several offline
and online scheduling policies are proposed to execute jobs
in a pairwise manner. Scheduling optimalities are discussed
under several scenarios. We also explore scheduling policies
based on weak pairs, in terms of balancing the tradeoff
between the job pairing and the job workload. Finally, real
data-driven experiments validate the efficiency and effec-
tiveness of the proposed scheduling policies.

REFERENCES
[1] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The case for eval-

uating mapreduce performance using workload suites,” in IEEE
International Symposium on the Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS), 2011, pp.
390–399.

Authorized licensed use limited to: Temple University. Downloaded on July 20,2020 at 20:28:14 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2875698, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, AUGUST 2017 11

[2] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environ-
ments.” in USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2008, pp. 29–42.

[3] W. Zhang, S. Rajasekaran, T. Wood, and M. Zhu, “Mimp: Deadline
and interference aware scheduling of hadoop virtual machines,”
in IEEE/ACM International Symposium on Cluster, Cloud and Grid
(CCGrid), 2014, pp. 394–403.

[4] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: a simple technique for achieving
locality and fairness in cluster scheduling,” in European Conference
on Computer Systems (EuroSys), 2010, pp. 265–278.

[5] A. Verma, L. Cherkasova, and R. H. Campbell, “Aria: automatic
resource inference and allocation for mapreduce environments,”
in IEEE International Conference on Autonomic Computing (ICAC),
2011, pp. 235–244.

[6] Z. Zhang, L. Cherkasova, A. Verma, and B. T. Loo, “Automated
profiling and resource management of pig programs for meeting
service level objectives,” in IEEE International Conference on Auto-
nomic Computing (ICAC), 2012, pp. 53–62.

[7] J. Wolf, D. Rajan, K. Hildrum, R. Khandekar, V. Kumar, S. Parekh,
K.-L. Wu, and A. Balmin, “Flex: A slot allocation scheduling
optimizer for mapreduce workloads,” in ACM/IFIP/USENIX In-
ternational Middleware Conference (Middleware), 2010, pp. 1–20.

[8] Z. Tang, L. Jiang, J. Zhou, K. Li, and K. Li, “A self-adaptive
scheduling algorithm for reduce start time,” Future Generation
Computer Systems, vol. 43, pp. 51–60, 2015.

[9] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica,
Y. Lu, B. Saha, and E. Harris, “Reining in the outliers in map-
reduce clusters using mantri.” in USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2010, pp. 24–33.

[10] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. Vijaykumar,
“Tarazu: optimizing mapreduce on heterogeneous clusters,” ACM
SIGARCH Computer Architecture News, vol. 40, no. 1, pp. 61–74,
2012.

[11] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and
A. Goldberg, “Quincy: fair scheduling for distributed comput-
ing clusters,” in ACM Symposium on Operating Systems Principles
(SOSP), 2009, pp. 261–276.

[12] G. Ananthanarayanan, C. Douglas, R. Ramakrishnan, S. Rao,
I. Stoica, I. Y. L. Dont, and B. Us, “True elasticity in multi-tenant
clusters through amoeba,” in ACM Symposium on Cloud Computing
(SoCC), 2012, pp. 1–7.

[13] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akel-
la, “Multi-resource packing for cluster schedulers,” in ACM Special
Interest Group on Data Communication (SIGCOMM), 2014, pp. 455–
466.

[14] Q. Zhang, M. F. Zhani, Y. Yang, R. Boutaba, and B. Wong, “Prism:
Fine-grained resource-aware scheduling for mapreduce,” IEEE
Transactions on Cloud Computing, vol. 3, no. 2, pp. 182–194, 2015.

[15] A. Verma, B. Cho, N. Zea, I. Gupta, and R. H. Campbell, “Breaking
the mapreduce stage barrier,” Journal of Cluster Computing, vol. 16,
no. 1, pp. 191–206, 2013.

[16] M. Lin, L. Zhang, A. Wierman, and J. Tan, “Joint optimization of
overlapping phases in mapreduce,” Performance Evaluation, vol. 70,
no. 10, pp. 720–735, 2013.

[17] J. Li, J. Wu, and X. Yang, “Optimizing mapreduce based on locality
of kv pairs and overlap between shuffle and local reduce,” in
International Conference on Parallel Processing (ICPP), 2015, pp. 1–
10.

[18] J. Wang, M. Qiu, B. Guo, and Z. Zong, “Phase reconfigurable
shuffle optimization for hadoop mapreduce,” IEEE Transactions on
Cloud Computing, vol. PP, no. 99, pp. 1–1, 2015.

[19] J. Wang, Y. Yao, Y. Mao, B. Sheng, and N. Mi, “Omo: Optimize
mapreduce overlap with a good start (reduce) and a good finish
(map),” in International Performance Computing and Communications
Conference (IPCCC), 2015, pp. 1–8.

[20] Q.-K. Pan, M. F. Tasgetiren, P. N. Suganthan, and T. J. Chua, “A
discrete artificial bee colony algorithm for the lot-streaming flow
shop scheduling problem,” Information Sciences, vol. 181, no. 12,
pp. 2455–2468, 2011.

[21] N. Lim, S. Majumdar, and P. Ashwood-Smith, “Mrcp-rm: A
technique for resource allocation and scheduling of mapreduce
jobs with deadlines,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 5, pp. 1375–1389, 2017.

[22] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni, “G:
Packing and dependency-aware scheduling for data-parallel clus-

ters,” in USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016, pp. 81–91.

[23] S.-y. Wang, L. Wang, M. Liu, and Y. Xu, “An effective estimation
of distribution algorithm for solving the distributed permutation
flow-shop scheduling problem,” International Journal of Production
Economics, vol. 145, no. 1, pp. 387–396, 2013.

[24] M. Marichelvam, T. Prabaharan, and X.-S. Yang, “Improved cuck-
oo search algorithm for hybrid flow shop scheduling problems to
minimize makespan,” Applied Soft Computing, vol. 19, pp. 93–101,
2014.

[25] H. Zheng, Z. Wan, and J. Wu, “Optimizing mapreduce framework
through joint scheduling of overlapping phases,” in International
Conference on Computer Communication and Networks (ICCCN), 2016,
pp. 1–9.

[26] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “Cherrypick: Adaptively unearthing the best cloud
configurations for big data analytics.” in USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2017, pp.
469–482.

[27] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource central: Understanding and predicting
workloads for improved resource management in large cloud
platforms,” in ACM Symposium on Operating Systems Principles
(SOSP), 2017, pp. 153–167.

[28] R. Duan, S. Pettie, and H.-H. Su, “Scaling algorithms for weighted
matching in general graphs,” in ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2017, pp. 781–800.

[29] Z. Guan, G. Si, X. Zhang, L. Wu, N. Guizani, X. Du, and Y. Ma,
“Privacy-preserving and efficient aggregation based on blockchain
for power grid communications in smart communities,” IEEE
Communications Magazine, vol. 56, no. 7, pp. 1–7, 2017.

[30] Z. Guan, J. Li, L. Wu, Y. Zhang, J. Wu, and X. Du, “Achieving
efficient and secure data acquisition for cloud-supported internet
of things in smart grid,” IEEE Internet of Things Journal, vol. 4,
no. 6, pp. 1934–1944, 2017.

[31] J. Wilkes, “More Google cluster data,” Google research blog, Nov.
2011, posted at http://googleresearch.blogspot.com/2011/11/.

[32] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-
usage traces: format + schema,” white paper, Google Inc., Nov.
2011, posted at http://code.google.com/p/googleclusterdata/
wiki/TraceVersion2.

Huanyang Zheng received his B.Eng. degree in
Telecommunication Engineering from Beijing U-
niversity of Posts and Telecommunications, Chi-
na in 2012. He is currently a Ph.D. candidate
in the Department of Computer and Information
Sciences, Temple University, USA. His research
focuses on wireless and mobile networks, social
networks and structures, and cloud systems.

Jie Wu is the Associate Vice Provost for In-
ternational Affairs at Temple University. He al-
so serves as Director of Center for Networked
Computing and Laura H. Carnell professor in
the Department of Computer and Information
Sciences. Prior to joining Temple University, he
was a program director at the National Science
Foundation and was a distinguished professor at
Florida Atlantic University. His current research
interests include mobile computing and wireless
networks, routing protocols, cloud and green

computing, network trust and security, and social network applications.
Dr. Wu regularly publishes in scholarly journals, conference proceed-
ings, and books. He serves on several editorial boards, including IEEE
Transactions on Service Computing and the Journal of Parallel and Dis-
tributed Computing. Dr. Wu was general cochair/chair for IEEE MASS
2006, IEEE IPDPS 2008, IEEE ICDCS 2013, and ACM MobiHoc 2014,
as well as program co-chair for IEEE INFOCOM 2011 and CCF CNCC
2013. He was an IEEE Computer Society Distinguished Visitor, ACM
Distinguished Speaker, and chair for the IEEE Technical Committee on
Distributed Processing (TCDP). Dr. Wu is a CCF Distinguished Speaker
and a Fellow of the IEEE. He is the recipient of the 2011 China Computer
Federation (CCF) Overseas Outstanding Achievement Award.

Authorized licensed use limited to: Temple University. Downloaded on July 20,2020 at 20:28:14 UTC from IEEE Xplore. Restrictions apply.

